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ABSTRACT

Alzheimer's disease (AD) stands as one of the primary neurological disorders affecting humans. This
condition is marked by deterioration of central nervous system function. The enzyme B-secretase
(BACE-1) plays a crucial part in AD pathogenesis by initiating the destruction of the amyloid precursor
protein (APP). Consequently, BACE-1 has become a significant focus for therapeutic interventions in AD.
Nelumbo nucifera phytochemical structures have been virtually scrutinized for the expansion of potent
and selective therapeutic compounds. In silico analysis of 24 different phytochemical structures from
Nelumbo nucifera have been carried out against the BACE-1 to explore the anti-Alzheimer potential.
Anonaine, asimilobine, dehydroanonaine, liriodenine, and roemerin were found to be prominently
binding with BACE-1 and found to be more stable in DFT analysis, which indicated physicochemical
exploration of the Nelumbo nucifera may result in potent and selective anti-Alzheimer agents.
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1. Introduction

Alzheimer's disease (AD) is a state manifest by rational
deterioration, including the loss of memory and other
mental functions. AD is one of the leading diseases which
is affecting the human population. It was observed that the
number of people who are living with AD usually doubles
after five years in people above 65 years of age.
The treatment for AD is generally focused on the
management of the symptoms, which has a limited rate of
success. Development of molecules against AD is a tough
job due to the complexity of the disease. Phytochemicals
are a rich source of medicinal compounds; several
pharmaceutical medicaments are generated on the
phytochemical structures. In the current decade, scientists
have turned their focus on the development of medicinal
compounds based on phytochemical pharmacophores.
Several biological targets have been identified in the
current decade for the potent and selective anti-Alzheimer
agents. BACE-1 is a significant factor in the etiology of AD

as it brings the destruction process of the APP. BACE-1
has been recognized as an important target for
Alzheimer's disorder. BACE-1 is one of the major beta-
secretase that has a profound utility in the production of
amyloid-B peptides in neurons. Amyloid-B peptides have
been the important initiators in the progression of AD.
Inhibition of the BACE-1 might be a useful strategy to
combat the progressing AD. Development of the selective
BACE-1 inhibitors has been recently explored for the
identification of potent anti-Alzheimer compounds [1,2].
Phytochemical structures can be an attractive scaffold for
the development of BACE-1 inhibitors [1,2]. The aquatic
plant Nelumbo nucifera (Padma) belongs to the
Nelumbonaceae family. Nelumbo nucifera have been
explored for various biological potentials like antimicrobial,
hypoglycemic activity, antiviral, skin aging, antioxidant,
and antitumor. Anti-Alzheimer potency of the Nelumbo
nucifera has been exhaustively analyzed by various
researchers. UthaiwanSuttisansanee reported the utility
of Nelumbo nucifera on the key enzymes that are
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relevant to Alzheimer's disease [3]. Khan and co-workers
reported the anti-Alzheimer effect of Nelumbo nucifera [4].
Mitra et al. reported the protective effect of Nelumbo
nucifera on beta-amyloid protein-induced apoptosis [5].

To analyze the possible biological mode of action of the
various phytoconstituents from Nelumbo nucifera here we
report in silico and DFT analysis of exploration of the
phytoconstituents from the Nelumbo nucifera against the
BACE-1 to identify the possible phytochemical structures.
Molecular docking and in silico ADME profiling of
24 different phytoconstituents from the Nelumbo nucifera
have been -carried out. Anonaine, asimilobine, and
dehydroanonaine were found to be prominently binding
with BACE-1 which indicated physicochemical exploration
of the Nelumbo nucifera may result in potent and selective
anti-Alzheimer agents [6-26].

2. Materials and Methods
2.1. Ligand preparation

The phytochemical structures from Padma were
identified from the reported literature and downloaded
from the PubChem database. BIOVIA Discovery Studio was
employed to adjust the tautomeric and ionization states of
the structures. Energy minimization of the modified
phytochemical structures was done with the MMFF94 force
field, utilizing the steepest descent method [21, 27-30].

