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ABSTRACT 

Polymers are a group of compounds commonly encountered in everyday life. However, due to 

the increasing incidence of cancer, allergies and progressive environmental pollution, it is 

becoming essential to design new chemical compounds that would be safe. Particular 

attention is paid to the resorbability of compounds and their biodegradability. These features 

seem to be particularly important in broadly understood orthopedics, surgery or aesthetic 

medicine. This article, which is a continuation of the undertaken topic, presents examples of 

polymers and their application, among others, during surgical operations, orthopedic 

procedures or broadly understood dermatology. Particular emphasis is given to specific 

properties of the polymer that determine its usefulness in a given medical discipline. 

KEYWORDS: polymer, application, surgery, orthopedics, dermatology 

Article is published under the CC BY license.  
 

 
 

1. Wstęp 

Postępujący wzrost zachorowalności na choroby 

nowotworowe, zarówno w Polsce jak i na świecie, wzrost 

stwierdzanych alergii oraz coraz bardziej zanieczyszczone 

środowisko, stanowią istotny bodziec rozwoju przemysłu 

chemicznego i farmaceutycznego [1-3]. Ze względu na 

powszechność stosowanych materiałów polimerowych 

w obecnym świecie, szczególny nacisk kładzie się na 

bezpieczeństwo materiałów polimerowych, ich nietoksyczność 

oraz resorbowalność [4,5]. Te cechy nieodzowne stają się 

w takich kierunkach medycyny jak ortopedia, chirurgia czy 

szeroko rozumiana dermatologia i medycyna estetyczna [6-8]. 

Z polimerów wykonane są nie tylko elementy aparatury 

medycznej, ale również endoprotezy wszczepiane 

pacjentom, szwy chirurgiczne czy opatrunki w postaci folii. 

Artykuł ten prezentuje zastosowania i cechy wybranych 

polimerów w wymienionych działach medycyny [9,10]. 

2. Ortopedia 

Ortopedia stanowi obecnie jedną z podstawowych 

specjalności lekarskich. Posiadając w swoim arsenale 

zarówno procedury zachowawcze, jak i operacyjne, skupia 

się na utrzymaniu w sprawności i leczeniu narządów ruchu: 

szkieletu, więzadeł, stawów, mięśni, nerwów i naczyń.  

W obecnych czasach ortopeda nie zajmuje się jedynie 

korekcją postawy dzieci czy leczeniem pacjentów 

powypadkowych, ale współpracuje z genetykiem 

i neonatologiem (np. leczenie wad wrodzonych), internistą 

(np. leczenie skutków zakażeń i amputacji) czy onkologiem 

(np. leczenie pooperacyjne). W tym celu obecna ortopedia 

wykorzystuje szereg różnych materiałów, w tym 

resorbowalnych i biokompatybilnych polimerów. 

2.1. PTFE (politetrafluoroetylen) 

Ten powstający w wyniku polimeryzacji 

tetrafluoroetylenu polimer cechuje się dużą odpornością 

chemiczną, hydrofobowością i elastycznością. Przykładem 

jego zastosowania w ortopedii może być wykorzystanie do 

produkcji protez, np. sztucznej ręki czy kolana. 

Wykorzystuje się tutaj jego biozgodność i obojętność, brak 

działania podrażniającego czy uczulającego, chociaż wiele 

uwagi wymaga jeszcze badanie potencjalnego działania 

kancerogennego [11-13]. Polimer ten wykorzystany 

w produkcji więzadła protetycznego okazał się 

skuteczniejszy niż więzadło proplastyczne w operacyjnym 

leczeniu wielokrotnie operowanego, niestabilnego kolana. 

Zastosowania polimeru korelują z jego właściwościami: 

gęstością liniową czy odległością międzywęzłową. Polimer 

ten wykorzystywany jest również podczas zabiegów 

rekonstrukcji twarzy, a nawet ucha środkowego [14-17]. 

PTFE nie powoduje miejscowych reakcji zapalnych tkanek 

i wykorzystany jest w przeszczepach autogenicznych. 

