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ABSTRACT 

Osteoarthritis (OA) is known as a debilitating form of arthritis that is marked by progressive 

degradation of cartilage, synovial inflammation, chronic pain, and subchondral bone remodeling. OA 

causes progressive stiffness and decreased mobility, significantly affecting the overall quality of life of 

the person affected. In spite of vast research in this area, the present pharmacological interventions 

are purely symptomatic. Consequently, there is an expanding interest in exploring multidimensional 

targeting of pathophysiological pathways using natural treatment options, while improving patient 

compliance by enhancing the safety profile. The current review focuses on a novel, innovative, and 

conceptual formulation that is designed by the authors with scientific-evidence-packed natural 

compounds for management of OA. This review aims to evaluate the rationale behind formulating 

a conceptual novel tablet consisting of Cissus quadrangularis, Boswellia serrata, propolis, and 

palmitoylethanolamide (PEA) for definitive management of OA. To our knowledge, this is the first 

article to explore this combination which is designed in such a way that it targets oxidative stress, 

inflammation, cartilage destruction, and pain in OA simultaneously in a synergistic manner. In contrast 

to conventional treatment options, which primarily provide symptom relief, this novel conceptual 

formulation could offer analgesic, chondroprotective, and regenerative effects with a reasonable 

safety profile, making it suitable for long-term use. This formulation has the potential to emerge as an 

effective and safer alternative for treatment of OA, by helping to bridge the gap between integrative 

and conventional medicine. 
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1. Introduction  

Osteoarthritis (OA) is a debilitating condition that is said 

to affect around 303 million people all over the world [1]. 

It consists of gradual cartilage degradation, matrix 

degeneration, inflammation of the synovium, subchondral 

remodeling of bone, and chronic intolerable pain. It leads 

to stiffness of the joint involved, associated with reduced 

joint mobility that causes a reduction in patient’s quality 

of life [2]. Because of the rise in the aging population, 

obesity, and sedentary lifestyle, the prevalence of OA is 

predicted to increase. The currently available treatment 

options include drugs like Nonsteroidal Anti-Inflammatory 

Drugs (NSAIDs), corticosteroids, and major surgical 

procedures like total joint replacement. However, these 

treatment options are purely symptomatic, offering 

temporary pain relief rather than providing a definitive 

cure [3,4]. Additionally, they present a risk of long-term 

complications. Recently, various studies are being conducted 

on Disease-Modifying Osteoarthritis Drugs (DMOADs) that 

have the potential to provide a curative treatment [5—7]. 

Consequently, there is an expanding interest in exploring 

multidimensional targeting of pathophysiological pathways 

using natural treatment options, while improving patient 

compliance by enhancing the safety profile. In recent years, 

numerous bioactive compounds of natural sources have 

shown significant therapeutic potential for OA [8]. Notably, 

Cissus quadrangularis, Boswellia serrata, propolis, and 
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palmitoylethanolamide (PEA) have emerged as promising 

treatment options for OA because of their potential 

antioxidant, anti-inflammatory, analgesic, and 

chondroprotective properties. C. quadrangularis is 

a traditionally used ancient treatment for joint and bone 

health that has been extensively researched for its 

positive role in decreasing joint inflammation and 

improving collagen synthesis [9,10]. B. serrata is another 

notable herbal extract that has rich anti-inflammatory 

activity, primarily through 5-lipoxygenase (5-LOX) 

inhibition which is an important enzyme in leukotriene 

synthesis [11]. Propolis is a bee product that is rich in 

polyphenols, possessing strong immunomodulatory and 

antioxidant properties [12]. PEA is an endogenous fatty 

acid amide that exerts potential anti-inflammatory and 

analgesic effects by activation of Peroxisome Proliferator-

Activated Receptor-α (PPAR-α) and regulation of mast 

cells [13,14]. Due to the intricate and multifaceted nature 

of OA, a combination strategy harnessing these bioactive 

compounds could offer a better treatment outcome 

compared to individual therapy. The current review focuses 

on a novel, innovative, and conceptual formulation that is 

designed by the authors with the scientific-evidence-

packed natural compounds C. quadrangularis, B. serrata, 

propolis, and PEA for management of OA. To our 

knowledge, this is the first article to explore this 

combination. This review aims to evaluate the rationale 

behind formulating a novel conceptual tablet consisting of 

C. quadrangularis, B. serrata, propolis, and PEA for 

definitive management of OA, which might have a strong 

clinical translational potential. By assessing their 

pharmacological activities, possible synergistic effects, 

and mechanisms of action, we try to provide an evidence-

based foundation for this novel formulation for OA 

management. 

