

Prospects in Pharmaceutical Sciences, Early Access https://prospects.wum.edu.pl/

Review

Quercetin from edible rutaceae plants: phytochemical profiling and therapeutic applications

Suman Ghosh¹, Ishita Debnath¹, Prerona Saha*¹

¹ Department of Pharmaceutical Chemistry, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata 700114, India

* Correspondence, e-mail: prerona.saha@gnipst.ac.in

Received: 22.06.2025 / Revised: 29.08.2025 / Accepted: 15.09.2025 / Published online: 11.10.2025

ABSTRACT

The Rutaceae family comprises several edible plants with high quercetin content, a bioactive flavonol recognized for its diverse therapeutic properties. This review specifically focuses on profiling quercetin in edible Rutaceae species available in West Bengal, emphasizing part-wise distribution (leaves, peels, fruits), extraction techniques, and pharmacological relevance. Among the species evaluated, Citrus sinensis and Aegle marmelos demonstrated the highest quercetin concentrations in leaves and peels, correlating strongly with their antioxidant, antidiabetic, anti-inflammatory, cardioprotective, hepatoprotective, neuroprotective, and anticancer properties. These mechanisms of action are linked to key molecular pathways, including NF-κB, Nrf2, PI3K/Akt, and AMPK. Methanolic extraction emerged as the most effective method for quercetin recovery across most species. Critical evaluation revealed notable knowledge gaps in bioavailability enhancement strategies, standardization across species, and clinical validation. By narrowing the scope exclusively to quercetin and its therapeutic functions, this review offers a targeted resource for future pharmacognostic exploration, bioavailability studies, and quercetin-based phytopharmaceutical development.

KEYWORDS: Quercetin, Rutaceae, West Bengal, Mechanism of action, Bioavailability, Phytochemical Profiling Article is published under the CC BY license.

1. Introduction

The Rutaceae family, commonly known as the citrus family, is a vast and diverse group of flowering plants comprising approximately 150 genera and over 2,000 species [1]. These plants are distributed globally, with tropical and subtropical regions being the primary habitats. It is renowned for its immense agricultural, medicinal, and ornamental value [2], [3], [4]. West Bengal, a biodiversity-rich state, is home to several important species of the Rutaceae family that are valued both for their nutritional benefits and traditional use in folk medicine. Notably, several edible plants belonging to this family, especially available in West Bengal, such as Aegle marmelos (Bael) [5], Murraya paniculata (Kamini) [6], Murraya koenigii (Curry leaves) [7], Triphasia trifolia (Limeberry) [8], Limonia acidissima (Wood Apple/Kadbel) [9], Citrus sinensis (Musambi/Sweet orange) [10], Citrus limon (Lemon) [11], Citrus paradisi (Grapefruit) [11], Citrus aurantifolia (Kaghzi Nimbu) [12], Citrus maxima / Citrus grandis (Pomelo) [13], Citrus bergamia (Bergamot) [14], Citrus aurantium (Khatta/Bitter Orange) [15] have long been revered in traditional medicinal systems for their healthpromoting properties. These species are rich in various bioactive compounds, particularly flavonoids, secondary metabolites known for their diverse pharmacological

activities [16]. Quercetin is a naturally occurring flavonoid, specifically a flavonol, commonly found in many plants, including those in the Rutaceae family [17]. Quercetin is a naturally occurring polyphenolic compound belonging to the flavonoid family, specifically the flavonol subclass. Flavonols are characterized by a 3-hydroxyflavone (3-hydroxy-2-phenylchromen-4-one), distinguishes them from other flavonoid subclasses such as flavones and flavanones. Quercetin (molecular formula: C₁₅H₁₀O₇; molecular weight: 302.24 g/mol) is widely distributed in fruits, vegetables, and edible plants of the Rutaceae family. Its chemical structure (Figure 1) consists of two benzene rings (A and B) linked by a heterocyclic pyrone ring (C), incorporating five hydroxyl groups that confer high antioxidant potential and enable multiple biological interactions. The flavonol scaffold of quercetin is thus central to its pharmacological versatility, influencing its roles in antioxidant defense, enzyme modulation, and cell signaling regulation. Quercetin enhances its medicinal and nutritional value through various biological activities, including antioxidant, anti-inflammatory, antidiabetic, antiviral, and anticancer properties [18], [19]. Numerous in vitro and in vivo studies have highlighted its role in mitigating oxidative stress, modulating inflammatory responses, and protecting against various chronic diseases,

including cardiovascular conditions, neurodegenerative disorders, and diabetes [20], [21], [22]. Therefore, this review aims to focus specifically on the quercetin content and pharmacological relevance of edible Rutaceae family plants available in West Bengal. This includes part-wise profiling, biological evaluation, mechanistic insights, and identification of gaps for future clinical and pharmacological studies. While other phytochemicals may be briefly mentioned, they are discussed only about their synergism with quercetin.

