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ABSTRACT

Osteoarthritis (OA) is known as a debilitating form of arthritis that is marked by progressive
degradation of cartilage, synovial inflammation, chronic pain, and subchondral bone remodeling. OA
causes progressive stiffness and decreased mobility, significantly affecting the overall quality of life of
the person affected. In spite of vast research in this area, the present pharmacological interventions
are purely symptomatic. Consequently, there is an expanding interest in exploring multidimensional
targeting of pathophysiological pathways using natural treatment options, while improving patient
compliance by enhancing the safety profile. The current review focuses on a novel, innovative, and
conceptual formulation that is designed by the authors with scientific-evidence-packed natural
compounds for management of OA. This review aims to evaluate the rationale behind formulating
a conceptual novel tablet consisting of Cissus quadrangularis, Boswellia serrata, propolis, and
palmitoylethanolamide (PEA) for definitive management of OA. To our knowledge, this is the first
article to explore this combination which is designed in such a way that it targets oxidative stress,
inflammation, cartilage destruction, and pain in OA simultaneously in a synergistic manner. In contrast
to conventional treatment options, which primarily provide symptom relief, this novel conceptual
formulation could offer analgesic, chondroprotective, and regenerative effects with a reasonable
safety profile, making it suitable for long-term use. This formulation has the potential to emerge as an
effective and safer alternative for treatment of OA, by helping to bridge the gap between integrative
and conventional medicine.
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1. Introduction

Osteoarthritis (OA) is a debilitating condition that is said
to affect around 303 million people all over the world [1].
It consists of gradual cartilage degradation, matrix
degeneration, inflammation of the synovium, subchondral
remodeling of bone, and chronic intolerable pain. It leads
to stiffness of the joint involved, associated with reduced
joint mobility that causes a reduction in patient’s quality
of life [2]. Because of the rise in the aging population,
obesity, and sedentary lifestyle, the prevalence of OA is
predicted to increase. The currently available treatment
options include drugs like Nonsteroidal Anti-Inflammatory
Drugs (NSAIDs), corticosteroids, and major surgical

procedures like total joint replacement. However, these
treatment options are purely symptomatic, offering
temporary pain relief rather than providing a definitive
cure [3,4]. Additionally, they present a risk of long-term
complications. Recently, various studies are being conducted
on Disease-Modifying Osteoarthritis Drugs (DMOADs) that
have the potential to provide a curative treatment [5—7].
Consequently, there is an expanding interest in exploring
multidimensional targeting of pathophysiological pathways
using natural treatment options, while improving patient
compliance by enhancing the safety profile. In recent years,
numerous bioactive compounds of natural sources have
shown significant therapeutic potential for OA [8]. Notably,
Cissus quadrangularis, Boswellia serrata, propolis, and
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palmitoylethanolamide (PEA) have emerged as promising
treatment options for OA because of their potential
antioxidant, anti-inflammatory, analgesic, and
chondroprotective properties. C. quadrangularis is
a traditionally used ancient treatment for joint and bone
health that has been extensively researched for its
positive role in decreasing joint inflammation and
improving collagen synthesis [9,10]. B. serrata is another
notable herbal extract that has rich anti-inflammatory
activity, primarily through 5-lipoxygenase (5-LOX)
inhibition which is an important enzyme in leukotriene
synthesis [11]. Propolis is a bee product that is rich in
polyphenols, possessing strong immunomodulatory and
antioxidant properties [12]. PEA is an endogenous fatty
acid amide that exerts potential anti-inflammatory and
analgesic effects by activation of Peroxisome Proliferator-
Activated Receptor-a (PPAR-a) and regulation of mast
cells [13,14]. Due to the intricate and multifaceted nature
of OA, a combination strategy harnessing these bioactive
compounds could offer a better treatment outcome
compared to individual therapy. The current review focuses
on a novel, innovative, and conceptual formulation that is
designed by the authors with the scientific-evidence-
packed natural compounds C. quadrangularis, B. serrata,
propolis, and PEA for management of OA. To our
knowledge, this is the first article to explore this
combination. This review aims to evaluate the rationale
behind formulating a novel conceptual tablet consisting of
C. quadrangularis, B. serrata, propolis, and PEA for
definitive management of OA, which might have a strong
clinical translational potential. By assessing their
pharmacological activities, possible synergistic effects,
and mechanisms of action, we try to provide an evidence-
based foundation for this novel formulation for OA
management.