2. Methodology 

This review was carried out to create and evaluate the 

science behind a conceptual evidence-based formulation 

targeting the pathophysiology of OA, consisting of 

C. quadrangularis, B. serrata, propolis, and PEA. 

A complete search of literature was done using the 

relevant keywords, and all related studies published 

during the period 2000—2024 exploring the mechanisms of 

action, pharmacological effects, safety profile, and 

synergistic interactions of these components were included, 

which was conducted using scientific repositories like 

SCOPUS, Google Scholar, PubMed, and Web of Science. 

Those articles published in other languages besides 

English, not focusing on OA, and duplicates were excluded. 

A summary of data was synthesized to derive the potential 

of these components in specifically targeting different 

pathophysiological pathways of OA like oxidative stress, 

inflammation, cartilage degradation, and pain. Based on 

the cumulative evidence, the current novel formulation 

was conceptualized to offer multifaceted therapeutic 

benefits comprising of anti-inflammatory, antioxidant, 

analgesic, and chondroprotective effects with a better 

safety profile in the context of long-term use. Even though 

this review was not written using software for systematic 

review, we have made efforts to reduce selection bias 

through a structured inclusion strategy and search. 

In further studies, software tools like Rayyan might be 

utilized to improve methodological rigor. 

3. Pathophysiology of OA 

Osteoarthritis is defined as a chronic form of 

degenerative joint disease that specifically affects the 

synovium, articular cartilage, and subchondral bone, 

eventually causing stiffness, pain, and impaired mobility 

of the joint. It was previously considered as a disease of 

mechanical wear and tear. However, evolving evidence 

indicates that it is primarily caused by an intricate 

biochemical and molecular pathway encompassing 

oxidative stress, inflammation, synovial destruction, 

cartilage degradation, and maladaptive pain signalling 

[15—17]. Interpretation of this complex pathological 

process is crucial in identifying the potential therapeutic 

targets, in order to provide a definitive treatment for the 

disease. 

3.1. Inflammatory cascades 

Inflammation has a critical role in the pathophysiology 

of OA. Inflammatory mediators like chemokines and 

cytokines destabilize the balance between catabolic 

(cartilage-degrading) and anabolic (cartilage-building) 

processes. This leads to formation of catabolic enzymes 

that are involved in the destruction of the joint [18,19]. 

The key cytokines that mediate the pathophysiology of OA 

are Tumor Necrosis Factor-α (TNF- α) and Interleukin-1β 

(IL-1 β), which cause formation of proteases such as 

Matrix Metalloproteinases and aggrecanases [20—23]. 

Consequently, this leads to degradation of the 

Extracellular Matrix (ECM) and degradation of cartilage. 

Additionally, the key enzymes were found to mediate 

formation of cyclooxygenase (COX-2) and prostaglandins 

(PGE2) which further heightens the inflammation and pain 

[24, 25]. Hence, these cytokines are known as pro-

inflammatory cytokines that cause the pathological 

changes in the joint [26]. Also, another critical mediator 

of inflammation was found to be the NLRP3 

inflammasome, which links this process of inflammation 

with mechanical stress [27]. 

3.2. Oxidative stress 

In a joint affected by OA, there exists an imbalance 

between antioxidant defense and oxidative stress [28, 29]. 

Because of inflammation, excess production of Reactive 

Oxygen Species (ROS) occurs in the joint [30]. This activates 

Nuclear Factor-kappa B (NF-κB) which is an essential 

transcription factor that increases pro-inflammatory 

cytokines, further intensifying the joint inflammation. 

Also, this induces MMPs that further degrade the 

Extracellular Matrix (ECM). Overall, the prevailing 

oxidative damage to synovial cells and chondrocytes 

causes apoptosis and mitochondrial dysfunction, which 

further increases cartilage breakdown [31].  

3.3. Cartilage degradation 

The existing imbalance between catabolic and 

anabolic mechanisms causes cartilage degradation, which 

is known as the hallmark of OA [32, 33]. Chondrocytes are 

the crucial cells in regulating ECM homeostasis [34]. 

