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ABSTRACT 

α-Solanine is a steroidal glycoalkaloid naturally occurring in plants of the Solanaceae family, such as 

potatoes, tomatoes, and eggplants. Due to its toxicity, it serves a protective function by deterring 

herbivores. High concentrations of this compound are found in the green parts of potato tubers. Due to 

the widespread occurrence of α-solanine in nature, it is often unknowingly consumed by a large 

number of people. Ingesting this compound in large amounts can lead to poisoning, which manifests as 

gastrointestinal and neurological symptoms. In extreme cases, excessive solanine consumption can be 

fatal. Despite documented cases of poisoning, α-solanine exhibits potentially beneficial 

pharmacological properties. This compound is being investigated for its anticancer and anti-

inflammatory effects, as well as its potential use in the treatment of osteoarthritis and 

neurodegenerative diseases. However, its toxicity significantly limits its possible applications as a 

therapeutic agent. The objective of this study was to provide an overview of the biological properties 

of solanine and its potential applications in medical sciences. 
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1. α-Solanine 

1.1. α-Solanine and Its Properties 

α-Solanine belongs to a class of steroidal alkaloid 

saponins in which the aglycone moiety is steroid. This 

compound consists of a  trissaccharide solatriose (D-

glucose, D-galactose, L-rhamnose) attached to the 

aglycone part, solanidine. α-Solanine`s molecular formula 

is C45H73NO15 and it has a molecular weight of 868.1 g/mol. 

It is relatively poorly soluble in water [1]. In its pure form, 

it appears as a white crystalline solid with a melting point 

of 271-273°C and a bitter taste [2]. In cells it is mostly 

located in cytoplasm as well as the membranes. It is also 

found extracellularly [3–5]. 

Three types of solanine can be distinguished: α-

solanine, β-solanine, and γ-solanine. Among these, α-

solanine is the most common and will be the primary 

focus of this review. α-Solanine composes of solanidine 

and three sugar molecules: D-glucose, D-galactose, L-

rhamnose (Fig 1.). β-Solanine has different molecular 

linkage than α-solanine and γ-solanine is the rarest out of 

them all, having a different arrangement of sugar 

molecules [6,7].  

α-Solanine was isolated for the first time from 

European black nightshade (Solanum nigrum) in 1820. 

Over the years, it has had multiple uses such as a natural 

pesticide thanks to its toxicity as well as in some 

traditional medicines [8,9]. 
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Fig 1. Structure of α-solanine (D-Glc, D-glucose; D-Gal, D-galactose; L-Rha, L-rhamnose). 

 

1.2. α-Solanine in Plants 

This substance is naturally occurring primarily in the 

green parts of plants, such as leaves, stems or unripe fruits 

and it has been found in various plants such as tomatoes, 

eggplants and green peppers in trace amounts (Tab 1.). α-

Solanine along with α-chaconine is found in plants of the 

Solanaceae family. α-Solanine production in plants is 

connected with their natural defense mechanisms serving 

to deter insects and other animals, causing symptoms such 

as nausea, diarrhoea, vomiting,heart arrhythmia and many 

others [7]. 

However, it has been most strongly associated with 

potatoes (Solanum tuberosum L.) the most, where it 

accumulates in the skin and below it. It is responsible for 

the toxicity and teratogenicity of sprouting potatoes. The 

α-solanine level in potatoes varies depending on factors 

such as temperature or light. Green coloring under the skin 

of potatoes after they were exposed to light is caused by 

the accumulation of chlorophyll, which by itself is 

harmless, however, it indicates a heightened α-solanine 

build-up. This, along  with a bitter taste are possible 

indicators of toxicity and potatoes exhibiting those 

symptoms are strongly advised against consumption [10]. 

There has been a study that looked into accumulation 

of α-solanine in the soil. This topic requires further 

investigation, and limited information is currently 

available. However, there are some residual traces of α-

solanine in all tested environments even at the end of the 

experiment. Nevertheless, the risk of α-solanine leaking 

into groundwater appears to be unlikely [11]. 

 

Table 1. Glycoalkaloid concentration (including  

α-solanine) in selected plants from the Solanaceae 

family. 