2. Methodology

This review was carried out to create and evaluate the
science behind a conceptual evidence-based formulation
targeting the pathophysiology of OA, consisting of
C. quadrangularis, B. serrata, propolis, and PEA.
A complete search of literature was done using the
relevant keywords, and all related studies published
during the period 2000—2024 exploring the mechanisms of
action, pharmacological effects, safety profile, and
synergistic interactions of these components were included,
which was conducted using scientific repositories like
SCOPUS, Google Scholar, PubMed, and Web of Science.
Those articles published in other languages besides
English, not focusing on OA, and duplicates were excluded.
A summary of data was synthesized to derive the potential
of these components in specifically targeting different
pathophysiological pathways of OA like oxidative stress,
inflammation, cartilage degradation, and pain. Based on
the cumulative evidence, the current novel formulation
was conceptualized to offer multifaceted therapeutic
benefits comprising of anti-inflammatory, antioxidant,
analgesic, and chondroprotective effects with a better
safety profile in the context of long-term use. Even though
this review was not written using software for systematic
review, we have made efforts to reduce selection bias
through a structured inclusion strategy and search.
In further studies, software tools like Rayyan might be
utilized to improve methodological rigor.
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3. Pathophysiology of OA

Osteoarthritis is defined as a chronic form of
degenerative joint disease that specifically affects the
synovium, articular cartilage, and subchondral bone,
eventually causing stiffness, pain, and impaired mobility
of the joint. It was previously considered as a disease of
mechanical wear and tear. However, evolving evidence
indicates that it is primarily caused by an intricate
biochemical and molecular pathway encompassing
oxidative stress, inflammation, synovial destruction,
cartilage degradation, and maladaptive pain signalling
[15—17]. Interpretation of this complex pathological
process is crucial in identifying the potential therapeutic
targets, in order to provide a definitive treatment for the
disease.

3.1. Inflammatory cascades

Inflammation has a critical role in the pathophysiology
of OA. Inflammatory mediators like chemokines and
cytokines destabilize the balance between catabolic
(cartilage-degrading) and anabolic (cartilage-building)
processes. This leads to formation of catabolic enzymes
that are involved in the destruction of the joint [18,19].
The key cytokines that mediate the pathophysiology of OA
are Tumor Necrosis Factor-a (TNF- a) and Interleukin-18
(IL-1 B), which cause formation of proteases such as
Matrix Metalloproteinases and aggrecanases [20—23].
Consequently, this leads to degradation of the
Extracellular Matrix (ECM) and degradation of cartilage.
Additionally, the key enzymes were found to mediate
formation of cyclooxygenase (COX-2) and prostaglandins
(PGE2) which further heightens the inflammation and pain
[24, 25]. Hence, these cytokines are known as pro-
inflammatory cytokines that cause the pathological
changes in the joint [26]. Also, another critical mediator
of inflammation was found to be the NLRP3
inflammasome, which links this process of inflammation
with mechanical stress [27].

3.2. Oxidative stress

In a joint affected by OA, there exists an imbalance
between antioxidant defense and oxidative stress [28, 29].
Because of inflammation, excess production of Reactive
Oxygen Species (ROS) occurs in the joint [30]. This activates
Nuclear Factor-kappa B (NF-kB) which is an essential
transcription factor that increases pro-inflammatory
cytokines, further intensifying the joint inflammation.
Also, this induces MMPs that further degrade the
Extracellular Matrix (ECM). Overall, the prevailing
oxidative damage to synovial cells and chondrocytes
causes apoptosis and mitochondrial dysfunction, which
further increases cartilage breakdown [31].