2.2. Protein preparation

BACE1, a key beta secretase that plays a significant
role in the production of amyloid-B8 peptides in neurons so
inhibition of the BACE1 might be a useful strategy to
combat the progressing AD. The crystal structure of BACE1
bound to a 2-aminooxazoline-3-azaxanthene inhibitor 2
(PDB 5I3W), with a resolution of 2.15 A, was obtained from
the RCSB Protein Data Bank. The downloaded protein
structure was refined via addition of polar hydrogen and
removal of the water molecules. The refined protein
structure was utilised for the docking analysis.

2.3. Molecular docking

Phytochemical structures were subjected to a docking
study against the crystal structure of BACE1 in a complex
with 2-aminooxazoline-3-azaxanthene inhibitor 2 (PDB 5I3W).
The docking protocol was executed using the PyRx 0.8
program. Prepared protein and ligand structure were
imported and selected in the PyRx 0.8 Grid box selected as
X: 60.0429, Y: 62.7651, Z: 25.0000 coordinates. By default,
the exhaustiveness was set to 8. Each compound's
maximum negative binding affinity docked pose was stored
in pdb format, and binding interactions were examined
using BIOVIA Discovery Studio.

2.4. Insilico ADME Prediction

The promising lead from the docking analysis was
further analyzed using Swiss ADME to explore the
pharmacokinetic behaviour of the selected phytoconstituents.
In-silico ADME Prediction was carried out using
http://www.swissadme.ch/ [31].
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2.5. DFT calculation

The structures of compounds anonaine, asimilobine,
dehydroanonaine, liriodenine, and roemerin were
downloaded from the PubChem database [32-46].
Subsequent energy minimization and optimization were
done using established computational methods [33-35].
DFT calculations with the B3LYP functional and DEF2-SVP
basis set were performed using ORCA 5.0.4 software [36-
42] with ORCA-enhanced Avogadro facilitating input and
output file generation [43]. FMO analysis and chemical
reactivity descriptor calculations were conducted to
examine the electronic properties, stability, and
reactivity of the target compounds.

3. Results and Discussion

The potential of the chosen phytoconstituents from
Padma to bind to BACE1, a key beta-secretase that plays
a significant role in the production of amyloid-B peptides
in neurons. Amyloid-B peptides have been the important
initiators in the progression of AD. Inhibition of the BACE1
might be a useful strategy to combat the progressing AD.
Docking analysis was utilized as initial scrutiny to identify
the potential phytoconstituent candidates from Padma,
which can be further explored for advanced remedies
against AD. Molecular docking analysis was performed
using PyRx 0.8 Crystal structure of BACE1 in complex with
2-aminooxazoline-3-azaxanthene inhibitor 2 (PDB 5I3W).
A total of 24 phytoconstituents from Padma were identified
and virtually analyzed against BACE-1. All phytoconstituents
showed excellent binding affinity towards BACE1 ranging
from -8 kcal/mol to -9.9 kcal/mol. Five phytochemical
structures was found to be desirable pharmacokinetic
property. Anonaine, which is one of the prominent
alkaloids observed in Padma, showed binding affinity of -
9.9 kcal/mol with BACE1 which indicated stronger binding
potential. The key interactions like alkyl interaction with
ILE118 and pi cation interaction with ASP32, pi-pi T
shaped interaction with TYR71 as shown in Figure 1.
Asimilobine is a aporphine alkaloid was found to be
showing binding affinity of -9.3 kcal/mol and showed
hydrogen bond interaction with TYR198, carbon hydrogen
bond with ASN37, alkyl interaction with VAL69, TRP76 and
pi cation interaction with ASP32, pi-pi T shaped interaction
with TYR71 as shown in Fig. 1. Dehydroanonaine is also an
alkaloid observed in Padma showed to be showing binding
affinity of -9.6 kcal/mol and showed hydrogen bond
interaction with TYR198, alkyl interaction with VAL69,
ILE 118 and pi cation interaction with ASP32, pi-pi T
shaped interaction with TYR71 while Liriodenine which
another key phytochemical constituent of Padma was
found to be showing binding affinity of -9.5 kcal/mol and
showed Pi cation interaction with ASP32, Pi alkyl
interaction with TYR71. Roemerin was found to be
showing binding affinity of -9.6 kcal/ mol and showed
Pi cation interaction with ASP32, Pi alkyl interaction with
TYR71. Molecular interactions of the phytoconstituents
from PADMA are shown in Table 1.
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Fig. 1. Docking interaction of anonaine (A), asimilobine (B), dehydroanonaine (C), liriodenine (D), and roemerin (E).
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Table 1. Molecular Interactions of the phytoconstituents from Padma.