Species 
Part of the 

plant 
Concetration  

[mg/g] 
 

 
S. tuberosum 

 
 

Sprouts 2.0 - 7.3 

[12] 

Flowers 2.15 - 5.0 

Leaves 0.23 - 1.0 

Stems 0.023 - 0.033 

Roots 0.18 - 0.4 

Tuber 0.01 - 0.15 

Tuber peel 0.15 - 1.068 

S. dulcamara Leaves 0.0008 - 0.004 [13] 

S. melongena 
Fruit skin 0.107 

[14] 
Fruit flesh 0.626 

 

1.3. Biosynthesis of α-Solanine 

As mentioned before, biosynthesis of α-solanine in 

plants is stimulated when stems or other parts of the 

plants are exposed to light, although the process is still 

not fully understood. The whole process occurs as a 

defense mechanism to prevent the exposed parts from 

being eaten by animals [15]. Biosynthesis of α-solanine 

begins with cholesterol and it involves many enzymes, 

some of which have yet to be identified. First, cholesterol 

is converted into the steroidal alkaloid solanidine through 

a series of chemical reactions, including hydroxylation, 

followed by oxidation into an aldehyde intermediate, and 

then transamination. It is suggested that the cyclization 

of solanidine occurs as a next step. The final part of the 

biosynthesis of α-solanine involves glycosylation of 

solanidine (Fig 2.) [3–5]. 
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Fig 2. Biosynthesis of α-solanine. 

 

2. α-Solanine Toxicity 

2.1. Intoxication and Cases 

Although α-solanine is widespread in nature, poisoning 

from it is rare but well-documented. This rarity is largely 

attributed to general public awareness of the potential 

toxicity of the green parts of certain plants, particularly 

potatoes [10,13]. 

Symptoms observed in humans include gastrointestinal 

distress (nausea, diarrhea, vomiting, and cramps) as well 

as neurological effects associated with the anticholinergic 

toxidrome (headaches, delirium, convulsions, pupil dilation 

and fever) [10,13–17]. Observations in poisoned animals 

have shown that α-solanine, in high doses, causes weight 

loss due to reduced food intake, and a significant increase 

in water consumption [21]. α-Solanine also reduces 

spontaneous locomotor activity in animals and increases 

sleep duration [18]. In some rare cases, intoxication can be 

fatal. 

Pharmacokinetic studies of α-solanine have shown that 

it is only partially absorbed in the gastrointestinal tract. 

Some molecules can be hydrolyzed into the more readily 

absorbable aglycone, solanidine. The maximum tolerated 

dose of α-solanine in humans is 1 mg/kg body weight, 

whereas acute doses of 2–6 mg/kg body weight may be 

lethal. For comparison, most commercially available 

potatoes contain low concentrations of α-solanine, 

ranging from 4 to 10 mg per 100 g of dry weight [7]. 

During the first 12 hours after ingestion, a rapid 

increase in the concentration of α-solanine and its 

metabolites is observed in the liver, kidneys, spleen, and 

adipose tissue. After 72 hours, the highest levels of α-

solanine are found in the kidneys [18]. Blood tests have 

shown a slight increase in sodium and urea levels, as well 

as a significant increase in glucose and creatinine 

concentrations (approximately twofold or even 

threefold). Conversely, albumin levels and alkaline 

phosphatase activity are reduced [21]. 

The most common sources of α-solanine poisoning are 

Solanum tuberosum (potatoes), particularly green tubers, 

sprouts, and potato berries. According to official 

statistics, α-solanine poisoning from potatoes has resulted 

in at least 30 deaths and over 2,000 cases of varying 
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severity [22]. Plants contain a mixture of glycoalkaloids, 

including α-solanine, which makes it important to consider 

that poisonings may arise from the combined effects of 

several compounds rather than a single substance [20,21]. 

No cases of poisoning from the pure substance have been 

reported in the literature. 

The first documented fatal case dates back to 1859 and 

describes a 14-year-old girl who consumed unripe "potatoe 

[sic] berries." [25].  She experienced severe abdominal pain 

and vomiting. Despite being treated with ipecacuanha and 

cathartics, her condition deteriorated, and she died three 

days after ingestion. Another fatal case from 1928, 

involving two victims, similarly indicated severe 

gastrointestinal symptoms - epigastric pain, nausea, 

diarrhea, and vomiting. Symptoms such as apathy, 

indifference, and exhaustion were noted, although fever 

was absent [26]. Cases of mass Solanum sp. poisoning have 

also been recorded: 56 soldiers in Berlin and 673 soldiers in 

Strasbourg in 1899, as well as 61 people in Glasgow in 1917 

[16].  

A particularly unique case involved a 43-year-old man 

who developed cryptogenic organizing pneumonia after 

consuming sprouted potatoes. He was hospitalized for 10 

days and treated with levofloxacin, methylprednisolone, 

and supplemental oxygen [27]. 

