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ABSTRACT

Polymers are a group of compounds commonly encountered in everyday life. However, due to
the increasing incidence of cancer, allergies and progressive environmental pollution, it is
becoming essential to design new chemical compounds that would be safe. Particular
attention is paid to the resorbability of compounds and their biodegradability. These features
seem to be particularly important in broadly understood orthopedics, surgery or aesthetic
medicine. This article, which is a continuation of the undertaken topic, presents examples of
polymers and their application, among others, during surgical operations, orthopedic
procedures or broadly understood dermatology. Particular emphasis is given to specific
properties of the polymer that determine its usefulness in a given medical discipline.
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1. Wstep

Postepujacy wzrost zachorowalnosci na choroby
nowotworowe, zaréwno w Polsce jak i na swiecie, wzrost
stwierdzanych alergii oraz coraz bardziej zanieczyszczone
srodowisko, stanowia istotny bodziec rozwoju przemystu
chemicznego i farmaceutycznego [1-3]. Ze wzgledu na
powszechno$¢  stosowanych materiatow polimerowych
w obecnym s$wiecie, szczegblny nacisk ktadzie sie na
bezpieczenstwo materiatow polimerowych, ich nietoksycznosc¢
oraz resorbowalnos¢ [4,5]. Te cechy nieodzowne staja sie
w takich kierunkach medycyny jak ortopedia, chirurgia czy
szeroko rozumiana dermatologia i medycyna estetyczna [6-8].
Z polimerow wykonane sa nie tylko elementy aparatury
medycznej, ale rowniez endoprotezy wszczepiane
pacjentom, szwy chirurgiczne czy opatrunki w postaci folii.
Artykut ten prezentuje zastosowania i cechy wybranych
polimeréw w wymienionych dziatach medycyny [9,10].

2. Ortopedia

Ortopedia stanowi obecnie jedna z podstawowych
specjalnosci lekarskich. Posiadajac w swoim arsenale
zaréwno procedury zachowawcze, jak i operacyjne, skupia
sie na utrzymaniu w sprawnosci i leczeniu narzadow ruchu:
szkieletu, wiezadet, stawow, miesni, nerwow i naczyn.
W obecnych czasach ortopeda nie zajmuje sie jedynie
korekcja postawy dzieci czy leczeniem pacjentow

powypadkowych, ale wspotpracuje z genetykiem
i neonatologiem (np. leczenie wad wrodzonych), internistag
(np. leczenie skutkow zakazen i amputacji) czy onkologiem
(np. leczenie pooperacyjne). W tym celu obecna ortopedia
wykorzystuje szereg roznych materiatow, w tym
resorbowalnych i biokompatybilnych polimerdow.

2.1. PTFE (politetrafluoroetylen)

Ten powstajacy w wyniku polimeryzacji
tetrafluoroetylenu polimer cechuje sie duza odpornoscia
chemiczna, hydrofobowoscia i elastycznoscia. Przyktadem
jego zastosowania w ortopedii moze byc¢ wykorzystanie do
produkcji protez, np. sztucznej reki czy kolana.
Wykorzystuje sie tutaj jego biozgodnos¢ i obojetnos¢, brak
dziatania podrazniajacego czy uczulajacego, chociaz wiele
uwagi wymaga jeszcze badanie potencjalnego dziatania
kancerogennego [11-13]. Polimer ten wykorzystany
w produkcji  wigzadta  protetycznego  okazat = sie
skuteczniejszy niz wiezadto proplastyczne w operacyjnym
leczeniu wielokrotnie operowanego, niestabilnego kolana.
Zastosowania polimeru koreluja z jego wtasciwosciami:
gestoscia liniowa czy odlegtoscia miedzyweztowa. Polimer
ten wykorzystywany jest rowniez podczas zabiegow
rekonstrukcji twarzy, a nawet ucha srodkowego [14-17].
PTFE nie powoduje miejscowych reakcji zapalnych tkanek
i wykorzystany jest w przeszczepach autogenicznych.
W operacji korekcji twarzy polimer ten wykazat
korzystniejsze cechy mechaniczne w poréwnaniu do tkanki
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biologicznej (ziarnistej chrzastki zebrowej) [15]. PTFE moze
by¢  wykorzystywany do produkcji protez ucha
wewnetrznego oraz kosteczek stuchowych, gdyz jego
wtasciwosci antyadhezyjne  zapobiegaja  ekstruzji,
deformacji i nadmiernemu przywieraniu. Mozliwosc
sterylizacji materiatow z tego polimeru w szerokim zakresie
temperatury z pewnoscia przyczyni sie do dalszego ich
rozwoju [18].