2. Phytochemistry of the Rutaceae family Edible plants

The Rutaceae family is highly regarded for both its agricultural and medicinal contributions. Although these plants contain a wide variety of secondary metabolites, this section gives particular emphasis to flavonoids, especially quercetin, as the principal phytochemical of interest due to its proven therapeutic potential and relevance to the central theme of this review. This family includes many edible plants, especially valued in traditional medicine and as nutritious foods. The following Table 1 describes the details of primary phytochemical groups and major components, such as flavonoids, alkaloids, coumarins, terpenoids, phenolics, and other compound groups, which contribute to the medicinal potential of each plant of the Rutaceae family.

Table 1. Major Phytoconstituents of Rutaceae family edible plants available in West Bengal

SI No	Plant Source with common name	Parts used in the plant	Phytochemical Class	Major Phytoconstituents	References	
			Flavonoids	Quercetin, isoflavone, anthocyanidin, catechin, chalconoid, luteolin		
			Alkaloids	Aegeline, marmeline, aegelenine	[23], [24], [25], [26]	
			Coumarins	Marmin, marmelide, psoralen, imperatonin	_	
			Terpenoids	Cineol, caryophyllene	[25], [26]	
1	Aegle marmelos (Bael)	Fruits	Phenolic compounds	Gallic acid, 2,3-dihydroxybenzoic acid, chlorogenic acid, p-coumaric acid, vanillic acid, caffeic acid, quinic acid, protocatechuic acid, arbutin		
			Other Compounds	Vitamin b and c, carotenes, saponins, tannins, minerals like potassium, calcium, phosphorus, sodium, iron, copper, magnesium.		
		Leaves		5,7,3',4',5'-pentamethoxyflavone (p1),		
2	Murraya paniculata (Kamini)		Leaves		Flavonoids	5,7,3',4'-tetramethoxyflavone (p3), 5-hydroxy-6,7,8,3',4'- pentamethoxyflavone (p8)
			Alkaloids	Carbazole, pyridine, pyrrole, n- substituted indole, dimerics.	-	
			Coumarins	Meranzin hydrate, murpanidin,	-	

				murragatin, murralongin, β- methylesculetin.		
			Other Compounds	Phenolic compounds, terpenoids, steroids, tannins, saponins, benzenoids, cinamates		
			Flavonoids	Quercetin, apigenin, kaempferol, rutin, catechin, myricetin, 4-o-B-d-rutinosyl-3-methoxyphenyl-1-propanone, 1-o-B-d-rutinosyl-2(r)-ethyl-1-pentanol, 8-phenylethyl-o-B-d-rutinoside.		
	Murraya koenigii		Alkaloids	Mahanine, mahanimbine, murrayanol, koenimbine, koenidine, 2-methoxy-3-methyl- carbazole, kurryam, koenine, koenigine, bicyclomahanimbicine.	[7], [29], [30]	
3	(Curry leaves)	Leaves	Coumarins	Heraclenin, imperatorin.	[30]	
				Terpenoids	Cyclomahanimbine, tetrahydromahanimbine, blumenol c, blumenol a, icariside b1, icariside b1 aglycone, 38- glucopyranosyloxy-8-ionone, loliolide, (-)-epiloliolide, 5,6- dihydrovomifoliol.	
			Other compounds	Phenolic compounds, vitamins, carbohydrates, ketones, acetate esters		
			Flavonoids	Quercetin, kaempferol, rutin, isorhamnetin		
	Triphasia trifolia		Alkaloids	n-methyltyramine, ephedrine, trifoliine		
4	(Limeberry)	Fruits	Coumarins	Bergamottin, xanthyletin	[30]	
			Terpenoids	Limonene, myrcene, β- caryophyllene		
			Other compounds	Ascorbic acid, B-sitosterol		
	Limonia acidissima (Wood Apple/Kadbel)		Flavonoids	Quercetin, rutin, apigenin, luteolin		
5			Alkaloids	Tetrahydroisoquinoline, tyramine	[11], [33], [34], [35]	
	(Coumarins	Scopoletin, xanthotoxin	[], [30]	

