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ABSTRACT 

Alzheimer's disease (AD) stands as one of the primary neurological disorders affecting humans. This 

condition is marked by deterioration of central nervous system function. The enzyme β-secretase 

(BACE-1) plays a crucial part in AD pathogenesis by initiating the destruction of the amyloid precursor 

protein (APP). Consequently, BACE-1 has become a significant focus for therapeutic interventions in AD. 

Nelumbo nucifera phytochemical structures have been virtually scrutinized for the expansion of potent 

and selective therapeutic compounds. In silico analysis of 24 different phytochemical structures from 

Nelumbo nucifera have been carried out against the BACE-1 to explore the anti-Alzheimer potential.  

Anonaine, asimilobine, dehydroanonaine, liriodenine, and roemerin were found to be prominently 

binding with BACE-1 and found to be more stable in DFT analysis, which indicated physicochemical 

exploration of the Nelumbo nucifera may result in potent and selective anti-Alzheimer agents.   
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1. Introduction 

Alzheimer's disease (AD) is a state manifest by rational 

deterioration, including the loss of memory and other 

mental functions.  AD is one of the leading diseases which 

is affecting the human population. It was observed that the 

number of people who are living with AD usually doubles 

after five years in people above 65 years of age. 

The treatment for AD is generally focused on the 

management of the symptoms, which has a limited rate of 

success.  Development of molecules against AD is a tough 

job due to the complexity of the disease. Phytochemicals 

are a rich source of medicinal compounds; several 

pharmaceutical medicaments are generated on the 

phytochemical structures. In the current decade, scientists 

have turned their focus on the development of medicinal 

compounds based on phytochemical pharmacophores. 

Several biological targets have been identified in the 

current decade for the potent and selective anti-Alzheimer 

agents. BACE-1 is a significant factor in the etiology of AD 

as it brings the destruction process of the APP. BACE-1 

has been recognized as an important target for 

Alzheimer's disorder. BACE-1 is one of the major beta-

secretase that has a profound utility in the production of 

amyloid-β peptides in neurons. Amyloid-β peptides have 

been the important initiators in the progression of AD. 

Inhibition of the BACE-1 might be a useful strategy to 

combat the progressing AD. Development of the selective 

BACE-1 inhibitors has been recently explored for the 

identification of potent anti-Alzheimer compounds [1,2]. 

Phytochemical structures can be an attractive scaffold for 

the development of BACE-1 inhibitors [1,2]. The aquatic 

plant Nelumbo nucifera (Padma) belongs to the 

Nelumbonaceae family. Nelumbo nucifera have been 

explored for various biological potentials like antimicrobial, 

hypoglycemic activity, antiviral, skin aging, antioxidant, 

and antitumor. Anti-Alzheimer potency of the Nelumbo 

nucifera has been exhaustively analyzed by various 

researchers. UthaiwanSuttisansanee reported the utility 

of Nelumbo nucifera on the key enzymes that are 
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relevant to Alzheimer's disease [3]. Khan and co-workers 

reported the anti-Alzheimer effect of Nelumbo nucifera [4]. 

Mitra et al. reported the protective effect of Nelumbo 

nucifera on beta-amyloid protein-induced apoptosis [5]. 

To analyze the possible biological mode of action of the 

various phytoconstituents from Nelumbo nucifera here we 

report in silico and DFT analysis of exploration of the 

phytoconstituents from the Nelumbo nucifera against the 

BACE-1 to identify the possible phytochemical structures. 

Molecular docking and in silico ADME profiling of 

24 different phytoconstituents from the Nelumbo nucifera 

have been carried out. Anonaine, asimilobine, and 

dehydroanonaine were found to be prominently binding 

with BACE-1 which indicated physicochemical exploration 

of the Nelumbo nucifera may result in potent and selective 

anti-Alzheimer agents [6-26]. 

2. Materials and Methods 

2.1. Ligand preparation 

The phytochemical structures from Padma were 

identified from the reported literature and downloaded 

from the PubChem database. BIOVIA Discovery Studio was 

employed to adjust the tautomeric and ionization states of 

the structures. Energy minimization of the modified 

phytochemical structures was done with the MMFF94 force 

field, utilizing the steepest descent method [21, 27-30]. 