PTFE jest polimerem o szerokim zastosowaniu
w inzynierii tkankowej [19-20]. Przyktadowo, wykazano,
iz polimer ten nadaje sie do regeneracji naczyn pachowych,
ramiennych, udowych i podkolanowych. Sprawdza sie
rowniez, zwtaszcza w potaczeniu z hydroksyapatytem,
w zabiegach alloplastyki, czyli wstawianiu sztucznego stawu
(np. biodrowego) [19-20].

2.2. Poliglikolid

Jest to polimer, ktérego merem jest kwas glikolowy.
Kwas ten pozyskiwany jest ze zrodet naturalnych, np. trzciny
cukrowej, a poddanie go polimeryzacji pozwala na
otrzymanie polimeru o duzej biodegradowalnosci [21-22].
Poliglikolid wykorzystywany jest jako podtoze matryc
tkankowych w inzynierii tkankowej, co pozwala na
odtworzenie tkanek [23]. Poliglikolidy moga byc
wykorzystane w produkcji sztucznych zastawek serca, tkanki
chrzestnej, pecherza (gdzie szczegolnie wazna jest
elastycznos¢ polimeru, jego rozciagliwos¢ i wtasciwosci
mechaniczne) [24-26]. Warto podkresli¢, ze kluczowe
znaczenie dla tworzonej tkanki moze mie¢ sktad
zastosowanych mikrosfer jako formowalnego rusztowania
[26]. Przyktadowo, w zaleznosci od masy czasteczkowej
polimeru mozliwe jest otrzymanie mniej lub bardziej
bogatej w proteoglikany tkanki chrzestnej [26].

Regeneracje uszkodzonego ucha wydaja sie zabiegami
trudnymi ze wzgledu na naturalnie stabo rozwinieta tkanke.
Omawiany polimer dzigki rozwojowi inzynierii tkankowej
takze w takich operacjach znalazt zastosowanie [27-28].
Czesto wykorzystywany jest jako kopolimer z polilaktydem.
W postaci klejow chirurgicznych stanowi alternatywe dla
nici, oprocz widocznego waloru estetycznego, pozwala
réwniez na szybsza regeneracje tkanek. Kleje takie moga
znalez¢ zastosowanie podczas operacji  kregostupa
(np. zapobiegaja wyciekowi ptynu moézgowo-rdzeniowego)
[29-30].

2.3. Polilaktyd

Tworzywo to stanowi polimer kwasu mlekowego,
naturalnie powstajacego w wyniku fermentacji skrobi.
Na skale przemystowa, kwas mlekowy otrzymuje sie
z maczki kukurydzianej [31]. Nalezy podkreslic mozliwosc
dwutorowej syntezy polimeru, bowiem poli(laktyd) mozna
otrzymac¢ z laktydu w wyniku polimeryzacji z otwarciem
pierscienia, albo z poli(kwasu mlekowego) powstatego
w wyniku polikondensacji kwasu mlekowego [32]. Metody
syntezy roznia sie, wiec nie tylko liczba etapow, ale takze
réznag masa polimeru. Warto réwniez podkreslic,
iz wtasciwosci  polilaktydu zaleza od uktadu stereo-
chemicznego: mozliwe jest otrzymanie polimeréow od
migkkich i elastycznych po twarde i wytrzymate [33-34].
Jednym z zastosowan omawianego polimeru jest produkcja
srub ortopedycznych, drutéw, implantow i ptytek
mechanicznych wspomagajacych leczenie kosci [35-38].
Wykorzystuje  sie  tutaj  biodegradowalnos¢  oraz
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termoplastycznos¢ polimeru (kurczy sie pod wptywem
ciepta), a czesto stosowane sa dodatkowe czynniki, np.:

a) magnez - podnoszacy wytrzymatos¢ mechaniczna
kompozytu [36],

b) polikaprolaktam - modyfikujacy wtasciwosci
fizykochemiczne biomateriatu [37],

c) kwas poliglikolowy - wptywajacy na biokompatybilnos¢
i proces degradacji takich biomateriatow [38].