3.3. Cartilage degradation

The existing imbalance between catabolic and
anabolic mechanisms causes cartilage degradation, which
is known as the hallmark of OA [32, 33]. Chondrocytes are
the crucial cells in regulating ECM homeostasis [34].
Increased catabolic processes are marked by excess
production of catabolic enzymes like MMP-1, MMP-3, and
MMP-13 and a disintegrin and metalloproteinase with
thrombospondin motifs-4 & -5 (ADAMTS-4 & -5), which
degrade essential components of the ECM like aggrecan
and type Il collagen [35]. The loss of proteoglycans
secondary to destruction of cartilage matrix reduces



cartilage hydration and disrupts its shock-absorbing
property, making the joint vulnerable to further
mechanical degradation [36, 37].

3.4. Synovial Inflammation

The inflammation of the synovium, known as synovitis,
occurs in OA due to inflammation-mediated infiltration of
immune cells like T cells and macrophages and elevated
synovial fluid cytokines. Due to this condition, the
inflamed synovial tissue produces inflammatory mediators
like IL-6, TNF-a, and PGE2, which leads to synovial
vascularization and hyperplasia [38—40]. This, in turn,
leads to excess joint effusion, joint stiffness, and further
accelerated cartilage degradation.

3.5. Pain mechanisms

The pain in OA involves multiple pathomechanisms,
which  include peripheral sensitization, central
sensitization, neuropeptides, and subchondral bone
remodelling. In OA, the inflammatory mediators such as
prostaglandins, bradykinin, and cytokines sensitize the
pain receptors in the joint, leading to reduced pain
threshold, which is called peripheral sensitization [41, 42].
Apart from these, chronic pain causes specific
neuroplastic changes that result in exacerbated pain
stimuli [43]. Additionally, certain neuropeptides such as
Calcitonin Gene-Related Peptide (CGRP) and Substance P
that are released from nerve endings cause increased
response to pain and neurogenic inflammation [44]. As a
result of chronic inflammation, remodeling of subchondral
bone occurs, leading to appearance of osteophytes, which
further aggravates the nociceptive signalling process [45—47].

_JB. serrata
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4. Proposed drug combination

In the current review, the proposed combination (Fig. 1)
of drugs for the rationally designed tablet comprises
C. quadrangularis, B. serrata, propolis and PEA. It is
formulated in such a way that it could target various
pathways of OA pathophysiology such as inflammation,
oxidative stress, degradation of cartilage, and chronic pain
in a synergistic way. This can offer a safer and more
effective option for treatment of OA, by helping to bridge
the treatment gap that exists between conventional
medicine and integrative medicine. Table 1 shows the
evidence-based critical analysis of the mechanism of

formulation.
4.1. C. quadrangularis

It is a commonly used Ayurveda medicine for
management of fractures, osteoporosis, and joint
disorders. It is also called the “Bone Setter’s” plant that
was found to have anti-inflammatory, antioxidant,
regenerative, and chondroprotective actions, through
regulation of pro-inflammatory cytokines, suppressing
NF-kB pathway and activating alkaline phosphatase [48—
50]. Previous studies have shown that it can significantly
reduce joint pain [51]. Additionally, it activates synthesis
of the matrix and proliferation of chondrocyte, thereby
causing chondroprotective effects [52]. Further, it was
found to decrease the release of pro-inflammatory
cytokines and improve genes controlling differentiation of
osteoblast [53]. These findings support the fact that it has
a potential to protect cartilage and suppress inflammation
in management of OA.
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Fig. 1. Proposed drug combination.
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Table 1. Evidence-based critical analysis of the mechanism of formulation

Mechanism of Combination of Individual components effects References
action components
Anti B. serrata: blocks 5-LOX and decreases LT production [67—-71]
inflammatory s.r;[fglrizm, PEA, PEA: induces PPAR-a and decreases pro-inflammatory cytokines [72—-76]
action Propolis: alleviates NF-kB pathway and reduces IL-6, IL- 11-18, TNF-a [77—81]
ECM and B. serrata: inhibits MMP and protects cartilage from degradation [82—86]

. B. serrata,
Cartllage. C. quadrangularis €. quadrangularis: enhances synthesis of glycosaminoglycans and collagen, increases [87—90]
preservation chondrocyte proliferation