W operacji korekcji twarzy polimer ten wykazał 

korzystniejsze cechy mechaniczne w porównaniu do tkanki 
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biologicznej (ziarnistej chrząstki żebrowej) [15]. PTFE może 

być wykorzystywany do produkcji protez ucha 

wewnętrznego oraz kosteczek słuchowych, gdyż jego 

właściwości antyadhezyjne zapobiegają ekstruzji, 

deformacji i nadmiernemu przywieraniu. Możliwość 

sterylizacji materiałów z tego polimeru w szerokim zakresie 

temperatury z pewnością przyczyni się do dalszego ich 

rozwoju [18]. 

PTFE jest polimerem o szerokim zastosowaniu 

w inżynierii tkankowej [19-20]. Przykładowo, wykazano, 

iż polimer ten nadaje się do regeneracji naczyń pachowych, 

ramiennych, udowych i podkolanowych. Sprawdza się 

również, zwłaszcza w połączeniu z hydroksyapatytem, 

w zabiegach alloplastyki, czyli wstawianiu sztucznego stawu 

(np. biodrowego) [19-20]. 

2.2. Poliglikolid 

Jest to polimer, którego merem jest kwas glikolowy. 

Kwas ten pozyskiwany jest ze źródeł naturalnych, np. trzciny 

cukrowej, a poddanie go polimeryzacji pozwala na 

otrzymanie polimeru o dużej biodegradowalności [21-22]. 

Poliglikolid wykorzystywany jest jako podłoże matryc 

tkankowych w inżynierii tkankowej, co pozwala na 

odtworzenie tkanek [23]. Poliglikolidy mogą być 

wykorzystane w produkcji sztucznych zastawek serca, tkanki 

chrzęstnej, pęcherza (gdzie szczególnie ważna jest 

elastyczność polimeru, jego rozciągliwość i właściwości 

mechaniczne) [24-26]. Warto podkreślić, że kluczowe 

znaczenie dla tworzonej tkanki może mieć skład 

zastosowanych mikrosfer jako formowalnego rusztowania 

[26]. Przykładowo, w zależności od masy cząsteczkowej 

polimeru możliwe jest otrzymanie mniej lub bardziej 

bogatej w proteoglikany tkanki chrzęstnej [26]. 

Regeneracje uszkodzonego ucha wydają się zabiegami 

trudnymi ze względu na naturalnie słabo rozwiniętą tkankę. 

Omawiany polimer dzięki rozwojowi inżynierii tkankowej 

także w takich operacjach znalazł zastosowanie [27-28]. 

Często wykorzystywany jest jako kopolimer z polilaktydem. 

W postaci klejów chirurgicznych stanowi alternatywę dla 

nici, oprócz widocznego waloru estetycznego, pozwala 

również na szybszą regenerację tkanek. Kleje takie mogą 

znaleźć zastosowanie podczas operacji kręgosłupa 

(np. zapobiegają wyciekowi płynu mózgowo-rdzeniowego) 

[29-30]. 

2.3. Polilaktyd 

Tworzywo to stanowi polimer kwasu mlekowego, 

naturalnie powstającego w wyniku fermentacji skrobi. 

Na skalę przemysłową, kwas mlekowy otrzymuje się 

z mączki kukurydzianej [31]. Należy podkreślić możliwość 

dwutorowej syntezy polimeru, bowiem poli(laktyd) można 

otrzymać z laktydu w wyniku polimeryzacji z otwarciem 

pierścienia, albo z poli(kwasu mlekowego) powstałego 

w wyniku polikondensacji kwasu mlekowego [32]. Metody 

syntezy różnią się, więc nie tylko liczbą etapów, ale także 

różną masą polimeru. Warto również podkreślić, 

iż właściwości polilaktydu zależą od układu stereo-

chemicznego: możliwe jest otrzymanie polimerów od 

miękkich i elastycznych po twarde i wytrzymałe [33-34]. 