Ponadto, polimer ten wykorzystywany jest w inzynierii
tkankowej w celu otrzymania resorbowalnego rusztowania
do namnazania komérek [39]. Warto podkreslic, iz polilaktyd
wykorzystywany jest w drukarkach 3D, a powstate
biomateriaty stosowane sa w regeneracji tkanki kostnej,
sercowej, nerwowej, unaczynionej i skory [40].

2.4. Polialkohol winylowy i otrzymane hydrozele

Ten otrzymywany na drodze hydrolizy polioctanu
winylu polimer ma postac biatego lub kremowego proszku.
Polimer ten jest bezwonny, rozpuszczalny w wodzie, ale
nierozpuszczalny w solwentach organicznych.
Charakteryzuje  sie  duza  biokompatybilnoscig i
nietoksycznoscia, co pozwala na jego zastosowanie
w inzynierii tkankowej. Stosowany jest np. w postaci
gabek jako materiat implantacyjny tkanek miekkich,
np. chrzastek, watroby, nerek. W potaczeniu z chitozanem
moze wspiera¢ wzrost i roznicowanie komorek, ale takze
promowac regeneracje tkanek poprzez sciste nasladowanie
macierzy zewnatrzkomorkowej. Rusztowania te oferuja
niezbedna wytrzymatos¢ mechaniczna i zdolnos¢ adaptacji
do rdéznych zastosowan biomedycznych [41-43]. Polialkohol
winylowy wykorzystuje sie jako matryce do regenerowania
organow i tkanek, czyli jako polimerowe rusztowania,
réwniez w potaczeniu np. z zelatyna czy laktydem [44-46].
Dzieki biodegradowalnosci i nietoksycznosci stelaze takie
ulegaja rozpadowi, co pozwala na szybsza regeneracje
kosci czy chrzesci pacjenta [47-50].

2.5. Alginiany

Algiany stanowia naturalnie wystepujace w brunatnicach
czy trawie morskiej nierozpuszczalne w wodzie polimery.
Maja barwe od biatej po brunatng [51-52]. W szeroko
rozumianej ortopedii oraz medycynie regeneracyjnej
wykorzystuje sie reakcje polimeru z jonami wapnia
i tworzenie form zelopodobnych, przy czym mozliwe sa
modyfikacje np. modutu sprezystosci czy stabilnosci zelu
[53-54]. Komorki macierzyste na takim rusztowaniu
alginianowym moga namnazac sie oraz uwalnia¢ w sposob
kontrolowany [55-57]. Rozwiazanie takie stosuje sie nie
tylko w leczeniu ztaman kosci i leczeniu ran [58-59], ale
rowniez moze by¢ wykorzystane w terapii choroby
Alzheimera, gdzie uszkodzeniu ulegaja neurony [60].

2.6. Silikony

Silikony stanowig syntetyczne polimery krzemu, a w ich
strukturze kluczowe jest wiazanie krzem - wegiel grupy
alkilowej [61-62]. W zaleznosci od uzytej grupy, polimery
te wykazuja rézne wtasciwosci fizykochemiczne [63-64].
Generalnie silikony sa bezwonne i obojetne dla
srodowiska.

Polimery te wykorzystywane sa Ww regeneracji
naderwanych S$ciegien, gdzie wykorzystuje sie ich
elastycznos¢. Oprocz tego znalazty zastosowanie w produkcji



implantow ucha, nadgarstka czy zginaczy palcow, gdzie
priorytetem wydaje sie odzyskanie sprawnosci dtoni [65-66].

Najpopularniejszym jednak zastosowaniem polimerow
na bazie krzemu jest produkcja implantow. Ze wzgledu na
wtasciwosci hipoalergiczne, polimery takie sa stosowane nie
tylko jako implanty w medycynie estetycznej (np. piersi),
ale jako uzupetnienia pooperacyjnych ubytkéw czy jako
wktadki korygujace [67-68].