. Propolis: improves SOD, catalase and glutathione peroxidase activities [91-95]
Decrease in Propolis
g;(::;tlve B. serrata, PEA B. serrata: supresses lipid peroxidation and scavenges free radicals [96—99]
PEA: improves antioxidant defense mechanisms [100—103]

e s PEA: decreases mast cells degranulation and prevents TRPV1 receptor activation [104—108]
Modification of PEA. B. serrata
pain signalling pr0[;0l1:s ’ B. serrata: prevents PKA, AKAP and PDE4 signalling to decrease nociception [109—113]

h
pathways Propolis: modifies cannabinoid receptors and decreases substance P expression [114—117]
Remodeling C. quadrangularis: improves differentiation and mineralization of osteoblast, enhances  [118—122]
and C. quadrangularis, expression of RUNX2 and Osteopontin
(r;g;;:eratmn B. serrata B. serrata: decreases the activity of osteoclast through inhibition of RANKL pathway [123,124]
Protection of bEA. ool PEA: supresses inflammation and hyperplasia of synovium [125—-128]
synovial B s,erp;a tF; ’ Propolis: supresses activation and invasion of synovial fibroblast [129—-132]
membrane B. serrata: prevents synovial angiogenesis and inhibits synovial cellular infiltration [133—136]
Modulation of Propolis: improves the integrity of gut barrier and decreases microbial dysbiosis [137—140]

gut-joint axis Propolis, PEA

PEA: modifies the composition of gut microbiota and suppresses systemic inflammation  [141—-144]

B. serrata: controls histone deacetylases and patterns of DNA methylation in [145—147]
Epigenetic B. serrata, chondrocytes
regulation C. quadrangularis ¢ quadrangularis: modifies miRNA expression involved in maintaining cartilage [148—151]
homeostasis

4.2. B. serrata

B. serrata is a medicinal plant, which is otherwise
known as frankincense, and has been used for treating
many inflammatory and musculoskeletal conditions. It has
boswellic acids as bioactive compounds, and AKBA is the
most efficient compound in preventing degradation of
cartilage and inhibiting inflammatory pathways [54]. It has
demonstrated inhibition of 5-lipoxygenase (5-LOX) and
suppresses further production of leukotrienes [55]. Also,
it modifies the NF-kB signalling, thereby decreasing the
pro-inflammatory cytokines’ expression. It was found to
inhibit cathepsin G and prostaglandin E synthase-1 [56].
It was found to significantly reduce pain and improve
physical function [57]. It was shown to have disease-
modifying effects, which were found by decreased levels
of MMP-3, a marker of cartilage destruction [58]. Studies
have shown that it prevents apoptosis of chondrocytes and
improves cartilage integrity [59].

4.3. Propolis

It is a natural resin derived from bees that is rich in
polyphenols, with anti-inflammatory and antioxidant
effects [60]. It was found to decrease pro-inflammatory
cytokines by inhibiting activation of NF-kB and reduce
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joint inflammation by decreasing prostaglandins derived
from COX-2 [61, 62]. It can reduce MMP-13 and production
of nitric oxide (NO), thereby suppressing oxidative damage
[63]. Thereby, it protects cartilage against wear and tear.

4.4, PEA

PEA is known as an endogenous fatty acid amide that
has important roles like anti-inflammatory, neuroprotective,
and analgesic [64]. It acts by inducing PPAR-a, thereby
reducing pro-inflammatory genes and consequently
suppressing cytokine release. It also modulates mast cells,
thereby preventing their degranulation and histamine-
mediated inflammation in synovial tissues [65]. Also, it
helps to decrease glial cell activation and controls neurogenic
inflammation, thereby decreasing chronic pain. It was
reported to interact with TRPV1 channels and cannabinoid
receptors, further contributing to analgesia [66].

In this novel formulation, each ingredient targets
multiple interconnected pathways in the pathophysiology
of OA. The consolidated mechanisms provide anti-
inflammatory, anti-oxidant, cartilage protection and pain
modulation effects. Table 2 shows the comparison of the
existing OA treatment with the current formulation.
Hence, this formulation holds the potential to offer long-
term benefit in OA.



Prospects in Pharmaceutical Sciences, 24(1), 17-30. https://doi.org/ 10.56782/pps.479

Table 2. Comparison of the existing OA treatment with the new formulation.