Jednym z zastosowań omawianego polimeru jest produkcja 

śrub ortopedycznych, drutów, implantów i płytek 

mechanicznych wspomagających leczenie kości [35-38]. 

Wykorzystuje się tutaj biodegradowalność oraz 

termoplastyczność polimeru (kurczy się pod wpływem 

ciepła), a często stosowane są dodatkowe czynniki, np.: 

a) magnez – podnoszący wytrzymałość mechaniczną 

kompozytu [36],  

b) polikaprolaktam – modyfikujący właściwości 

fizykochemiczne biomateriału [37], 

c) kwas poliglikolowy – wpływający na biokompatybilność 

i proces degradacji takich biomateriałów [38]. 

Ponadto, polimer ten wykorzystywany jest w inżynierii 

tkankowej w celu otrzymania resorbowalnego rusztowania 

do namnażania komórek [39]. Warto podkreślić, iż polilaktyd 

wykorzystywany jest w drukarkach 3D, a powstałe 

biomateriały stosowane są w regeneracji tkanki kostnej, 

sercowej, nerwowej, unaczynionej i skóry [40]. 

2.4. Polialkohol winylowy i otrzymane hydrożele  

Ten otrzymywany na drodze hydrolizy polioctanu 

winylu polimer ma postać białego lub kremowego proszku. 

Polimer ten jest bezwonny, rozpuszczalny w wodzie, ale 

nierozpuszczalny w solwentach organicznych. 

Charakteryzuje się dużą biokompatybilnością i 

nietoksycznością, co pozwala na jego zastosowanie 

w inżynierii tkankowej. Stosowany jest np. w postaci 

gąbek jako materiał implantacyjny tkanek miękkich, 

np. chrząstek, wątroby, nerek. W połączeniu z chitozanem 

może wspierać wzrost i różnicowanie komórek, ale także 

promować regenerację tkanek poprzez ścisłe naśladowanie 

macierzy zewnątrzkomórkowej. Rusztowania te oferują 

niezbędną wytrzymałość mechaniczną i zdolność adaptacji 

do różnych zastosowań biomedycznych [41-43]. Polialkohol 

winylowy wykorzystuje się jako matryce do regenerowania 

organów i tkanek, czyli jako polimerowe rusztowania, 

również w połączeniu np. z żelatyną czy laktydem [44-46]. 

Dzięki biodegradowalności i nietoksyczności stelaże takie 

ulegają rozpadowi, co pozwala na szybszą regenerację 

kości czy chrzęści pacjenta [47-50]. 

2.5. Alginiany 

Algiany stanowią naturalnie występujące w brunatnicach 

czy trawie morskiej nierozpuszczalne w wodzie polimery. 

Mają barwę od białej po brunatną [51-52]. W szeroko 

rozumianej ortopedii oraz medycynie regeneracyjnej 

wykorzystuje się reakcję polimeru z jonami wapnia 

i tworzenie form żelopodobnych, przy czym możliwe są 

modyfikacje np. modułu sprężystości czy stabilności żelu 

[53-54]. Komórki macierzyste na takim rusztowaniu 

alginianowym mogą namnażać się oraz uwalniać w sposób 

kontrolowany [55-57]. Rozwiązanie takie stosuje się nie 

tylko w leczeniu złamań kości i leczeniu ran [58-59], ale 

również może być wykorzystane w terapii choroby 

Alzheimera, gdzie uszkodzeniu ulegają neurony [60]. 

2.6. Silikony 

Silikony stanowią syntetyczne polimery krzemu, a w ich 

strukturze kluczowe jest wiązanie krzem – węgiel grupy 

alkilowej [61-62]. W zależności od użytej grupy, polimery 

te wykazują różne właściwości fizykochemiczne [63-64]. 

Generalnie silikony są bezwonne i obojętne dla 

środowiska.  

Polimery te wykorzystywane są w regeneracji 

naderwanych ścięgien, gdzie wykorzystuje się ich 

elastyczność. Oprócz tego znalazły zastosowanie w produkcji 
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implantów ucha, nadgarstka czy zginaczy palców, gdzie 

priorytetem wydaje się odzyskanie sprawności dłoni [65-66].  