Nalezy podkresli¢, iz aplikacja implantow niesie ze soba
ryzyko powstania zatorow i zakrzepow. Implanty takie maja
sktonnos¢ do powlekania sie komodrkami gospodarza,
a wymienione cechy ograniczaja ich zastosowanie [69-70].

2.7. Poliuretany

Poliuretany powstaja najczesciej w wyniku poliaddycji
cyjanianow z polialkoholami (czyli zwiazkami zawierajacymi
dwie i wiecej grup hydroksylowych), a cecha
charakterystyczng jest obecne ugrupowanie uretanowe.
Do syntezy  poliuretanow  wykorzystuje sie  zasady
organiczne, takie jak guanidyny, amidyny, N-heterocykliczne
karbeny i organiczne ,,silne lub supersilne” kwasy Brgnsteda
oraz dilaurynian dibutylocyny i dioctan dibutylocyny.
Poliuretany w postaci materiatow ciektokrystalicznych,

kopolimeréow  uretanowo-akrylowych i poliuretanowo-
silikonowych  znalazty  zastosowanie  w elektronice,
medycynie i inzynierii ladowej. Jako przyjazny dla

srodowiska elastomer stosowane sa jako powtoki ochronne
wytwarzane z wodnych dyspersji poliuretanowych [71-73].
Poliuretany generalnie charakteryzuje wysoka biozgodnos¢
i biokompatybilnos¢ [74-75]. W ortopedii przede wszystkim
wykorzystywane sa w rekonstrukcji miesni i tkanek kosci
[76-77]. Wytrzymatos¢ mechaniczna, biokompatybilnos¢,
porowatos¢,  bezpieczna  biodegradacja i  tatwosc¢
uzytkowania poliuretanowych biomateriatow przektada sie
na ich wykorzystanie w produkcji $ciegien oraz rzepek
[78-80].

2.8. Polimetakrylan metylu

Polimetakrylany stanowia szeroko stosowana w naukach
medycznych grupe polimerow [81-82]. Ich pierwsze
zastosowanie wigzato sie z sztuczng soczewka, ale warto
rowniez wspomnie¢ o systemach dostarczania lekow,
zwtaszcza w potaczeniu z chitozanem. Generalnie maja one
wtasciwosci podobne do szkta: sa odporne na temperature
[83-84], nie pochtaniaja wody [85-86] oraz sa chemicznie
obojetne [87]. Przyktadem zastosowania omawianego
polimeru w ortopedii jest alloplastyka stawu biodrowego,

Silikony Alginiany
InZynieria tkan kowa
Elementy ukfadu ruchowego
Rekonstrukcja neurondw

Materiaty implantacyjne
InZynieria tkan kowa
Whkiadk korygujace

PN A
Alloplastyka stawu biodrowego
Operacje kregostupa

Ortopedia
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czyli zastosowanie sztucznego stawu biodrowego [88-90].
PMMA (polimetakrylan metylu) stosuje sie w augmentacji
kregostupa, zwtaszcza wertebroplastyce i kifoplastyce -
procedurach medycznych majacych na celu wzmocnienie
kregow.

Jak pokazano na Ryc. 1, inzynieria tkankowa oraz
produkcja implantow dominuja wsrdod zastosowan
polimeréow w ortopedii.

3. Chirurgia

Od zarania dziejow' ludzkosci znane sa zabiegi
chirurgiczne. Podstawowym problemem, z jakim mierzyta
sie ta specjalizacja medyczna, byto zapobieganie
zakazeniom okotooperacyjnym, wprawienie w stan
narkozy pacjenta oraz zwalczanie towarzyszacego
zabiegom bolu. Obecnie, dzieki postepowi nauk
farmaceutycznych i inzynierii medycznej, nacisk ktadzie
sie na komfort pacjenta, szybsza rekonwalescencje oraz
brak widocznych s$ladow po procedurze medycznej.
Niemata zastuge odgrywaja tutaj polimery,
wykorzystywane nie tylko jako elementy aparatury
medycznej, ale takze do tworzenia opatrunkow nowej
generacji. W rozdziale tym przedstawiono kilka polimerow
i ich ciekawe zastosowania.