Interactions

Molecule Name Binding
Conventional Carbon hydrogen . . pi-pi i Affinity
Hydrogen bond bond P1 cation Alkyl T shaped PI-Sigma
Anonaine ASP32 ILE118, TYR71 -9.9
Armepavine THR72 GLN73 ASP32 VAL69, TRP76 TYR71 -8
Asimilobine TYR198 ASN37 ASP32 TYR71 -9.3
Dehydroanonaine TYR198 ILE118, VAL69 TYR71 -9.6
Dehydronuciferine ASP32 TYR71 -8.8
Demethylcoclaurine GLY230, ILE126  SER35 ASP32 ILE118 TYR71 -8.4
- GLY34, HR231, i
Hyperin ASP228, HE108 ASP32 ILE118 TYR71 9.3
L ILE110,  VAL69,
Isoliensinine GLN73, GLY230 ARG128, LEU30 -9.6
Kaempferol LYS107, TYR71 ASP32 ILE118, TRP115 -8.2
ILE110, TRP115,
Liensinine ARG235,SER325  PHE108, ASN37 TRP76,  VAL69, TYR71 -9.4
ARG128, ILE118,
Lirinidine ASP32 TRP76, VAL69 -8.9
Liriodenine ASP32 TYR71 -9.5
Lotusine ASP228, ASP32 ILE118 TYR71 -8.3
Luteolinglucoside THR329, GLUY230 LYS107 ASP32 TYR71 9.2
ARG128, VAL69,
Neferine THR231, GLY230 TRP76,  ILE118, -9.6
ILE110
N-methylasimilobine GLY230, THR231 ASP32 ILE118 TYR71 -9.1
ARG128, VAL69,
N-methylcoclaurine LYS107, TRP76, ASP228, GLY230, TRP76,  ILE118, TYR71 -8.5
ASP32
ILE110
N-methylisococlaurine  GLY230, THR72 ASP32 ILE118 TYR71 -8.6
N-norarmepavine TRP76 GLN73 ASP32 ﬁiﬂgg’ VAL9, TYR71 -8.1
Nornuciferine ASN37, ILE126 ASP32 ﬁ_i?:;g’ VAL69, TYR71 -8.6
Nuciferine ASP32 TYR71 -8.9
Pronuciferine GLY11, LYS107 ILE110 -6.4
Roemerin ASP32 TYR71 -9.6
GLY34, ASP228,
TYR71, THR231,
Rutin LYS107, GLN73, ILE118 -8.9
LYS321, THR232,
GLY230
N-methylasimilobine, roemerin can be further explored

3.1. In silico ADME Prediction

In silico ADME prediction was performed for all the 24

selected

phytochemical

structures,

the

seven

phytochemicals showed excellent ADME properties for anti-
Alzheimer potential. Anonaine, asimilobine, dehydroanonaine,
liriodenine, N-methylasimilobine, roemerin was found to
show acceptable ADME parameters. Major parameters like
Molecular weight, Rotatable bonds, H-bond acceptors/
donors are all within the acceptable limits what makes
them very good drug like candidates. BBB permeability of
all above molecules is good thus makes them very good
candidates for CNS potentials. The phytochemicals like
anonaine, asimilobine, dehydroanonaine, liriodenine,
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for development of anti-Alzheimer medications as shown
in Table 2.

3.2. DFT calculation

Performed DFT study aimed to evaluate the energies
of the frontier molecular orbitals (FMOs), namely the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), which are key
indicators of a molecule's reactivity. This method was
applied to assess the electronic structure of the
compounds. Estimating the FMO energies gained insights
into their electronic properties. Furthermore, reactivity
descriptors were calculated using Koopmans' theory
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Table 2. Predicted ADME properties of the selected phytochemicals.