There have also been isolated cases of poisoning from 

other Solanum spp. rich in α-solanine. A case of a 4-year-

old girl who ingested berries of S. dulcamara (woody 

nightshade) was reported. She exhibited symptoms 

consistent with the anticholinergic toxidrome. Treatment 

involved the administration of activated charcoal with 

sorbitol and physostigmine, an acetylcholinesterase 

inhibitor [28]. Another case involved a 75-year-old man 

who suffered α-solanine poisoning after consuming juice 

from S. erianthum (velvet nightshade) berries. He was 

diagnosed with anticholinergic toxidrome and was treated 

only with oxygen supplementation. The patient was 

discharged after 4 days without any neurological 

complications [29]. 

Kees et al. described a case of a Labrador Retriever 

puppy that consumed S. dulcamara berries. The animal 

exhibited severe poisoning symptoms, including strong 

muscle tremors, fever, tachycardia, and tachypnea. 

Seizures were alleviated with phenobarbital and propofol, 

while diazepam and midazolam proved ineffective [30]. 

Other Solanum spp. such as S. eleagnifolium (silverleaf 

nightshade) and S. dimidiatum (western horse nettle), 

grow in pastures and meadows, where they can be 

consumed by cattle or horses. Symptoms occurring in these 

animals include gastrointestinal irritation, abdominal pain, 

anorexia, excessive salivation, and urinary retention. 

Norman et al. describe a case of horses that, in addition to 

Solanum spp. poisoning, had previously been treated with 

ivermectin paste. Solanum toxins likely enhanced 

ivermectin absorption and reduced its excretion in the 

mammalian body, resulting in its toxic effects on the 

central nervous system [31]. 

Gastric necrosis, renal infarcts and hemorrhages of the 

small intestine were also observed in hamsters that were 

fed with potato sprout material. Baker et al. concluded 

that the cause of death was gastrointestinal damage 

(septicemia and fluid accumulation in the small intestine), 

rather than changes in acetylcholinesterase levels, which 

were found to be too minor to account for the observed 

toxicity [32]. 

2.2. Mechanism of Toxic Action 

α-Solanine has two primary mechanisms of toxic 

action. 

The first mechanism affects the nervous system. First 

of all, solanine and its aglycone, solanidine, act as 

inhibitors of acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE). This property has been 

repeatedly confirmed by in vitro [33–35] and in silico 

studies [36], as well as in vivo experiments [14,34]. It has 

also been noted that cholinesterase activity is more 

significantly reduced in plasma than in erythrocytes [17]. 

Furthermore, plasma AChE activity does not exhibit dose-

dependent inhibition, unlike brain AChE activity [37]. 

However, some studies have found no significant 

difference in AChE or BuChE activity in plasma or brain, 

even after exposure to high doses of solanine [18,35]. At 

the same time, the symptoms affecting the nervous 

system are clearly consistent with an anticholinergic 

toxidrome. This may suggest the ability to block 

cholinergic receptors. Therefore, solanine may act in a 

dual manner on the nervous system 

[13,16,17,23,25,27,28]. 

The second mechanism of α-solanine toxicity involves 

its effect on the integrity of phospholipid membrane. 

Solanine has been observed to decrease mitochondrial 

membrane potential, thereby impairing the function of 

the entire organelle [39–41]. The proposed mechanism 

involves the insertion of the aglycone part into the 

bilayer, followed by interactions between the sugar 

moieties of glycoalkaloids, leading to the formation of a 

stable complex. These processes disrupt membrane 

structure and function [42]. Potassium channels open, 

allowing Ca²⁺ ions to escape from mitochondria into the 

cytoplasm, ultimately causing cell damage [37,40]. This 

results in reduced cell proliferation [41] or even cell lysis 

[44]. In vitro studies have confirmed that solanine 

induces hemolysis of erythrocytes [45–47]. Additionally, it 

disrupts sodium ion transport across cell membranes [48]. 

Moreover, solanine has been found to stimulate 

hepatic ornithine decarboxylase activity in rats. This 

phenomenon may serve as a biomarker for glycoalkaloid 

toxicity in food [49]. 

2.3. Teratogenic Properties 

Solanine also exhibits teratogenic properties. Its 

teratogenicity primarily affects the central nervous 

system, cardiovascular system, and gastrointestinal tract 

[50–53]. Higher doses may lead to embryonic death 

[48,49,51]. Solanine has also been observed to affect the 

maturation of oocytes [55], the development of somites, 

and the cleavage rate of morulae [54]. A particularly 

interesting case in primates involved the development of 

hydrocephalus in offspring of Macaca mulatta [56]. In 

Drosophila melanogaster, decreased body size and 

deformed wings were observed [57]. 