2.2. Protein preparation 

BACE1, a key beta secretase that plays a significant 

role in the production of amyloid-β peptides in neurons so 

inhibition of the BACE1 might be a useful strategy to 

combat the progressing AD. The crystal structure of BACE1 

bound to a 2-aminooxazoline-3-azaxanthene inhibitor 2 

(PDB 5I3W), with a resolution of 2.15 Å, was obtained from 

the RCSB Protein Data Bank. The downloaded protein 

structure was refined via addition of polar hydrogen and 

removal of the water molecules. The refined protein 

structure was utilised for the docking analysis. 

2.3. Molecular docking 

Phytochemical structures were subjected to a docking 

study against the crystal structure of BACE1 in a complex 

with 2-aminooxazoline-3-azaxanthene inhibitor 2 (PDB 5I3W). 

The docking protocol was executed using the PyRx 0.8 

program. Prepared protein and ligand structure were 

imported and selected in the PyRx 0.8 Grid box selected as 

X: 60.0429, Y: 62.7651, Z: 25.0000 coordinates. By default, 

the exhaustiveness was set to 8. Each compound's 

maximum negative binding affinity docked pose was stored 

in pdb format, and binding interactions were examined 

using BIOVIA Discovery Studio. 

2.4. Insilico ADME Prediction  

The promising lead from the docking analysis was 

further analyzed using Swiss ADME to explore the 

pharmacokinetic behaviour of the selected phytoconstituents. 

In-silico ADME Prediction was carried out using 

http://www.swissadme.ch/ [31]. 

2.5. DFT calculation  

The structures of compounds anonaine, asimilobine, 

dehydroanonaine, liriodenine, and roemerin were 

downloaded from the PubChem database [32-46]. 

Subsequent energy minimization and optimization were 

done using established computational methods [33-35]. 

DFT calculations with the B3LYP functional and DEF2-SVP 

basis set were performed using ORCA 5.0.4 software [36-

42] with ORCA-enhanced Avogadro facilitating input and 

output file generation [43]. FMO analysis and chemical 

reactivity descriptor calculations were conducted to 

examine the electronic properties, stability, and 

reactivity of the target compounds. 

3. Results and Discussion 

The potential of the chosen phytoconstituents from 

Padma to bind to BACE1, a key beta-secretase that plays 

a significant role in the production of amyloid-β peptides 

in neurons. Amyloid-β peptides have been the important 

initiators in the progression of AD. Inhibition of the BACE1 

might be a useful strategy to combat the progressing AD. 

Docking analysis was utilized as initial scrutiny to identify 

the potential phytoconstituent candidates from Padma, 

which can be further explored for advanced remedies 

against AD. Molecular docking analysis was performed 

using PyRx 0.8 Crystal structure of BACE1 in complex with 

2-aminooxazoline-3-azaxanthene inhibitor 2 (PDB 5I3W). 

A total of 24 phytoconstituents from Padma were identified 

and virtually analyzed against BACE-1. All phytoconstituents 

showed excellent binding affinity towards BACE1 ranging 

from -8 kcal/mol to -9.9 kcal/mol. Five phytochemical 

structures was found to be desirable pharmacokinetic 

property. Anonaine, which is one of the prominent 

alkaloids observed in Padma, showed binding affinity of -

9.9 kcal/mol with BACE1 which indicated stronger binding 

potential. The key interactions like alkyl interaction with 

ILE118 and pi cation interaction with ASP32, pi-pi T 

shaped interaction with TYR71 as shown in Figure 1. 

Asimilobine is a  aporphine alkaloid was found to be 

showing binding affinity of -9.3 kcal/mol and showed 

hydrogen bond interaction with TYR198, carbon hydrogen 

bond with ASN37, alkyl interaction with VAL69, TRP76 and 

pi cation interaction with ASP32, pi-pi T shaped interaction 

with TYR71 as shown in Fig. 1. Dehydroanonaine is also an 

alkaloid observed in Padma showed to be showing binding 

affinity of -9.6 kcal/mol and showed hydrogen bond 

interaction with TYR198, alkyl interaction with VAL69, 

ILE 118 and pi cation interaction with ASP32, pi-pi T 

shaped interaction with TYR71 while Liriodenine which 

another key phytochemical constituent of Padma was 

found to be showing binding affinity of -9.5 kcal/mol and 

showed Pi cation interaction with ASP32, Pi alkyl 

interaction with TYR71. Roemerin was found to be 

showing binding affinity of -9.6 kcal/ mol and showed 

Pi cation interaction with ASP32, Pi alkyl interaction with 

TYR71. Molecular interactions of the phytoconstituents 

from PADMA are shown in Table 1. 
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Fig. 1. Docking interaction of anonaine (A), asimilobine (B), dehydroanonaine (C), liriodenine (D), and roemerin (E). 
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Table 1. Molecular Interactions of the phytoconstituents from Padma. 