3.1. PTFE (politetrafluoroetylen)

Politetrafluoroetylen ze wzgledu na swoja obojetnosc
biologiczna z powodzeniem wykorzystywany jest do
produkcji naczyn laboratoryjnych, opakowan, implantow i
cewnikow. Modyfikacje wtasciwosci powierzchniowych,
absorpcyjnych czy tez wykorzystanie PTFE jako nosnika
substancji przeciwbakteryjnych przektadaja sie na
zastosowania tego polimeru [91-92]. Przyktadowo, z PTFE
produkuje sie zastawki serca i bajpasy (zastosowanie
w kardiochirurgii) czy elementy sztucznej reki [93-96].

W postaci tasmy teflonowej polimer ten wykorzystuje
sie do uszczelniania potaczen miedzy tkankami, co
stanowi bezpieczng alternatywe wzgledem klei
chirurgicznych [97-98].

Istotnym  zastosowaniem PTFE jest produkcja
substytutu krwi, tak bardzo potrzebnej przy operacjach
chirurgicznych. Nalezy tutaj podkreslic, iz nierakotworczosé
i brak zaburzania ptodnosci decyduja o bezpieczenstwie
takiego uzycia [99-100].

PTFE
Protezy
Wiezadta
Rekonstrukcja twarzy iucha
Fegeneracja naczyni
krwionosnych

Poliuretany
Elementy uktadu ruchu

L i Polilaktyd
. Poliglikolid Sruby ortopedyczne
InZynieria tkankowa Drut
Tkanka chrzestna Materiaty implantacyjne | Iy
Fekonstrukcja ucha InZynieria tkankowa o pianhs

Kleje chirurgiczne

Ryc. 1. Wybrane zastosowania polimeréw w ortopedii.
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3.2. Poliglikolid

Historia uzycia tego polimeru powiazana jest z trzcing
cukrowa, w ktorej obecny jest kwas glikolowy (monomer
polimeru) [101-102]. Sama trzcina cukrowa znalazta
szerokie uznanie u producentow kosmetykow, gdyz
ekstrakty z trzciny sa bogate w kwasy fenolowe - zwiazki o
dziataniu przeciwutleniajacym i przeciwdrobnoustrojowym.
Z kolei kwas glikolowy nadaje trzcinie duza wytrzymatos¢
mechaniczna na rozerwanie.

W latach 60. XX w. po raz pierwszy uzyto poliglikolidu
(pod nazwa dexon) do produkcji nici chirurgicznych
[103-104]. Stopniowe wchtanianie sie takiej sztucznej
plecionki (trwajace srednio 2-4 tygodnie) oraz odpornosc na
rozciaganie (porownywalna z katgutem) to cechy
warunkujace  podstawowe  zastosowanie  poliglikolidu
[105-106]. Takie nici wykorzystywane sa w kardiochirurgii
(np. perforacje przegrody w sercu) [107-108] czy
nanochirurgii (w postaci potaczen z chitozanem i
kolagenem, np. regeneracja nerwow u psow) [109-110].

3.3. Polialkohol winylowy i otrzymane hydrozele

Podstawowa cecha tego ztozonego w swojej prostocie
polimeru jest jego zdolnos¢ do tworzenia hydrozeli, co
wynika z pochtaniania duzej ilosci wody (srednio 10-1000 razy
wigkszej niz masa polimeru) [111]. Przede wszystkim
polialkohol winylowy jest wykorzystywany w produkcji
opatrunkéw nowej generacji. Stwarza on bardzo dobre
warunki do gojenia ran. Dzieki mikroporom w swojej
strukturze, zapewnia on wymiange gazowa miedzy rana
a srodowiskiem zewnetrznym [112]. Opatrunki takie
charakteryzuje rowniez wysoka zdolnos¢ pochtaniania
wysiekow [113], hipoalergicznos¢ [114], co w potaczeniu
z wyzej wymienionymi cechami znacznie przyspiesza proces
gojenia. Opatrunki takie najczesciej sa przezroczyste, co
utatwia procesy higieniczne wokot gojacej sie rany.
Ponadto, hydrozele takie moga by¢ wzbogacone o: srodki
bakteriobdjcze [115], czynniki wzrostu komorek, co pozwala
na stymulowanie wzrostu komorek prawidtowych [116],
komorki macierzyste pacjenta [117], substancje hamujace
krwawienie [118].