			Terpenoids	Limonene, sabinene, α-pinene		
			Other compounds	Psoralen, ferulic acid, cinnamic acid		
			Flavonoids	Quercetin, naringenin, hesperidin, rutin		
	Citrus sinensis (Musambi/Sweet orange)		Alkaloids	Synephrine, hordenine		
			Coumarins	Bergamottin, osthol	[11], [36], [37], [38], [39], [40]	
6		Fruits	Terpenoids	limonene, α-pinene, β-myrcene, β- caryophyllene		
			Phenolic compounds	Ferulic acid, sinapic acid, cinnamic acid		
			Other compounds	Pectin, ascorbic acid, carotenoids		
		Fruits	Flavonoids	Quercetin, diosmin, hesperidin, naringin	[11], [41], [42], [43]	
			Alkaloids	Synephrine, tyramine		
7	Citrus limon (Lemon)		Terpenoids	Limonene, citral, β-pinene, γ- terpinene		
			Others compounds	Ascorbic acid, linalool, pectin		
			Flavonoids	Quercetin, naringin, hesperidin, kaempferol		
			Alkaloids	Synephrine, phenethylamine		
8	Citrus paradisi (Grapefruit)	Fruits	Coumarins	Bergamottin, imperatorin		
	(Graperruit)		Terpenoids	Limonene, myrcene, linalool	[40], [47]	
			Other compounds	Gallic acid, cinnamic acid, ferulic acid, p-coumaric acid, lycopene, pectin		
_	Citrus aurantifolia (Kaghzi Nimbu)	Fruits	Flavonoids	Quercetin, hesperidin, apigenin, luteolin		
			Alkaloids	Synephrine, octopamine	[48], [49]	
9			Coumarins	Bergamottin, xanthyletin, citropten	_ - · • •	
			Other compounds	Limonene, α-pinene, γ-terpinene, ascorbic acid, pectin, β-sitosterol		
10	Citrus maxima / Citrus grandis (Pomelo)	Fruits	Flavonoids	Quercetin, naringin, kaempferol, hesperidin	[11], [50], [51]	

			Alkaloids	Synephrine, tyramine		
			Coumarins	Bergapten, xanthotoxin		
			Terpenoids	Limonene, α-pinene, γ-terpinene		
			Other compounds	Gallic acid, ferulic acid, cinnamic acid, pectin, ascorbic acid, lycopene		
			Flavonoids	Quercetin, neoeriocitrin, naringin, rutin		
		Fruits	Alkaloids	Synephrine, octopamine		
11	Citrus bergamia (Bergamot)		Coumarins	Bergamottin, bergaptol, imperatorin	[37], [52], [53], [54]	
			Terpenoids	Limonene, linalyl acetate, geraniol		
			Other compounds	Ascorbic acid, caffeic acid, gallic acid, ferulic acid, bergaptene, pectin		
			Flavonoids	Naringin, quercetin, hesperidin, limonin		
			Alkaloids	Synephrine, tyramine, hordenine		
12	Citrus aurantium (Khatta/Bitter Orange)	Fruits	Coumarins	Bergamottin, isopimpinellin	[55], [56],	
			Terpenoids	Limonene, linalool, myrcene	[3/]	
			Other compounds	Ascorbic acid, caffeic acid, ferulic acid, cinnamic acid		

Rutaceae family edible plants contain various of secondary metabolites; flavonoid is one of them. Different flavonoid contains various medicinal potential, among which flavonol like quercetin plays a pivotal role in case of this therapeutic contribution.

3. Quercetin: Biological activities and mechanisms of action

Quercetin is a prominent flavonoid found abundantly in the Rutaceae family. It has diverse medicinal properties and potential health benefits, such as antioxidant, antiinflammatory, antidiabetic, anticancer, antimicrobial, hepatoprotective, cardioprotective, and neuroprotective activities, that are highly relevant in traditional and modern medicine for a broad therapeutic profile [58]. The bioavailability of quercetin, largely present in fruits, vegetables, and various plant species, has been a focal point for enhancing its applications in nutraceuticals and pharmaceutical formulations. Table 2 describes major sources of quercetin along with quantity. As well as, Figure 1 depicts various bioactive properties and sources of quercetin. All referenced figures illustrating the source of quercetin and quercetin's other mechanisms of action (Figures 1-9) are now embedded below their respective sections with proper captions.