Molecule Name 

Interactions 
Binding 

Affinity Conventional 

Hydrogen bond 

Carbon hydrogen 

bond 
pi cation Alkyl 

pi-pi 

T shaped 
PI-Sigma 

Anonaine   ASP32 ILE118, TYR71  -9.9 

Armepavine THR72 GLN73 ASP32 VAL69, TRP76 TYR71  -8 

Asimilobine TYR198 ASN37 ASP32  TYR71  -9.3 

Dehydroanonaine TYR198   ILE118, VAL69 TYR71  -9.6 

Dehydronuciferine   ASP32  TYR71  -8.8 

Demethylcoclaurine GLY230, ILE126 SER35 ASP32 ILE118 TYR71  -8.4 

Hyperin 
GLY34, HR231, 

ASP228, HE108 
 ASP32 ILE118 TYR71  -9.3 

Isoliensinine  GLN73, GLY230  
ILE110, VAL69, 

ARG128, LEU30 
  -9.6 

Kaempferol LYS107, TYR71  ASP32 ILE118, TRP115  -8.2 

Liensinine ARG235,SER325 PHE108, ASN37  

ILE110, TRP115, 

TRP76, VAL69, 

ARG128, ILE118, 

 TYR71 -9.4 

Lirinidine   ASP32 TRP76, VAL69   -8.9 

Liriodenine   ASP32  TYR71  -9.5 

Lotusine   ASP228, ASP32 ILE118 TYR71  -8.3 

Luteolinglucoside THR329, GLUY230 LYS107 ASP32  TYR71  -9.2 

Neferine  THR231, GLY230  

ARG128, VAL69, 

TRP76, ILE118, 

ILE110 

  -9.6 

N-methylasimilobine GLY230, THR231  ASP32 ILE118 TYR71  -9.1 

N-methylcoclaurine LYS107, TRP76, 
ASP228, GLY230, 

ASP32 
 

ARG128, VAL69, 

TRP76, ILE118, 

ILE110 

TYR71  -8.5 

N-methylisococlaurine GLY230, THR72  ASP32 ILE118 TYR71  -8.6 

N-norarmepavine TRP76 GLN73 ASP32 
ARG128, VAL69, 

ILE118 
TYR71  -8.1 

Nornuciferine  ASN37, ILE126 ASP32 
ARG128, VAL69, 

ILE118 
TYR71  -8.6 

Nuciferine   ASP32  TYR71  -8.9 

Pronuciferine  GLY11, LYS107    ILE110 -6.4 

Roemerin   ASP32  TYR71  -9.6 

Rutin 

GLY34, ASP228, 

TYR71, THR231, 

LYS107, GLN73, 

LYS321, THR232, 

GLY230 

  ILE118   -8.9 

3.1. In silico ADME Prediction 

In silico ADME prediction was performed for all the 24  

selected phytochemical structures, the seven 

phytochemicals showed excellent ADME properties for anti-

Alzheimer potential. Anonaine, asimilobine, dehydroanonaine, 

liriodenine, N-methylasimilobine, roemerin was found to 

show acceptable ADME parameters. Major parameters like 

Molecular weight, Rotatable bonds, H-bond acceptors/ 

donors are all within the acceptable limits what makes 

them very good drug like candidates. BBB permeability of 

all above molecules is good thus makes them very good 

candidates for CNS potentials. The phytochemicals like 

anonaine, asimilobine, dehydroanonaine, liriodenine,  

N-methylasimilobine, roemerin can be further explored 

for development of anti-Alzheimer medications as shown 

in Table 2. 

3.2. DFT calculation 

Performed DFT study aimed to evaluate the energies 

of the frontier molecular orbitals (FMOs), namely the 

highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO), which are key 

indicators of a molecule's reactivity. This method was 

applied to assess the electronic structure of the 

compounds. Estimating the FMO energies gained insights 

into their electronic properties. Furthermore, reactivity 

descriptors were calculated using Koopmans' theory 
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Table 2. Predicted ADME properties of the selected phytochemicals. 