3. Biological Properties 

3.1. Antiancer Activity 

Several in vitro and in vivo studies have demonstrated 
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the anticancer properties of α-solanine. The substance's 

anti-tumor effects have been confirmed in cancer cells 

from various organs, including the lungs, esophagus, liver, 

pancreas, colon, prostate, skin (melanoma), bone marrow 

(acute lymphocytic leukemia), endometrium, and breasts 

tissue [55,56]. 

Due to its toxicity, it is necessary to adjust the dosage 

to avoid side effects. A study in mice showed that doses 

above 20 mg/kg cause liver and kidney damage, while a 

dose of 5 mg/kg proved to be safe. A spontaneous 

mammary tumor was implanted subcutaneously, and tumor 

growth was slowed in the α-solanine-treated group 

compared to mice treated with a placebo and those 

treated with doxycycline and cyclophosphamide [60]. 

The anticancer effects of α-solanine were tested on 

human colorectal cancer cell lines (RKO and HCT-116).  In 

a scratch assay, Transwell invasion assay, and cell adhesion 

assay, α-solanine was shown to inhibit tumor cell 

proliferation, induce apoptosis, and reduce metastatic 

potential. It also reduced the expression of 

metalloproteinases. In a mouse model implanted with RKO 

cells, α-solanine inhibited tumor cell proliferation and 

increased the percentage of apoptotic cells [61]. 

A study on lung cancer cell lines (A549 and PC-9) 

demonstrated that solanine disrupted cell energy 

metabolism. It inhibited cancer cell growth by disrupting 

the glycolytic pathway, leading to decreased cell 

proliferation and migration, along with increased apoptosis 

[62]. 

Research on a prostate cancer cell line (PC-3) showed 

that α-solanine inhibited cell metastasis and invasion by 

blocking the epithelial-mesenchymal transition (EMT). 

Additionally, the compound altered the expression of 

metalloproteinase genes responsible for extracellular 

matrix degradation [63]. 

The antitumor effect of α-solanine may involve cell 

cycle arrest. Inhibition of cell proliferation has been 

confirmed in numerous studies [58,61]. Furthermore, it 

promotes apoptosis and increases the production of 

reactive oxygen species (ROS) [62,63]. 

Ma et al. (2024) demonstrated that α-solanine induces 

cell death via ferroptosis in colon cancer cell lines (HCT116 

and SW480). Its administration led to increased ROS levels, 

lipid peroxidation, and cell membrane disruption [67].  

In liver cancer patients, an increase in T regulatory 

lymphocytes (Treg), as well as elevated IL-2 and IL-10 

levels, have been observed. Additionally, cancer cells 

secrete more TGF-β than healthy cells. Given the anti-

tumor effects of solanine, researchers examined its impact 

on suppressor T cells. A mouse xenograft tumor model was 

developed by subcutaneously implanting a murine 

hepatocellular carcinoma cell line (H22). α-Solanine 

significantly reduced TGF-β levels and Foxp3 expression, 

leading to a decrease in Treg numbers in both cell cultures 

and tumor tissues. The treatment slowed tumor growth and 

reduced metastasis, especially when combined with a TGF-

β inhibitor. Additionally, α-solanine attenuated the 

activation of the TGF-β/Smad signaling pathway, thereby 

potentially enhancing the body's immune response to the 

tumor. These findings suggest that solanine may serve as 

an adjunct agent in immune therapy for liver cancer [68]. 

Research on pancreatic cancer also showed positive 

effects of α-solanine both in vitro and in vivo. Rats 

implanted with tumor cells (PANC-1) and treated with α-

solanine exhibited reduced tumor growth. The substance 

inhibited proliferation, angiogenesis, and metastasis by 

decreasing the expression of MMP-2/9, PCNA, and VEGF 

[69]. 

α-Solanine also enhances the radiosensitivity of 

cancer cells. Studies on prostate cancer cells (PC-3 and 

DU145) showed that combining the drug with irradiation 

had a synergistic effect, increasing apoptosis and 

phosphorylation of H2AX (γ-H2AX), which indicates an 

increase in DNA double-strand breaks [70]. A similar 

effect was observed in esophageal cancer (EC9706 and 

KYSE30) [71]. 