Increased catabolic processes are marked by excess 

production of catabolic enzymes like MMP-1, MMP-3, and 

MMP-13 and a disintegrin and metalloproteinase with 

thrombospondin motifs-4 & -5 (ADAMTS-4 & -5), which 

degrade essential components of the ECM like aggrecan 

and type II collagen [35]. The loss of proteoglycans 

secondary to destruction of cartilage matrix reduces 
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cartilage hydration and disrupts its shock-absorbing 

property, making the joint vulnerable to further 

mechanical degradation [36,  37]. 

3.4. Synovial Inflammation 

The inflammation of the synovium, known as synovitis, 

occurs in OA due to inflammation-mediated infiltration of 

immune cells like T cells and macrophages and elevated 

synovial fluid cytokines. Due to this condition, the 

inflamed synovial tissue produces inflammatory mediators 

like IL-6, TNF-α, and PGE2, which leads to synovial 

vascularization and hyperplasia [38—40]. This, in turn, 

leads to excess joint effusion, joint stiffness, and further 

accelerated cartilage degradation. 

3.5. Pain mechanisms 

The pain in OA involves multiple pathomechanisms, 

which include peripheral sensitization, central 

sensitization, neuropeptides, and subchondral bone 

remodelling. In OA, the inflammatory mediators such as 

prostaglandins, bradykinin, and cytokines sensitize the 

pain receptors in the joint, leading to reduced pain 

threshold, which is called peripheral sensitization [41, 42]. 

Apart from these, chronic pain causes specific 

neuroplastic changes that result in exacerbated pain 

stimuli [43]. Additionally, certain neuropeptides such as 

Calcitonin Gene-Related Peptide (CGRP) and Substance P 

that are released from nerve endings cause increased 

response to pain and neurogenic inflammation [44]. As a 

result of chronic inflammation, remodeling of subchondral 

bone occurs, leading to appearance of osteophytes, which 

further aggravates the nociceptive signalling process [45—47]. 

4. Proposed drug combination 

In the current review, the proposed combination (Fig. 1) 

of drugs for the rationally designed tablet comprises 

C. quadrangularis, B. serrata, propolis and PEA. It is 

formulated in such a way that it could target various 

pathways of OA pathophysiology such as inflammation, 

oxidative stress, degradation of cartilage, and chronic pain 

in a synergistic way. This can offer a safer and more 

effective option for treatment of OA, by helping to bridge 

the treatment gap that exists between conventional 

medicine and integrative medicine. Table 1 shows the 

evidence-based critical analysis of the mechanism of 

formulation. 

4.1. C. quadrangularis 

It is a commonly used Ayurveda medicine for 

management of fractures, osteoporosis, and joint 

disorders. It is also called the “Bone Setter’s” plant that 

was found to have anti-inflammatory, antioxidant, 

regenerative, and chondroprotective actions, through 

regulation of pro-inflammatory cytokines, suppressing  

NF-κB pathway and activating alkaline phosphatase [48—

50]. Previous studies have shown that it can significantly 

reduce joint pain [51]. Additionally, it activates synthesis 

of the matrix and proliferation of chondrocyte, thereby 

causing chondroprotective effects [52]. Further, it was 

found to decrease the release of pro-inflammatory 

cytokines and improve genes controlling differentiation of 

osteoblast [53]. These findings support the fact that it has 

a potential to protect cartilage and suppress inflammation 

in management of OA. 

 

 

 

Fig. 1. Proposed drug combination. 
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Table 1. Evidence-based critical analysis of the mechanism of formulation 

Mechanism of 

action 

Combination of 

components 

Individual components effects References 

Anti-

inflammatory 

action 

B. serrata, PEA, 

propolis 

B. serrata: blocks 5-LOX and decreases LT production [67—71] 

PEA: induces PPAR-α and decreases pro-inflammatory cytokines [72—76] 

Propolis: alleviates NF-κB pathway and reduces IL-6, IL- 11-1β, TNF-α [77—81] 

ECM and 

Cartilage 

preservation 

B. serrata, 

C. quadrangularis 

B. serrata: inhibits MMP and protects cartilage from degradation [82—86] 

C. quadrangularis: enhances synthesis of glycosaminoglycans and collagen, increases 

chondrocyte proliferation 

[87—90] 

Decrease in 

oxidative 

stress 

Propolis, 

B. serrata, PEA 

Propolis: improves SOD, catalase and glutathione peroxidase activities [91—95] 

B. serrata: supresses lipid peroxidation and scavenges free radicals [96—99] 

PEA: improves antioxidant defense mechanisms [100—103] 