Table 2. Major dietary sources of quercetin and their content

Plant Sources (Edible part)	Quercetin Content (mg/100 g FW)	Reference	
Onion (Allium cepa)	20-40 mg	[59], [60]	
Apple (Malus domestica)	2-5 mg	[61]	
	1.78 mg (Black grapes)		
Grapes (Vitis vinifera)	1.62 (Green grapes)	[62], [63]	
Broccoli (<i>Brassica</i> oleracea)	3-7 mg	[64]	
Berries (<i>Fragaria</i> ×	3-4 mg	[65], [66]	

ananassa)			
Citrus fruits (Citrus sinensis)	10-25 mg	[67]	
Curry leaves (Murraya koenigii)	18-22 mg	[68]	
FW - Fresh Weight			

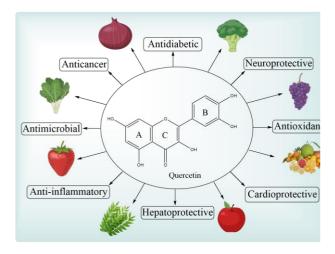


Figure 1. Numerous bioactive properties and sources of quercetin

3.1. Antioxidant Activity

Quercetin is recognized as one of nature's most potent antioxidants, mainly due to its ability to neutralize reactive oxygen species (ROS), such as superoxide anions, hydroxyl radicals, and hydrogen peroxide [69]. The flavonoid achieves this through its hydroxyl (OH) groups attached to the aromatic rings, which can donate electrons to free radicals, stabilizing and inactivating them. This radical-scavenging ability interrupts lipid peroxidation chain reactions, thereby protecting cellular membranes and structures from oxidative damage [70]. Additionally, quercetin upregulates endogenous antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), which further bolsters cellular antioxidant defenses [71]. It also modulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates antioxidant response elements (AREs) involved in cellular defense against oxidative stress [72]. Figure 2 describes the antioxidant activity of quercetin.

Figure 2. Antioxidant activity of quercetin in scavenging free radicals

3.2. Anti-Inflammatory Activity

Quercetin exerts its anti-inflammatory effects by

inhibiting various pro-inflammatory pathways, primarily the nuclear factor-kappa B (NF-kB) signaling pathway. NFκB is a crucial regulator of inflammation and immune responses, and its activation leads to the transcription of inflammatory cytokines, including tumor necrosis factoralpha (TNF-α), interleukin-6 (IL-6), and interleukin-18 (IL-1B). Quercetin suppresses NF-kB activation by inhibiting the degradation of its inhibitory protein, IkB, which retains NF-kB in an inactive state in the cytoplasm [73], [74]. Furthermore, quercetin modulates MAPK signaling cascades, such as ERK1/2, JNK, and p38 MAPK, as demonstrated in RAW 264.7 macrophages, where auercetin treatment suppressed LPS-induced phosphorylation of these kinases, thereby reducing proinflammatory cytokine release. By downregulating these signaling cascades, quercetin effectively reduces inflammation, making it a valuable compound for managing chronic inflammatory diseases such as arthritis, asthma, and inflammatory bowel disease [19], [75].

Mechanism regarding Histamin inhibition and Trypsin inhibition

Histamine inhibition by quercetin primarily refers to its ability to stabilize mast cells and basophils, thereby preventing degranulation and subsequent histamine release during allergic and inflammatory responses. It does not directly block histamine receptors but rather reduces histamine availability at the site of inflammation [76], [77]. In addition, quercetin has been shown to inhibit enzymes such as trypsin, a serine protease involved in protein digestion and inflammatory cascades. Trypsin inhibition contributes to reduced protease-mediated tissue damage and attenuation of inflammatory signaling. Together, these mechanisms support the antiallergic and anti-inflammatory roles of quercetin [78], [79]. Figure 3 depicts the anti-inflammatory activities of quercetin.