Najpopularniejszym jednak zastosowaniem polimerów 

na bazie krzemu jest produkcja implantów. Ze względu na 

właściwości hipoalergiczne, polimery takie są stosowane nie 

tylko jako implanty w medycynie estetycznej (np. piersi), 

ale jako uzupełnienia pooperacyjnych ubytków czy jako 

wkładki korygujące [67-68].  

Należy podkreślić, iż aplikacja implantów niesie ze sobą 

ryzyko powstania zatorów i zakrzepów. Implanty takie mają 

skłonność do powlekania się komórkami gospodarza, 

a wymienione cechy ograniczają ich zastosowanie [69-70]. 

2.7. Poliuretany 

Poliuretany powstają najczęściej w wyniku poliaddycji 

cyjanianów z polialkoholami (czyli związkami zawierającymi 

dwie i więcej grup hydroksylowych), a cechą 

charakterystyczną jest obecne ugrupowanie uretanowe. 

Do syntezy poliuretanów wykorzystuje się zasady 

organiczne, takie jak guanidyny, amidyny, N-heterocykliczne 

karbeny i organiczne „silne lub supersilne” kwasy Brønsteda 

oraz dilaurynian dibutylocyny i dioctan dibutylocyny. 

Poliuretany w postaci materiałów ciekłokrystalicznych, 

kopolimerów uretanowo-akrylowych i poliuretanowo-

silikonowych znalazły zastosowanie w elektronice, 

medycynie i inżynierii lądowej. Jako przyjazny dla 

środowiska elastomer stosowane są jako powłoki ochronne 

wytwarzane z wodnych dyspersji poliuretanowych [71-73]. 

Poliuretany generalnie charakteryzuje wysoka biozgodność 

i biokompatybilność [74-75]. W ortopedii przede wszystkim 

wykorzystywane są w rekonstrukcji mięśni i tkanek kości 

[76-77]. Wytrzymałość mechaniczna, biokompatybilność, 

porowatość, bezpieczna biodegradacja i łatwość 

użytkowania poliuretanowych biomateriałów przekłada się 

na ich wykorzystanie w produkcji ścięgien oraz rzepek 

[78-80]. 

2.8. Polimetakrylan metylu 

Polimetakrylany stanowią szeroko stosowaną w naukach 

medycznych grupę polimerów [81-82]. Ich pierwsze 

zastosowanie wiązało się z sztuczną soczewką, ale warto 

również wspomnieć o systemach dostarczania leków, 

zwłaszcza w połączeniu z chitozanem. Generalnie mają one 

właściwości podobne do szkła: są odporne na temperaturę 

[83-84], nie pochłaniają wody [85-86] oraz są chemicznie 

obojętne [87]. Przykładem zastosowania omawianego 

polimeru w ortopedii jest alloplastyka stawu biodrowego, 

czyli zastosowanie sztucznego stawu biodrowego [88-90]. 

PMMA (polimetakrylan metylu) stosuje się w augmentacji 

kręgosłupa, zwłaszcza wertebroplastyce i kifoplastyce – 

procedurach medycznych mających na celu wzmocnienie 

kręgów. 

Jak pokazano na Ryc. 1, inżynieria tkankowa oraz 

produkcja implantów dominują wśród zastosowań 

polimerów w ortopedii. 

3. Chirurgia 

Od zarania dziejów` ludzkości znane są zabiegi 

chirurgiczne. Podstawowym problemem, z jakim mierzyła 

się ta specjalizacja medyczna, było zapobieganie 

zakażeniom okołooperacyjnym, wprawienie w stan 

narkozy pacjenta oraz zwalczanie towarzyszącego 

zabiegom bólu. Obecnie, dzięki postępowi nauk 

farmaceutycznych i inżynierii medycznej, nacisk kładzie 

się na komfort pacjenta, szybszą rekonwalescencję oraz 

brak widocznych śladów po procedurze medycznej. 