Parameters Existing OA treatment New evidence-based formulation References
Examples/ NSAIDs like diclofenac, ibuprofen,  Cissus quadrangularis, Boswellia serrata, propolis, [152—154]
Composition corticosteroids like prednisolone, Intra- palmitoylethanolamide (PEA)

articular hyaluronic acid injection, tramadol

Mechanism of action Symptomatic  treatment and supressing  Multi-dimensional: Anti-inflammatory, antioxidant, [152—154]

inflammation matrix regeneration, cartilage protection and pain
reduction
Inflammatory marker  Moderate Significant, as it targets multiple pathways [155,156]
reduction
Cartilage protection Mild to potentially destructive Potential regenerative and protective effects [157—159]
Safety profile High risk of adverse effects Minimal side effects [160—162]
Long-term use Not suitable, because of risk of organ toxicity Promising tissue preservation that makes convenient [163—165]
long-term use and can be formulated in newer drug
delivery designs
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Fig. 2. Combined mechanistic action of the components of the drug. Abbreviations: OA — Osteoarthritis; PEA —
palmitoylethanolamide; IL-18 — Interleukin 18, NF-kB — Nuclear Factor kappa-light-chain-enhancer of activated B cells; IL-6
— Interleukin 6; IL-17— Interleukin-17; MMPs — Matrix Metalloproteinases; RANK-Receptor Activator of Nuclear factor kB;
RANKL — RANK Ligand; RNS — Reactive Nitrogen Species; ROS — Reactive Oxygen Species; TNF-a —Tumor Necrosis Factor-
alpha; TRPV1 — Transient Receptor Potential Vanilloid 1.

degradation, bone and joint degradation, pain signalling,

3. Discussion gut-joint axis dysfunction, synovial inflammation, and

As depicted in Fig. 2, the pathogenesis of OA is triggered epigenetic dysregulation. B. serrata (Yellow code)
and maintained by obesity, mechanical stress and aging, that suppresses inflammatory mediators. C. quadrangularis
drives oxidative stress and mitochondrial dysfunction. (Green code) prevents degradation of cartilage, improves

chondrocyte proliferation, and supports collagen synthesis.
PEA (Blue code) modulates pain signalling and reduces
neurogenic inflammation. propolis (Red code) controls gut
microbiota and alleviates systemic inflammation in OA.
Together, these compounds are hypothesized to provide
a multidimensional strategy to treat OA by its anti-
inflammatory, antioxidant, cartilage-integrity- improving,
matrix regeneration, and pain reduction properties based
on existing scientific evidence.

Furthermore, Fig. 3 illustrates a wider intergrated
perspective on how this conceptual combination focuses
diverse  yet interconnected components of OA
pathophysiology, comprising oxidative stress, chronic
inflammation, cartilage degradation, synovial inflammation,
pain signalling, epigenetic dysregulation, and gut-joint axis
dysfunction. The pathways involved in the pathophysiology
are chronic inflammation, oxidative stress, cartilage
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Fig. 3. Combined mechanistic action of the components of the drug. This infographic depicts the interrelated pathways
that contribute to the pathophysiology of OA and the specific actions of B. serrata, C. quadrangularis, PEA and propolis in
targeting these pathways to execute therapeutic effects in OA.
successful translation into a rationale-based, commercially
possible OA treatment. Based on the promising mechanistic
synergy and scientific support for the individual
components, further studies are needed to explore its
development, efficacy, stability, and safety. The authors
are open to further translational research partnerships or
academic collaboration to further explore and validate its
potential as a novel treatment option for OA.

6. Challenges and limitations

From the current review, it is proposed that this novel
formulation might have a promising synergistic potential
but with several limitations which need proper consideration.
Firstly, this formulation is purely conceptual, based on
existing preclinical and clinical data for the individual
components of the combination without any direct
scientific evidence for the combination as a whole.
Secondly, the natural extracts of these individual
components have potential variability in terms of

8. Purpose of this review

The current review was proposed in the context of an

bioavailability, quality, and standardization that could
significantly affect formulation and thereby pose a regulatory
challenge. Also, other aspects of this combination
formulation on long-term safety and drug interactions are
yet to be explored. These limitations emphasize the need
for a large-scale clinical trial on this formulation for robust
clinical validation and clinical adoption.