Rotatable H-bond H-bond Gl Pgp
Molecule Name* MW bonds acceptors donors TPSA absorption BBB permeant substrate
Anonaine 265.31 0 3 1 30.49 High Yes Yes
Asimilobine 267.32 1 3 2 41.49 High Yes Yes
Dehydroanonaine 263.29 0 2 1 30.49 High Yes Yes
Liriodenine 275.26 0 4 0 48.42 High Yes Yes
N-methylasimilobine 281.35 1 3 1 32.7 High Yes Yes
Roemerin 279.33 0 3 0 21.7 High Yes Yes

equations, which provided important information about the
reactivity and stability of these compounds. The analysis of
the FMOs (HOMO and LUMO) and chemical reactivity
descriptors reveals significant data on the reactivity and
stability of the title compounds. A smaller HOMO-LUMO
energy gap indicates higher reactivity but lower kinetic
stability, as seen with compound liriodenine, which has the
smallest energy gap (3.512 eV) and is the most reactive. In
contrast, compounds anonaine and asimilobine, with more
significant energy gaps (4.512 eV and 4.685 eV,
respectively), are more kinetically stable but less reactive.
The reactivity order based on the HOMO-LUMO energy gap
is liriodenine > dehydroanonaine > roemerin > anonaine >
dehydroanonaine.  Furthermore, chemical reactivity
descriptors, including ionization potential (IP), electron
affinity (EA), electronegativity (x), chemical potential (p),

chemical hardness (n), and electrophilicity (w), provide
a deeper understanding of the compounds' behavior.
Compound liriodenine exhibits the highest IP, EA, and
electrophilicity, indicating a strongtendency to engage
in reactions despite its lower stability. In contrast,
compounds anonaine and dehydroanonaine, with higher
chemical hardness and lower electrophilicity, are more
resistant to charge transfer, making them more stable but
less reactive. These insights guide the potential applications
of these compounds, with compound liriodenine suited
for highly reactive environments and compounds anonaine
and dehydroanonaine better for applications requiring
more excellent stability. The derived values for the
descriptors of chemical reactivity are shown in Fig. 2 and
Table 3.

Table 3. Calculated FMO and global chemical reactivity descriptors for Selected Five Phytoconstituents.

Entry  HOMO (eV) LUMO (eV) HLG (eV) DM (Debye) IP(eV)  EA (eV) x (eV) H (eV) n (eV) w (eV)
1 -5.458 -0.946 4.512 1.070 5.458 0.946 3.202 -3.202 2.256 2.272
3 -5.621 -0.936 4.685 2.408 5.621 0.936 3.279 -3.279 2.343 2.294
4 -4.842 -0.959 3.883 2.077 4.842 0.959 2.901 -2.901 1.942 2.167
12 -6.155 -2.643 3.512 6.572 6.155 2.643 4.399 -4.399 1.756 5.510
23 -5.427 -0.995 4.432 1.012 5.427 0.995 3.211 -3.211 2.216 2.326

HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; HLG: HOMO-LUMO gap; DM: dipole moment; IP:
ionization potential; EA: electron affinity; x: electronegativity; y; chemical potential; n: chemical hardness; w: electrophilicity.
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Fig. 2. HOMO-LUMO and energy gap (HLG) of selected five phytoconstituents.
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4, Conclusions

BACE-1 is a significant factor in the etiology of AD as it
brings the destruction process of the APP. BACE-1 has become
a key target for Alzheimer's disease. To create a potent and
specific therapeutic molecule, the phytochemical structures
of Nelumbo nucifera have been virtually examined. In silico
and DFT, analysis of 24 different phytochemical structures
from Nelumbo nucifera was carried out against the BACE-1 to
explore its anti-Alzheimer’s potential. Anonaine, asimilobine,
dehydroanonaine, liriodenine, N-methylasimilobine, and
roemerin were found to be promising phytochemicals for the
development of anti-Alzheimer’s drugs.
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