α-Solanine has been investigated as an active 

compound in various drug delivery systems. Chitosan has 

been proposed as a polymeric carrier [72]. Another 

strategy to enhance drug solubility was the dendrosomal 

formulation of α-solanine [73]. 

3.2. Anti-Inflammatory Activity 

Research on the anti-inflammatory effects of α-

solanine is limited. A compound extracted from potatoes 

was tested in vitro on RAW 264.7 macrophages and in 

vivo in a mouse model of sepsis induced by 

lipopolysaccharide (LPS). The compound inhibited the 

expression of pro-inflammatory enzymes and cytokines, 

with its mechanism of action involving inhibition of the 

NF-κB pathway. In the sepsis model, the drug increased 

the survival rate of mice [74]. 

Another study conducted on the same cell line showed 

that α-solanine inhibits the production of nitric oxide and 

prostaglandin E2 in LPS- and gamma interferon-stimulated 

macrophages. Additionally, inhibition of mRNA expression 

of pro-inflammatory chemokines was observed. An in vivo 

study conducted on three different inflammation models 

(xylene-induced ear edema, carrageenan-induced paw 

edema, and agar-induced granuloma formation) 

demonstrated that α-solanine exhibited anti-

inflammatory effects. It reduced swelling, inflammatory 

cell infiltration, and tissue congestion in mice given 

intraperitoneal injections of 5 mg/kg [75]. 

The anti-inflammatory properties of α-solanine were 

also tested in mice with dermatitis induced by croton oil. 

When applied to irritated skin, solanine reduced 

inflammation in a dose-dependent manner. However, 

dexamethasone exhibited a stronger anti-inflammatory 

effect than solanine [76]. 

3.3. Other Activities 

Due to its promising effects, Zhou et al. (2024) 

investigated the impact of α-solanine administration on 

osteoarthritis (OA). A study on a mouse model of OA 

induced by destabilization of the medial meniscus (DMM) 

examined how intra-articular drug administration 

influenced disease progression. Mice were divided into 

four groups: control, DMM only, DMM treated with a low 

dose (0.5 μmol/L), and DMM treated with a high dose (2 

μmol/L). α-Solanine was administered 10 days after 

treatment, twice a week for 8 and 12 weeks. The 

substance was found to attenuate OA progression by 

inhibiting extracellular matrix degradation. Interestingly, 
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shorter administration periods were more effective. α-

Solanine also inhibited chondrocyte pyroptosis and NF-κB 

pathway signaling in these cells, while reducing 

pathological blood vessel and nociceptor proliferation in 

the subchondral bone. These findings suggest that α-

solanine may have therapeutic potential in OA treatment 

[77]. 

An in silico study of the affinity of solanine and its 

derivatives for acetylcholinesterase indicated that this 

compound can block its activity. Inhibitors of this enzyme 

are used in the treatment of Alzheimer's disease [78]. 

α-Solanine also affects cell morphology. Exposure of rat 

mesenchymal stem cells to the drug at concentrations of 2-

6 μM for 24 hours induced morphological changes, including 

an increase in the number of nuclei, suggesting enhanced 

protein synthesis, and the formation of cytoplasmic 

protrusions. Additionally, α-solanine reduced the number 

of adherent cells and colony formation. However, the 

biological basis of these changes remains unclear [79]. 

4. Conclusions 

Research on α-solanine has been ongoing for 

approximately a century and a half. During this time, 

numerous studies have been conducted by various 

researchers, exploring different aspects of this compound. 

The plants containing α-solanine and its biosynthetic 

pathway have been identified. Despite extensive research 

on α-solanine toxicity, its precise toxicological mechanisms 

remain incompletely understood. α-Solanine affects the 

nervous system by inhibiting cholinesterases; however, the 

symptoms of solanine poisoning are often associated with 

an anticholinergic crisis. In addition, this compound has 

strong irritating effects on the gastrointestinal tract and 

can lead to cell lysis, including erythrocyte destruction. α-

Solanine exhibits both anticancer and anti-inflammatory 

activities. It inhibits cancer cell proliferation and limits 

their ability to metastasize. Additionally, it may have 

beneficial effects in managing inflammatory conditions. 

Some evidence suggests that α-solanine could be effective 

in the treatment of osteoarthritis and Alzheimer's disease. 

However, the high toxicity of α-solanine significantly limits 

its practical applications. Further comprehensive studies 

are required to assess whether its toxic effects outweigh 

the therapeutic potential of α-solanine in clinical settings. 
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