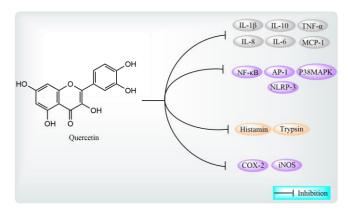


Figure 3. Anti-inflammatory activities of quercetin. [TNF-α, tumor necrosis factor-α; MCP-1, monocyte chemotactic protein-1; IL-10, interleukin-10; IL-6, interleukin-6; IL-1B, interleukin-1B; IL-8, interleukin-8; AP-1, activator protein 1; NF-κB, nuclear factor kappa-B; p38PAPK, p38 mitogen-activated protein kinase; NLRP3, NOD-like receptor thermal protein domain associated protein 3; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase]

3.3. Antidiabetic Activity

Quercetin has shown significant promise as an antidiabetic agent due to its multifaceted effects on glucose metabolism, insulin signaling, and pancreatic

function. One key mechanism is its ability to inhibit alphaglucosidase and alpha-amylase enzymes, which are involved in carbohydrate digestion. By inhibiting these enzymes, quercetin reduces postprandial blood glucose spikes. Additionally, quercetin enhances glucose uptake in muscle and adipose tissues by activating the AMP-activated protein kinase (AMPK) pathway, which promotes glucose transporter (GLUT4) translocation to the cell membrane [80], [81]. In pancreatic β-cells, quercetin protects against oxidative stress-induced damage and supports insulin secretion by preserving cellular integrity. This flavonoid also reduces inflammation in insulin-responsive tissues, such as the liver and skeletal muscles, which enhances insulin sensitivity and glucose homeostasis [82].

Quercetin exerts potent antidiabetic effects through multiple mechanisms. A well-documented pathway is the inhibition of key digestive enzymes such as α -glucosidase and α -amylase, thereby delaying carbohydrate hydrolysis and absorption, which ultimately attenuates postprandial blood glucose spikes. Studies have shown that quercetin exhibits significant inhibitory activity against α glucosidase, with IC50 values ranging from 6.2-15.8 µM, which is comparable to standard antidiabetic agents like acarbose [83], [84]. In addition to this peripheral action, quercetin improves glucose homeostasis by enhancing cellular glucose uptake. It activates the AMPK signaling pathway, leading to increased translocation of the glucose transporter GLUT4 to the plasma membrane in muscle and adipose tissues [85], [86]. This dual action of quercetin decreasing intestinal glucose absorption and increasing peripheral glucose utilization highlights its potential as a nutraceutical or supplemental treatment option for the treatment of type 2 diabetes. Figure 4 describes the antidiabetic mechanism of quercetin.

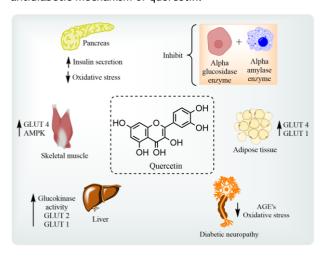


Figure 4. Antidiabetic Mechanism of quercetin

3.4. Anticancer Activity

The anticancer properties of quercetin are attributed to its ability to interfere with multiple stages of tumor development, including initiation, promotion, and progression. Quercetin induces apoptosis in cancer cells by modulating several apoptosis-related proteins, such as p53, Bax, Bcl-2, and caspases [87]. For instance, it upregulates pro-apoptotic proteins like Bax and downregulates antiapoptotic proteins like Bcl-2, promoting cell death in cancerous cells [88]. Quercetin exerts anticancer effects through modulation of multiple apoptotic pathways. Specifically, it induces apoptosis in cancer cells by

regulating apoptosis-related proteins, including upregulation of p53 and Bax, downregulation of antiapoptotic Bcl-2, and activation of caspase-3 and caspase-9 cascades [89], [90]. For example, in breast and colon cancer models, quercetin enhanced p53 expression and promoted mitochondrial-dependent apoptosis, while in leukemia cells it induced caspase-mediated DNA fragmentation [91], [92]. These literatures support the potential of quercetin as a pro-apoptotic agent targeting intrinsic pathways of cancer cell death. Quercetin arrests the cell cycle at G1/S and G2/M phases by downregulating cyclins (Cyclin E, D, B) and CDKs while upregulating cell cycle inhibitors [93]. Furthermore, it inhibits angiogenesis by suppressing VEGF expression and disrupts metastasis through modulation of epithelialmesenchymal transition markers like E-cadherin and vimentin. It also affects key cell signaling pathways, including the PI3K/AKT/mTOR and MAPK/ERK pathways, which are crucial for cell proliferation and survival [94], [95], [96]. Through these actions, quercetin suppresses tumor growth and inhibits metastasis in various cancer types, including breast, prostate, and colon cancers [97]. Figure 5 describes the anticancer mechanism of quercetin.