Modification of 

pain signalling 

pathways 

PEA, B. serrata, 

propolis 

PEA: decreases mast cells degranulation and prevents TRPV1 receptor activation [104—108] 

B. serrata: prevents PKA, AKAP and PDE4 signalling to decrease nociception [109—113] 

Propolis: modifies cannabinoid receptors and decreases substance P expression [114—117] 

Remodeling 

and 

regeneration 

of bone 

C. quadrangularis, 

B. serrata 

C. quadrangularis: improves differentiation and mineralization of osteoblast, enhances 

expression of RUNX2 and Osteopontin 

[118—122] 

B. serrata: decreases the activity of osteoclast through inhibition of RANKL pathway [123,124] 

Protection of 

synovial 

membrane 

PEA, propolis, 

B. serrata 

PEA: supresses inflammation and hyperplasia of synovium [125—128] 

Propolis: supresses activation and invasion of synovial fibroblast [129—132] 

B. serrata: prevents synovial angiogenesis and inhibits synovial cellular infiltration [133—136] 

Modulation of 

gut-joint axis 
Propolis, PEA 

Propolis: improves the integrity of gut barrier and decreases microbial dysbiosis [137—140] 

PEA: modifies the composition of gut microbiota and suppresses systemic inflammation [141—144] 

Epigenetic 

regulation 

B. serrata, 

C. quadrangularis 

B. serrata: controls histone deacetylases and patterns of DNA methylation in 

chondrocytes 

[145—147] 

C. quadrangularis: modifies miRNA expression involved in maintaining cartilage 

homeostasis 

[148—151] 

 

4.2. B. serrata 

B. serrata is a medicinal plant, which is otherwise 

known as frankincense, and has been used for treating 

many inflammatory and musculoskeletal conditions. It has 

boswellic acids as bioactive compounds, and AKBA is the 

most efficient compound in preventing degradation of 

cartilage and inhibiting inflammatory pathways [54]. It has 

demonstrated inhibition of 5-lipoxygenase (5-LOX) and 

suppresses further production of leukotrienes [55]. Also, 

it modifies the NF-κB signalling, thereby decreasing the 

pro-inflammatory cytokines’ expression. It was found to 

inhibit cathepsin G and prostaglandin E synthase–1 [56]. 

It was found to significantly reduce pain and improve 

physical function [57]. It was shown to have disease-

modifying effects, which were found by decreased levels 

of MMP-3, a marker of cartilage destruction [58]. Studies 

have shown that it prevents apoptosis of chondrocytes and 

improves cartilage integrity [59]. 

4.3. Propolis 

It is a natural resin derived from bees that is rich in 

polyphenols, with anti-inflammatory and antioxidant 

effects [60]. It was found to decrease pro-inflammatory 

cytokines by inhibiting activation of NF-κB and reduce 

joint inflammation by decreasing prostaglandins derived 

from COX-2 [61, 62]. It can reduce MMP-13 and production 

of nitric oxide (NO), thereby suppressing oxidative damage 

[63]. Thereby, it protects cartilage against wear and tear. 

4.4. PEA 

PEA is known as an endogenous fatty acid amide that 

has important roles like anti-inflammatory, neuroprotective, 

and analgesic [64]. It acts by inducing PPAR-α, thereby 

reducing pro-inflammatory genes and consequently 

suppressing cytokine release. It also modulates mast cells, 

thereby preventing their degranulation and histamine-

mediated inflammation in synovial tissues [65]. Also, it 

helps to decrease glial cell activation and controls neurogenic 

inflammation, thereby decreasing chronic pain. It was 

reported to interact with TRPV1 channels and cannabinoid 

receptors, further contributing to analgesia [66]. 

In this novel formulation, each ingredient targets 

multiple interconnected pathways in the pathophysiology 

of OA. The consolidated mechanisms provide anti-

inflammatory, anti-oxidant, cartilage protection and pain 

modulation effects. Table 2 shows the comparison of the 

existing OA treatment with the current formulation. 

Hence, this formulation holds the potential to offer long-

term benefit in OA. 

 

  



Prospects in Pharmaceutical Sciences, 24(1), 17-30. https://doi.org/10.56782/pps.479 

 

 
- 21 - 

Table 2. Comparison of the existing OA treatment with the new formulation. 