Molecule Name*  MW 

Rotatable 

bonds 

H-bond 

acceptors 

H-bond 

donors TPSA 

GI 

absorption BBB permeant 

Pgp 

substrate 

Anonaine 265.31 0 3 1 30.49 High Yes Yes 

Asimilobine 267.32 1 3 2 41.49 High Yes Yes 

Dehydroanonaine 263.29 0 2 1 30.49 High Yes Yes 

Liriodenine 275.26 0 4 0 48.42 High Yes Yes 

N-methylasimilobine 281.35 1 3 1 32.7 High Yes Yes 

Roemerin 279.33 0 3 0 21.7 High Yes Yes 

 

equations, which provided important information about the 

reactivity and stability of these compounds. The analysis of 

the FMOs (HOMO and LUMO) and chemical reactivity 

descriptors reveals significant data on the reactivity and 

stability of the title compounds. A smaller HOMO-LUMO 

energy gap indicates higher reactivity but lower kinetic 

stability, as seen with compound liriodenine, which has the 

smallest energy gap (3.512 eV) and is the most reactive. In 

contrast, compounds anonaine and asimilobine, with more 

significant energy gaps (4.512 eV and 4.685 eV, 

respectively), are more kinetically stable but less reactive. 

The reactivity order based on the HOMO-LUMO energy gap 

is liriodenine > dehydroanonaine > roemerin > anonaine >

dehydroanonaine. Furthermore, chemical reactivity 

descriptors, including ionization potential (IP), electron 

affinity (EA), electronegativity (χ), chemical potential (µ), 

chemical hardness (η), and electrophilicity (ω), provide 

a deeper understanding of the compounds' behavior. 

Compound liriodenine exhibits the highest IP, EA, and 

electrophilicity, indicating a strongtendency to engage 

in reactions despite its lower stability. In contrast, 

compounds anonaine and dehydroanonaine, with higher 

chemical hardness and lower electrophilicity, are more 

resistant to charge transfer, making them more stable but 

less reactive. These insights guide the potential applications 

of these compounds, with compound liriodenine suited 

for highly reactive environments and compounds anonaine 

and dehydroanonaine better for applications requiring 

more excellent stability. The derived values for the 

descriptors of chemical reactivity are shown in Fig. 2 and 

Table 3. 

Table 3. Calculated FMO and global chemical reactivity descriptors for Selected Five Phytoconstituents. 

Entry HOMO (eV) LUMO (eV) HLG (eV) DM (Debye) IP (eV) EA (eV) χ (eV) µ (eV) η (eV) ω (eV) 

1 -5.458 -0.946 4.512 1.070 5.458 0.946 3.202 -3.202 2.256 2.272 

3 -5.621 -0.936 4.685 2.408 5.621 0.936 3.279 -3.279 2.343 2.294 

4 -4.842 -0.959 3.883 2.077 4.842 0.959 2.901 -2.901 1.942 2.167 

12 -6.155 -2.643 3.512 6.572 6.155 2.643 4.399 -4.399 1.756 5.510 

23 -5.427 -0.995 4.432 1.012 5.427 0.995 3.211 -3.211 2.216 2.326 

HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; HLG: HOMO-LUMO gap; DM: dipole moment; IP: 

ionization potential; EA: electron affinity; χ: electronegativity; µ; chemical potential; η: chemical hardness; ω: electrophilicity. 

 

Fig. 2. HOMO-LUMO and energy gap (HLG) of selected five phytoconstituents. 
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4. Conclusions 

BACE-1 is a significant factor in the etiology of AD as it 

brings the destruction process of the APP. BACE-1 has become 

a key target for Alzheimer's disease. To create a potent and 

specific therapeutic molecule, the phytochemical structures 

of Nelumbo nucifera have been virtually examined. In silico 

and DFT, analysis of 24 different phytochemical structures 

from Nelumbo nucifera was carried out against the BACE-1 to 

explore its anti-Alzheimer’s potential. Anonaine, asimilobine, 

dehydroanonaine, liriodenine, N-methylasimilobine, and 

roemerin were found to be promising phytochemicals for the 

development of anti-Alzheimer’s drugs. 
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