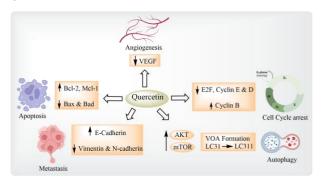


Figure 5. Anticancer Mechanism of quercetin

3.5. Antimicrobial Activity

Ouercetin exhibits broad-spectrum antimicrobial properties against bacteria, fungi, and viruses through several mechanisms. Its antibacterial activity is largely due to its ability to disrupt bacterial cell membranes and inhibit the synthesis of nucleic acids, which hampers bacterial replication [98]. Quercetin also interferes with bacterial fatty acid synthesis by inhibiting key enzymes like B-ketoacyl-ACP synthase [99]. Additionally, quercetin prevents biofilm formation, a critical factor in bacterial resistance, by disrupting extracellular polysaccharide production [100]. Quercetin's antiviral mechanisms include inhibition of viral entry, replication, and protein assembly. For instance, quercetin binds to viral proteins and receptors, blocking their attachment and entry into host cells. Several in vitro studies have indicated that quercetin exhibits potential antiviral activity against various viruses including influenza and hepatitis C. Notably, a recent study has shown that quercetin inhibited SARS-CoV-2 viral entry and replication in cellular models by interfering with spike protein, ACE2 receptor interaction; however, these findings are preliminary and require validation through in vivo and clinical trials [101]. Figure 6 depicts the antimicrobial mechanism of quercetin.

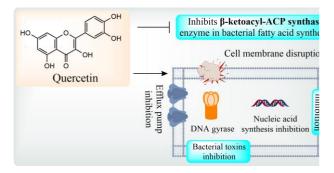


Figure 6. Antimicrobial Mechanism of quercetin

3.6. Hepatoprotective Activity

The hepatoprotective effects of quercetin are primarily due to its antioxidant properties, which protect liver cells (hepatocytes) from oxidative stress and toxin-induced damage [102]. Quercetin modulates detoxification enzymes, such as glutathione S-transferase (GST) and UDPglucuronosyltransferase (UGT), enhancing the liver's ability to process and eliminate toxins [103]. Furthermore, quercetin reduces inflammation in the liver by suppressing pro-inflammatory cytokines and inhibiting the NF-κB pathway. It also decreases hepatic lipid accumulation and improves lipid metabolism, reducing the risk of nonalcoholic fatty liver disease (NAFLD) and related liver disorders [104]. Quercetin has shown protective effects in liver injury models induced by toxins like carbon tetrachloride (CCl4) and acetaminophen [105]. Figure 7 describes the Hepatoprotective mechanism of guercetin.

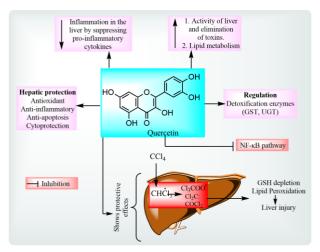


Figure 7. Hepatoprotective mechanism of quercetin

3.7. Cardioprotective Activity

Quercetin exhibits profound cardioprotective effects by modulating endothelial function, preventing myocardial dysfunction, and mitigating ischemic heart disease. It enhances endothelial nitric oxide synthase (eNOS) activity, promotes nitric oxide (NO) production, and regulates vascular tone through VGKCs and BK channels, thereby hypertension [106]. reducing Ouercetin endothelial senescence by upregulating SIRT1 and SOD while reducing SASP factors. Its anti-ischemic potential is evident through improvements in LVSP, peak dP/dt, and LVEF, alongside reduced oxidative stress and inflammation [107], [108]. Additionally, quercetin atherosclerosis by facilitating cholesterol efflux, inhibiting HMG-CoA reductase, and suppressing inflammatory mediators like cytokines and oxidized LDL [109]. Figure 8 describes the cardioprotective activity of quercetin.