Parameters Existing OA treatment New evidence-based formulation References 

Examples/ 

Composition 

NSAIDs like diclofenac, ibuprofen, 

corticosteroids like prednisolone, Intra-

articular hyaluronic acid injection, tramadol 

Cissus quadrangularis, Boswellia serrata, propolis, 

palmitoylethanolamide (PEA) 

[152—154] 

Mechanism of action Symptomatic treatment and supressing 

inflammation 

Multi-dimensional: Anti-inflammatory, antioxidant, 

matrix regeneration, cartilage protection and pain 

reduction 

[152—154] 

Inflammatory marker 

reduction 

Moderate Significant, as it targets multiple pathways [155,156] 

Cartilage protection Mild to potentially destructive Potential regenerative and protective effects [157—159] 

Safety profile High risk of adverse effects Minimal side effects [160—162] 

Long-term use Not suitable, because of risk of organ toxicity Promising tissue preservation that makes convenient 

long-term use and can be formulated in newer drug 

delivery designs 

[163—165] 

 

 

Fig. 2. Combined mechanistic action of the components of the drug. Abbreviations: OA — Osteoarthritis; PEA — 

palmitoylethanolamide; IL-1β — Interleukin 1β, NF-κB —  Nuclear Factor kappa-light-chain-enhancer of activated B cells; IL-6 

— Interleukin 6; IL-17— Interleukin-17; MMPs — Matrix Metalloproteinases; RANK-Receptor Activator of Nuclear factor κB; 

RANKL — RANK Ligand; RNS — Reactive Nitrogen Species; ROS — Reactive Oxygen Species; TNF-α —Tumor Necrosis Factor-

alpha; TRPV1 —  Transient Receptor Potential Vanilloid 1. 

  

5. Discussion  

As depicted in Fig. 2, the pathogenesis of OA is triggered 

and maintained by obesity, mechanical stress and aging, that 

drives oxidative stress and mitochondrial dysfunction.  

Furthermore, Fig. 3 illustrates a wider intergrated 

perspective on how this conceptual combination focuses 

diverse yet interconnected components of OA 

pathophysiology, comprising oxidative stress, chronic 

inflammation, cartilage degradation, synovial inflammation, 

pain signalling, epigenetic dysregulation, and gut-joint axis 

dysfunction. The pathways involved in the pathophysiology 

are chronic inflammation, oxidative stress, cartilage 

degradation, bone and joint degradation, pain signalling, 

gut-joint axis dysfunction, synovial inflammation, and 

epigenetic dysregulation. B. serrata (Yellow code) 

suppresses inflammatory mediators. C. quadrangularis 

(Green code) prevents degradation of cartilage, improves 

chondrocyte proliferation, and supports collagen synthesis. 

PEA (Blue code) modulates pain signalling and reduces 

neurogenic inflammation. propolis (Red code) controls gut 

microbiota and alleviates systemic inflammation in OA. 

Together, these compounds are hypothesized to provide 

a multidimensional strategy to treat OA by its anti-

inflammatory, antioxidant, cartilage-integrity- improving, 

matrix regeneration, and pain reduction properties based 

on existing scientific evidence. 
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Fig. 3. Combined mechanistic action of the components of the drug. This infographic depicts the interrelated pathways 

that contribute to the pathophysiology of OA and the specific actions of B. serrata, C. quadrangularis, PEA and propolis in 

targeting these pathways to execute therapeutic effects in OA. 

6. Challenges and limitations 

From the current review, it is proposed that this novel 

formulation might have a promising synergistic potential 

but with several limitations which need proper consideration. 

Firstly, this formulation is purely conceptual, based on 

existing preclinical and clinical data for the individual 

components of the combination without any direct 

scientific evidence for the combination as a whole. 

Secondly, the natural extracts of these individual 

components have potential variability in terms of 

bioavailability, quality, and standardization that could 

significantly affect formulation and thereby pose a regulatory 

challenge. Also, other aspects of this combination 

formulation on long-term safety and drug interactions are 

yet to be explored. These limitations emphasize the need 

for a large-scale clinical trial on this formulation for robust 

clinical validation and clinical adoption. 

7. Future directions 

In future, large-scale clinical trials must be conducted 

to properly validate its clinical efficacy, safety profile, and 

long-term benefits. Effective pharmaceutical formulation is 

crucial to ensure its efficient therapeutic outcomes. Table 3 

represents the key aspects of pharmaceutical formulation. 

Additionally, its potential role in other phenotypes of OA 

must be investigated properly to validate its clinical utility. 