Opatrunki hydrozelowe z powodzeniem stosowane by¢
moga m. in. w stopie cukrzycowej, oparzeniach czy
odlezynach [119-120].

3.4, Alginiany

Podstawowe zastosowanie alginiandw wynika z ich
zdolnosci do tworzenia zeli i pochtaniania réznego rodzaju
wysiekow [121-123]. Zostaty one wykorzystane do produkcji
opatrunkow alginianowych, ktore doskonale sprawdzaja sie
w leczeniu rozlegtych ran, odlezyn, ran krwawiacych czy
zainfekowanych (maja zdolnos¢ oczyszczania z martwic)
[124-127]. Opatrunki alginianowe cechuje:

a) brak toksycznosci,

b) zdolno$¢ do utrzymania odpowiedniego Srodowiska
rany (np. wilgotnos¢),
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) mozliwos¢ modyfikacji wtasciwosci
przeciwbakteryjnych (np. poprzez dodatek
antybiotykow),

d) mozliwos¢ modyfikacji wtasciwosci zelujacych (np.
poprzez dodatek polialkoholu winylowego) [128-130].

Opatrunki alginianowe nie sprawdzaja sie w leczeniu tzw.
ran suchych.

3.5. Silikony

Zastosowanie silikonow w chirurgii wynika gtownie
zich znacznej rozciagliwosci  (porownywalnej do
rozciagliwosci skory), nieograniczonej przepuszczalnosci oraz
mozliwosci modyfikacji wtasciwosci powierzchniowych
(np. wtasciwosci antyadhezyjne wzgledem bakterii)
[131-133]. Silikony sa obojetne fizjologiczne, tatwe w
sterylizacji oraz ulegaja czesciowej biodegradacji we krwi,
co warunkuje ich bezpieczne stosowanie [134-136].

Przede wszystkim silikony wykorzystywane sa
w leczeniu ran pooperacyjnych i blizn [137-138].
Stosowane sa w preparatach na owrzodzenia, odlezyny i
oparzenia, gdzie hamuja nadmierne ziarnicowanie ran.

Jednym z ciekawszych zastosowan silikondw moze by¢
preparatyka nici chirurgicznych oraz sprzetu medycznego:
cewnikow, drenow i sond [139-140].

3.6. Poliamidy

Poliamidy, polimery otrzymywane poprzez
polikondensacje kwasow dwukarboksylowych
z diaminami, cechuja sie biodegradowalnoscia [141].
Cecha ta zostata wykorzystana do produkcji nici
chirurgicznych czy resorbowalnych opatrunkow [142-143].

Najczesciej opisywanymi polimerami z tej grupy sa
nylon oraz aramid wystepujace w postaci wtokien o duzej
wytrzymatosci. Pierwszy z nich charakteryzuje sie
zdolnoscia do odbarwienia (co ogranicza jego inne
zastosowania) oraz duza wytrzymatoscia na rozciagania
[144]. Znalazt on zastosowanie w chirurgii i mikrochirurgii,
w tym chirurgii oka. Ponadto, nylon wykorzystuje sig
w produkcji opatrunkdow na oparzenia czy rozlegte rany
(np. powstate po pobraniu skory do autoprzeszczepu) [145].
Opatrunki takie cechuje chtonnosc¢ i dobre przyleganie do
skory, ale moga wymaga¢ dodatkowych sktadnikow
antybakteryjnych np. w celu zapobiegania ewentualnej
infekcji [146].

Drugie poliamidowe wtdkna, aramidowe, cechuje
wytrzymatos¢ mechaniczna, sprezystos¢, odpornos¢
chemiczna i termiczna, tolerancja na promieniowanie
rentgenowskie [147-148]. Wtokna aramidowe znalazty
zastosowanie jako nici chirurgiczne do uzytku
zewnetrznego, jak i wewnetrznego (np. operacje zotadka,
pecherza moczowego) [149-150].