Niemałą zasługę odgrywają tutaj polimery, 

wykorzystywane nie tylko jako elementy aparatury 

medycznej, ale także do tworzenia opatrunków nowej 

generacji. W rozdziale tym przedstawiono kilka polimerów 

i ich ciekawe zastosowania.  

3.1. PTFE (politetrafluoroetylen) 

Politetrafluoroetylen ze względu na swoją obojętność 

biologiczną z powodzeniem wykorzystywany jest do 

produkcji naczyń laboratoryjnych, opakowań, implantów i 

cewników. Modyfikacje właściwości powierzchniowych, 

absorpcyjnych czy też wykorzystanie PTFE jako nośnika 

substancji przeciwbakteryjnych przekładają się na 

zastosowania tego polimeru [91-92]. Przykładowo, z PTFE 

produkuje się zastawki serca i bajpasy (zastosowanie 

w kardiochirurgii) czy elementy sztucznej ręki [93-96].  

W postaci taśmy teflonowej polimer ten wykorzystuje 

się do uszczelniania połączeń między tkankami, co 

stanowi bezpieczną alternatywę względem klei 

chirurgicznych [97-98].  

Istotnym zastosowaniem PTFE jest produkcja 

substytutu krwi, tak bardzo potrzebnej przy operacjach 

chirurgicznych. Należy tutaj podkreślić, iż nierakotwórczość 

i brak zaburzania płodności decydują o bezpieczeństwie 

takiego użycia [99-100].  

 

Ryc. 1. Wybrane zastosowania polimerów w ortopedii. 
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3.2. Poliglikolid 

Historia użycia tego polimeru powiązana jest z trzciną 

cukrową, w której obecny jest kwas glikolowy (monomer 

polimeru) [101-102]. Sama trzcina cukrowa znalazła 

szerokie uznanie u producentów kosmetyków, gdyż 

ekstrakty z trzciny są bogate w kwasy fenolowe – związki o 

działaniu przeciwutleniającym i przeciwdrobnoustrojowym. 

Z  kolei kwas glikolowy nadaje trzcinie dużą wytrzymałość 

mechaniczną na rozerwanie.  

W latach 60. XX w. po raz pierwszy użyto poliglikolidu 

(pod nazwą dexon) do produkcji nici chirurgicznych 

[103-104]. Stopniowe wchłanianie się takiej sztucznej 

plecionki (trwające średnio 2-4 tygodnie) oraz odporność na 

rozciąganie (porównywalna z katgutem) to cechy 

warunkujące podstawowe zastosowanie poliglikolidu 

[105-106]. Takie nici wykorzystywane są w kardiochirurgii 

(np. perforacje przegrody w sercu) [107-108] czy 

nanochirurgii (w postaci połączeń z chitozanem i 

kolagenem, np. regeneracja nerwów u psów) [109-110]. 

3.3. Polialkohol winylowy i otrzymane hydrożele 

Podstawową cechą tego złożonego w swojej prostocie 

polimeru jest jego zdolność do tworzenia hydrożeli, co 

wynika z pochłaniania dużej ilości wody (średnio 10-1000 razy 

większej niż masa polimeru) [111]. Przede wszystkim 

polialkohol winylowy jest wykorzystywany w produkcji 

opatrunków nowej generacji. Stwarza on bardzo dobre 

warunki do gojenia ran. Dzięki mikroporom w swojej 

strukturze, zapewnia on wymianę gazową między raną 

a środowiskiem zewnętrznym [112]. Opatrunki takie 

charakteryzuje również wysoka zdolność pochłaniania 

wysięków [113], hipoalergiczność [114], co w połączeniu 

z wyżej wymienionymi cechami znacznie przyśpiesza proces 

gojenia. Opatrunki takie najczęściej są przezroczyste, co 

ułatwia procesy higieniczne wokół gojącej się rany. 