7. Future directions

In future, large-scale clinical trials must be conducted
to properly validate its clinical efficacy, safety profile, and
long-term benefits. Effective pharmaceutical formulation is
crucial to ensure its efficient therapeutic outcomes. Table 3
represents the key aspects of pharmaceutical formulation.
Additionally, its potential role in other phenotypes of OA
must be investigated properly to validate its clinical utility.
Proper regulatory standardization is mandatory for its
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academic initiative to appraise thoroughly the possible
synergistic potential of C. quadrangularis, B. Serrata,
propolis and PEA in specifically targeting the multifaceted
pathophysiology of OA. Even though the proposed
formulation has not yet been evaluated clinically, it is
entirely built upon existing robust preclinical and clinical
studies on mechanistic evidence. The principal goal of this
review article is not to recommend the proposed
formulation for immediate clinical application, but rather
to offer a scientifically sound rational basis for the purpose
of further translational research and robust evidence-based
drug development. Through presenting an evidence-based
novel formulation strategy, the authors aim for future
clinical translation of this conceptual formulation by
further research collaboration and clinical validation.



Table 3. Key aspects of pharmaceutical formulation.
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Key aspects Analysis

Bioavailability e B. serrata: Phospholipid complexation could improve the bioavailability of boswellic acid by 7-fold.
challenges and e« Propolis: Liposomal encapsulation might improve flavonoid bioavailability.
solutions o PEA: Micronization might increase the bioavailability and efficacy of PEA.

Standardization e Standardization is mandatory to ensure consistent level of active bioactive compounds like AKBA (>30%) in B. serrata,
flavonoid/ phenolic content in propolis and ketosteroid in C. quadrangularis.

Modern analytical methods like spectroscopy, HPLC and LC-MS/MS can ensure its effective concentration.

Stability e To develop a tablet with good shelf-life, stability and consistent release profiles of active compounds, it is essential to
do suitable excipient selection, compression properties and stability analysis.
o Hydroxypropyl Methylcellulose (HPMC) might improve controlled release of polyphenolic compounds.

A thorough stability analysis must be done to assess any possible interactions among active compounds and to assess
oxidative degradation of phenolic compounds through standard stability testing.

Drug ¢ Propolis components have been suggested to influence immunomodulatory pathways by few studies; that caution might

interactions

be warranted in patients on immunosuppressive therapies.

e B. serrata may enhance anticoagulants and hence should be used in caution with aspirin or warfarin.

e PEA has low drug interaction risk but has theoretical interaction with some CNS depressants.

¢ Intra-formulation interactions: Presence of antioxidant polyphenols in propolis could theoretically compete with PEA for
metabolism and the added anti-inflammatory effects may improve efficacy but could also intensify immune modulation or

mild Gl side effects.

Possible e Possibly given as once-a-day oral tablet.
formulation e Possible oral delivery formats are capsule, tablet or softgel.
type e The choice depends upon target release kinetics, stability and bioavailability.

Dosing strategy e B. serrata: 100—250 mg/ day of standardized Boswellia extract.
e C. quadrangularis: 500—1000 mg/day of standardized ketosteroid containing cissus extract.

e PEA: 300—600 mg/day of micronized PEA.

e Propolis: 250—500 mg/day of standardized propolis extract.

Target patient e The potential target patient group include inflammatory OA phenotype, adjuvant OA therapy, patients contraindicated

group to NSAIDS.

o It has a strong conceptual potential to be used as a treatment of OA, as a part of early intervention.

9. Conclusions

This novel conceptual formulation, consisting of
B. serrata, C. quadrangularis, PEA, and propolis provides a
multi-targeted treatment strategy for OA, as it addresses
various pathophysiological pathways in OA such as oxidative
stress, chronic inflammation, cartilage degradation, and
pain signalling. In contrast to conventional treatment
options, which primarily provide symptom relief, this novel
formulation could offer analgesic, chondroprotective, and
regenerative effects with a reasonable safety profile,
making it suitable for long-term use. The overall effects of
this formulation could make it a potential drug to treat OA,
especially in patients with inflammatory OA and those
contraindicated for conventional NSAIDs. Based on existing
evidence about treating OA by individual components from
various studies on their rationale and safety profile, this
current review suggests that this formulation has a strong
translational potential.
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