Ryc. 2 przedstawia podstawowe cechy polimeréw, jakie
sa wykorzystywane w chirurgii. O mozliwosci zastosowania
polimerow decydowa¢ beda tutaj ich biozgodnos¢ i
resorbowalnosé.
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Ryc. 2. Wybrane cechy polimerow stosowanych w chirurgii.

4. Dermatologia, kosmetologia i medycyna estetyczna

Wyglad zewnetrzny jest istotnym aspektem dzisiejszego
Swiata [151-152]. 1los¢ reklam kosmetykow, artykutow
higienicznych czy lekow i suplementow diety jest
zatrwazajaca [153-154]. Z dobrodziejstw przemystu
chemicznego i polimeréow korzystaja rowniez dermatolodzy
(np. systemy dostarczania lekow) [155-156], kosmetolodzy
(np. wypetniacze) [157-158] czy chirurdzy plastyczni (np.
drukowanie 3D) [159-160].

4.1. Silikony

Ta grupa polimerow charakteryzuje sie duza odpornoscia
chemiczng (np. na kwasy) oraz temperaturowa [161]. Ta
druga cecha pozwala na sterylizacje materiatow nawet w
wysokich temperaturach [162]. Silikony wykazuja rowniez
obojetnos¢ wzgledem wody [163], biokompatybilnosc [164]
oraz elastycznos¢ porownywalng do skory (sa rozciagliwe
oraz miekkie) [165]. Przepuszczalnos¢ dla powietrza [166]
oraz brak wtasciwosci uczulajacych i podrazniajacych
sprawiaja, ze silikony znalazty zastosowanie jako implanty
w zabiegach powiekszania np. piersi [167-170]. Oczywiscie,
zgtaszane sa powiktania w postaci lokalnych stanow
zapalanych czy wtoknienia tkanek, ale wydaje sie,
ze polimer ten na stale zagoscit w arsenale dostepnych
chirurgom plastycznym wypetniaczy.

4.2. Poliakrylamid

Polimer ten znalazt zastosowanie jako zagestnik
w kosmetykach [171-172]. Poliakrylamid stosowany jest
rowniez w postaci oktadow na oparzenia [173-174].
W niektorych krajach stosowany jest jako endoproteza
miekkich  tkanek i wykorzystywany w zabiegach
powiekszania piersi i posladkow [175-176]. W Polsce polimer
ten jest zakazany ze wzgledu na powiktania operacyjne:
stany zapalne, zaburzenia sercowo-krazeniowe, bol i
poczucie dyskomfortu, zakazenia i tworzenie sie ropnia czy
migracje polimeru [177-180].

4.3, Poliamidy

Gtownym przedstawicielem tej grupy polimerow jest
nylon. Zwiazek ten znalazt zastosowanie w produkcji
opatrunkéw na oparzenia [181-182]. Swietnie sprawdza sie
réwniez w leczeniu miejsc po pobraniu skory na przeszczep
[183-185]. Opatrunki zawierajace poliamidy sa chtonne i nie
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odklejaja sie od skory [186-187]. Ze wzgledu na ryzyko
infekcji rany opatrunki stosowane sa w postaci nasaczonej
srodkiem antybakteryjnym, np. srebrem [188-190].

5. Wnioski

Wymienione wyzej polimery cechuje wysoka
biozgodnos¢ oraz nietoksycznos¢ - cechy kluczowe
w kontakcie z otwarta rana czy podczas zabiegu
chirurgicznego. Jednym z podstawowych kierunkow
rozwoju polimeréw wydaje sie produkcja rusztowan, na
ktorych moga by¢ namnazane komorki, co moze byc
wykorzystane zarowno w ortopedii jak i w chirurgii.
Dominujaca cecha wykorzystywana w omawianych
naukach medycznych jest zdolnos¢ polimerow do
pochtaniania wody i wysiekow, co pozwala na ich
zastosowanie jako innowacyjne opatrunki. Szeroki
asortyment  polimerowych opatrunkow i  Srodkow
stosowanych zewnetrznie przyczynia si¢ do szybszej
rekonwalescencji i podniesienia komfortu pacjenta.
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