Ponadto, hydrożele takie mogą być wzbogacone o: środki 

bakteriobójcze [115], czynniki wzrostu komórek, co pozwala 

na stymulowanie wzrostu komórek prawidłowych [116], 

komórki macierzyste pacjenta [117], substancje hamujące 

krwawienie [118]. 

Opatrunki hydrożelowe z powodzeniem stosowane być 

mogą m. in. w stopie cukrzycowej, oparzeniach czy 

odleżynach [119-120]. 

3.4. Alginiany 

Podstawowe zastosowanie alginianów wynika z ich 

zdolności do tworzenia żeli i pochłaniania różnego rodzaju 

wysięków [121-123]. Zostały one wykorzystane do produkcji 

opatrunków alginianowych, które doskonale sprawdzają się 

w leczeniu rozległych ran, odleżyn, ran krwawiących czy 

zainfekowanych (mają zdolność oczyszczania z martwic) 

[124-127]. Opatrunki alginianowe cechuje: 

a) brak toksyczności,  

b) zdolność do utrzymania odpowiedniego środowiska 

rany (np. wilgotność),  

c) możliwość modyfikacji właściwości 

przeciwbakteryjnych (np. poprzez dodatek 

antybiotyków), 

d) możliwość modyfikacji właściwości żelujących (np. 

poprzez dodatek polialkoholu winylowego) [128-130]. 

Opatrunki alginianowe nie sprawdzają się w leczeniu tzw. 

ran suchych.  

3.5. Silikony  

Zastosowanie silikonów w chirurgii wynika głównie 

z ich znacznej rozciągliwości (porównywalnej do 

rozciągliwości skóry), nieograniczonej przepuszczalności oraz 

możliwości modyfikacji właściwości powierzchniowych 

(np. właściwości antyadhezyjne względem bakterii) 

[131-133]. Silikony są obojętne fizjologiczne, łatwe w 

sterylizacji oraz ulegają częściowej biodegradacji we krwi, 

co warunkuje ich bezpieczne stosowanie [134-136].  

Przede wszystkim silikony wykorzystywane są 

w leczeniu ran pooperacyjnych i blizn [137-138]. 

Stosowane są w preparatach na owrzodzenia, odleżyny i 

oparzenia, gdzie hamują nadmierne ziarnicowanie ran.  

Jednym z ciekawszych zastosowań silikonów może być 

preparatyka nici chirurgicznych oraz sprzętu medycznego: 

cewników, drenów i sond [139-140]. 

3.6. Poliamidy 

Poliamidy, polimery otrzymywane poprzez 

polikondensację kwasów dwukarboksylowych 

z diaminami, cechują się biodegradowalnością [141]. 

Cecha ta została wykorzystana do produkcji nici 

chirurgicznych czy resorbowalnych opatrunków [142-143]. 

Najczęściej opisywanymi polimerami z tej grupy są 

nylon oraz aramid występujące w postaci włókien o dużej 

wytrzymałości. Pierwszy z nich charakteryzuje się 

zdolnością do odbarwienia (co ogranicza jego inne 

zastosowania) oraz dużą wytrzymałością na rozciągania 

[144]. Znalazł on zastosowanie w chirurgii i mikrochirurgii, 

w tym chirurgii oka. Ponadto, nylon wykorzystuje się 

w produkcji opatrunków na oparzenia czy rozległe rany 

(np. powstałe po pobraniu skóry do autoprzeszczepu) [145]. 

Opatrunki takie cechuje chłonność i dobre przyleganie do 

skóry, ale mogą wymagać dodatkowych składników 

antybakteryjnych np. w celu zapobiegania ewentualnej 

infekcji [146]. 

Drugie poliamidowe włókna, aramidowe, cechuje 

wytrzymałość mechaniczna, sprężystość, odporność 

chemiczna i termiczna, tolerancja na promieniowanie 

rentgenowskie [147-148]. Włókna aramidowe znalazły 

zastosowanie jako nici chirurgiczne do użytku 

zewnętrznego, jak i wewnętrznego (np. operacje żołądka, 

pęcherza moczowego) [149-150]. 