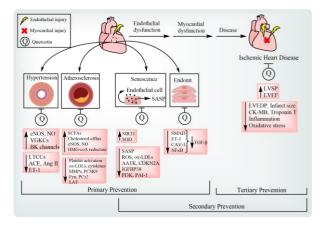


Diagram representation of quercetin's Figure 8. protective effects on the endothelium and, consequently, the heart. [AATK: apoptosis-associated tyrosine kinase; ACE: angiotensin-converting enzyme; Angll, angiotensin II; BK, big K, large-conductance Ca2+-sensitive K+ channels; CAV-1, caveolin-1; CDKN2A, p16, cyclin-dependent kinase inhibitor 2A; CK-MB, creatinine kinase-MB; EndoMT, endothelial-to-mesenchymal transition; ET-1, endothelin-1; IGFBP3, insulin-like growth factor binding protein-3; eNOS, endothelial nitric oxide synthase; NFkB, nuclear factor-kappa B; NO, nitric oxide; ox-LDLs, oxidized low density lipoproteins; Fyn, Src family 59 kDa non-receptor protein tyrosine-kinase; LAT, linker for activation of T cells; LTCCs, L-type Ca2+ channels; LVEDP, left ventricular end-diastolic pressure; LVEF, left ventricular ejection fraction; LVSP, left ventricular systolic pressure; MMPs, matrix metalloproteases; PAI-1, plasminogenactivated inhibitor-1; PCSK9, proprotein convertase subtilisin/kexin type 9; PI3K, phosphatidylinositol-4,5bisphosphate 3 kinase; PCy2, phospholipase Cy2; SCFAs, short-chain fatty acids; ROS, reactive oxygen species; SASP, senescence-associated secretory phenotype; SIRT1, sirtuin-1, nicotinamide adenine dinucleotide [NAD(+)]dependent protein deacetylase; SOD, superoxide dismutase; TGF-B, transforming growth factor beta; VGKCs, voltage-gated K+ channels.]

3.8. Neuroprotective Activity

Quercetin exhibits neuroprotective effects by mitigating oxidative stress, neuroinflammation, and mitochondrial dysfunction, all of which are implicated neurodegenerative diseases [110]. It scavenges ROS and enhances antioxidant defenses within the brain, protecting neurons from oxidative damage. Quercetin also reduces neuroinflammation by inhibiting the activation of microglia, the brain's resident immune cells, which can release neurotoxic substances when activated. Furthermore, quercetin regulates neurotransmitter levels and inhibits enzymes like acetylcholinesterase, which is beneficial in conditions like Alzheimer's disease. Its neuroprotective action extends to preventing mitochondrial dysfunction by stabilizing mitochondrial membranes and reducing calcium influx, both of which are essential for neuron survival [111], [112]. Figure 9 describes the neuroprotective activity of quercetin.

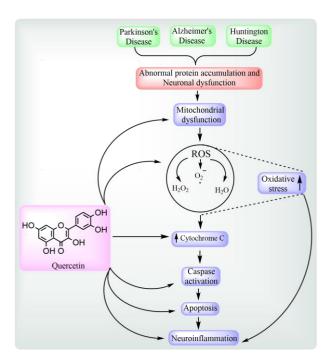


Figure 9. Neuroprotective mechanism of quercetin

4. Quercetin Profiling of Rutaceae Family Edible Plants

Profiling the quercetin content across different plant parts such as fruits, peels, and leaves not only facilitates the identification of potent natural sources but also provides a foundation for targeted pharmacognostic applications. Table 3 presents an overview of selected Rutaceae family edible plants available in West Bengal, detailing their specific plant parts analyzed, quantified quercetin content (expressed as mg Quercetin Equivalent per gram). This phytochemical profiling supports the potential nutraceutical and functional food applications of these species.

Table 3. Quercetin profiling of Rutaceae family edible plants in West Bengal: [ND (Not Determined) indicates that the quercetin content of the corresponding plant part has not yet been experimentally quantified in the available literature. However, the presence of quercetin has been reported through preliminary phytochemical tests of the mentioned parts.]