Proper regulatory standardization is mandatory for its 

successful translation into a rationale-based, commercially 

possible OA treatment. Based on the promising mechanistic 

synergy and scientific support for the individual 

components, further studies are needed to explore its 

development, efficacy, stability, and safety. The authors 

are open to further translational research partnerships or 

academic collaboration to further explore and validate its 

potential as a novel treatment option for OA. 

8. Purpose of this review 

The current review was proposed in the context of an 

academic initiative to appraise thoroughly the possible 

synergistic potential of C. quadrangularis, B. Serrata, 

propolis and PEA in specifically targeting the multifaceted 

pathophysiology of OA. Even though the proposed 

formulation has not yet been evaluated clinically, it is 

entirely built upon existing robust preclinical and clinical 

studies on mechanistic evidence. The principal goal of this 

review article is not to recommend the proposed 

formulation for immediate clinical application, but rather 

to offer a scientifically sound rational basis for the purpose 

of further translational research and robust evidence-based 

drug development. Through presenting an evidence-based 

novel formulation strategy, the authors aim for future 

clinical translation of this conceptual formulation by 

further research collaboration and clinical validation.  
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Table 3. Key aspects of pharmaceutical formulation. 

Key aspects Analysis 

Bioavailability 

challenges and 

solutions 

• B. serrata: Phospholipid complexation could improve the bioavailability of boswellic acid by 7-fold. 

• Propolis: Liposomal encapsulation might improve flavonoid bioavailability.  

• PEA: Micronization might increase the bioavailability and efficacy of PEA. 

Standardization • Standardization is mandatory to ensure consistent level of active bioactive compounds like AKBA (>30%) in B. serrata, 

flavonoid/ phenolic content in propolis and ketosteroid in C. quadrangularis. 

Modern analytical methods like spectroscopy, HPLC and LC-MS/MS can ensure its effective concentration. 

Stability • To develop a tablet with good shelf-life, stability and consistent release profiles of active compounds, it is essential to 

do suitable excipient selection, compression properties and stability analysis. 

• Hydroxypropyl Methylcellulose (HPMC) might improve controlled release of polyphenolic compounds. 

A thorough stability analysis must be done to assess any possible interactions among active compounds and to assess 

oxidative degradation of phenolic compounds through standard stability testing. 

Drug 

interactions 

• Propolis components have been suggested to influence immunomodulatory pathways by few studies; that caution might 

be warranted in patients on immunosuppressive therapies. 

• B. serrata may enhance anticoagulants and hence should be used in caution with aspirin or warfarin. 

• PEA has low drug interaction risk but has theoretical interaction with some CNS depressants. 

• Intra-formulation interactions: Presence of antioxidant polyphenols in propolis could theoretically compete with PEA for 

metabolism and the added anti-inflammatory effects may improve efficacy but could also intensify immune modulation or 

mild GI side effects. 

Possible 

formulation 

type 

• Possibly given as once-a-day oral tablet. 

• Possible oral delivery formats are capsule, tablet or softgel. 

• The choice depends upon target release kinetics, stability and bioavailability. 

Dosing strategy • B. serrata: 100—250 mg/ day of standardized Boswellia extract. 

• C. quadrangularis: 500—1000 mg/day of standardized ketosteroid containing cissus extract. 

• PEA: 300—600 mg/day of micronized PEA. 

• Propolis: 250—500 mg/day of standardized propolis extract. 

Target patient 

group 

• The potential target patient group include inflammatory OA phenotype, adjuvant OA therapy, patients contraindicated 

to NSAIDS. 

• It has a strong conceptual potential to be used as a treatment of OA, as a part of early intervention. 

9. Conclusions 

This novel conceptual formulation, consisting of 

B. serrata, C. quadrangularis, PEA, and propolis provides a 

multi-targeted treatment strategy for OA, as it addresses 

various pathophysiological pathways in OA such as oxidative 

stress, chronic inflammation, cartilage degradation, and 

pain signalling. In contrast to conventional treatment 

options, which primarily provide symptom relief, this novel 

formulation could offer analgesic, chondroprotective, and 

regenerative effects with a reasonable safety profile, 

making it suitable for long-term use. The overall effects of 

this formulation could make it a potential drug to treat OA, 

especially in patients with inflammatory OA and those 

contraindicated for conventional NSAIDs. Based on existing 

evidence about treating OA by individual components from 

various studies on their rationale and safety profile, this 

current review suggests that this formulation has a strong 

translational potential. 
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