Ryc. 2 przedstawia podstawowe cechy polimerów, jakie 

są wykorzystywane w chirurgii. O możliwości zastosowania 

polimerów decydować będą tutaj ich biozgodność i 

resorbowalność. 
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Ryc. 2. Wybrane cechy polimerów stosowanych w chirurgii. 
 

4. Dermatologia, kosmetologia i medycyna estetyczna 

Wygląd zewnętrzny jest istotnym aspektem dzisiejszego 

świata [151-152]. Ilość reklam kosmetyków, artykułów 

higienicznych czy leków i suplementów diety jest 

zatrważająca [153-154]. Z dobrodziejstw przemysłu 

chemicznego i polimerów korzystają również dermatolodzy 

(np. systemy dostarczania leków) [155-156], kosmetolodzy 

(np. wypełniacze) [157-158] czy chirurdzy plastyczni (np. 

drukowanie 3D) [159-160].  

4.1. Silikony 

Ta grupa polimerów charakteryzuje się dużą odpornością 

chemiczną (np. na kwasy) oraz temperaturową [161]. Ta 

druga cecha pozwala na sterylizację materiałów nawet w 

wysokich temperaturach [162]. Silikony wykazują również 

obojętność względem wody [163], biokompatybilność [164] 

oraz elastyczność porównywalną do skóry (są rozciągliwe 

oraz miękkie) [165]. Przepuszczalność dla powietrza [166] 

oraz brak właściwości uczulających i podrażniających 

sprawiają, że silikony znalazły zastosowanie jako implanty 

w zabiegach powiększania np. piersi [167-170]. Oczywiście, 

zgłaszane są powikłania w postaci lokalnych stanów 

zapalanych czy włóknienia tkanek, ale wydaje się, 

że polimer ten na stale zagościł w arsenale dostępnych 

chirurgom plastycznym wypełniaczy. 

4.2. Poliakrylamid 

Polimer ten znalazł zastosowanie jako zagęstnik 

w kosmetykach [171-172]. Poliakrylamid stosowany jest 

również w postaci okładów na oparzenia [173-174]. 

W niektórych krajach stosowany jest jako endoproteza 

miękkich tkanek i wykorzystywany w zabiegach 

powiększania piersi i pośladków [175-176]. W Polsce polimer 

ten jest zakazany ze względu na powikłania operacyjne: 

stany zapalne, zaburzenia sercowo-krążeniowe, ból i 

poczucie dyskomfortu, zakażenia i tworzenie się ropnia czy 

migracje polimeru [177-180]. 

4.3. Poliamidy 

Głównym przedstawicielem tej grupy polimerów jest 

nylon. Związek ten znalazł zastosowanie w produkcji 

opatrunków na oparzenia [181-182]. Świetnie sprawdza się 

również w leczeniu miejsc po pobraniu skóry na przeszczep 

[183-185]. Opatrunki zawierające poliamidy są chłonne i nie 

odklejają się od skóry [186-187]. Ze względu na ryzyko 

infekcji rany opatrunki stosowane są w postaci nasączonej 

środkiem antybakteryjnym, np. srebrem [188-190].  

5. Wnioski 

Wymienione wyżej polimery cechuje wysoka 

biozgodność oraz nietoksyczność – cechy kluczowe 

w kontakcie z otwartą raną czy podczas zabiegu 

chirurgicznego. Jednym z podstawowych kierunków 

rozwoju polimerów wydaje się produkcja rusztowań, na 

których mogą być namnażane komórki, co może być 

wykorzystane zarówno w ortopedii jak i w chirurgii. 

Dominującą cechą wykorzystywaną w omawianych 

naukach medycznych jest zdolność polimerów do 

pochłaniania wody i wysięków, co pozwala na ich 

zastosowanie jako innowacyjne opatrunki. Szeroki 

asortyment polimerowych opatrunków i środków 

stosowanych zewnętrznie przyczynia się do szybszej 

rekonwalescencji i podniesienia komfortu pacjenta.  
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