Plant Source	Common Name	Parts Used	Quercetin equivalent mg/g of dry extract	Extraction method/type of solvent used	Referenc e
		Leaves	18.12 ± 3.86 mg/g		[5], [113]
Aegle marmelos	Bael	Fruits	ND	Ethanol Extraction	
Murraya paniculata	Kamini	Leaves	9.15 ± 0.02 mg/g	Ethanol Extraction	[114]
Murraya koenigii	Curry Leaves	Leaves	0.08 mg/g	Methanol/ethanol extractions	[115]
Triphasia trifolia	Limeberry	Fruits	ND		[116]
Limonia acidissima	Wood Apple/ Kadbel	Fruits	1.4 mg/g	Methanol Extraction	[117]
		Peel	23.2 mg/g		
Citrus sinensis	Musambi/Sweet	Fruits	0.96 mg/g	Methanol and ethanol	[118], [119], [120]
Citi da Siliciisis	Orange	Leaves	110.23 ± 4.62 mg/g of dry extract	extractions	
		Peel	23.2 mg/g		
Citrus paradisi	Grapefruit	Fruits	0.96 mg/g	Methanol extraction	
c:. !:	Lemon	Peel	3.78 mg/g	Methanol and aqueous	[121], [122]
Citrus limon		Fruits	0.01 mg/g	ethanol extractions	
		Peel	0.041-0.064 mg/g		[48]
Citrus aurantifolia	Kaghzi Nimbu (Lime)	Fruits	0.089 mg/g dry weight	Methanol extractions	
		Leaves	ND		
Citrus maxima/ Citrus grandis	Pomelo	Peel	4.56 mg/g	Ethanol/ methanol extraction	[123]
Citrus bergamia	Bergamot	Fruit	3.91 ± 0.37 mg/g	Ethanol/ methanol extraction	[124]
_		Leaves	11.99±1.80 mg/g (aqueous extract) and 5.08±0.40 mg/g (methanolic extract)		[125], [126]
Citrus aurantium	Khatta/Bitter Orange	Fruits	0.96 mg/g	Ethanol/ methanol extraction	
		Peel	1.43 mg/g (aqueous extract) and 14.82 mg/g (methanolic extract)	CAGACCIOII	

It is noteworthy that while some Rutaceae plant parts are listed as ND (Not determined), they were included in Table 3 because preliminary phytochemical screenings or studies on other organs of the same species confirmed the presence of quercetin. These entries highlight research gaps rather than absence of the compound, thereby guiding future phytochemical investigations. For instance, Aegle marmelos and Citrus maxima have shown quercetin presence in leaves and peels, but their seeds and roots remain unquantified.

When compared with other well-studied dietary sources of quercetin outside the Rutaceae family, Rutaceae species generally fall within a moderate range. For example, onions (*Allium cepa*) contain 19-33 mg quercetin/100 g fresh weight, apples provide 2-5 mg/100

g, while capers exhibit some of the highest concentrations (180-230 mg/100 g) [59], [127]. By contrast, Rutaceae fruits such as Citrus sinensis peels

report 12-20 mg/g dry weight, and Aegle marmelos leaves contain 15-25 mg/g dry weight. This suggests that certain Rutaceae plants, particularly non-edible parts like peels and leaves, may rival or even exceed common quercetinrich foods, supporting their relevance for nutraceutical applications.

4.1. Comparative Insights and Critical Evaluation

Quercetin content varied significantly among Rutaceae species and their respective plant parts. Notably, Citrus sinensis (No. 6) exhibited the highest quercetin levels in leaves (110.23 \pm 4.62 mg QE/g dry extract) and peels

(23.2 mg/g), whereas Citrus limon (No. 8) and Murraya koenigii (No. 3) recorded considerably lower levels in fruits and leaves as 0.01 mg/g and 0.08 mg/g respectively, suggesting species and organ-specific accumulation. Aegle marmelos (No. 1) showed moderate quercetin content in its leaves (18.12 \pm 3.86 mg QE/g), while its fruits lacked quantification data. This differential distribution underlines the need for plant-part-targeted extraction to optimize yield for pharmacological applications. There is a notable correlation between high quercetin content and reported bioactivities in specific plant parts. For instance, the high antioxidant and antidiabetic effects reported in Citrus sinensis (No. 6) and Aegle marmelos (No. 1) correlate well with their elevated quercetin concentrations [128]. In contrast, plants with low quercetin content (e.g., Murraya koenigii leaves: 0.08 mg/g) showed lesser bioactivity in mechanistic studies, implying a dosedependent therapeutic impact. In terms of extraction, methanolic and ethanolic solvents are most effective for quercetin recovery from plant matrices due to their polarity and compatibility with phenolic compounds. Studies have demonstrated that methanolic extracts of Citrus aurantium (No. 12) yielded up to 14.82 mg QE/g in peel, compared to 1.43 mg QE/g in aqueous extract. Hence, methanol emerges as the optimal solvent, followed by ethanol, for quercetin extraction in Rutaceae species. Techniques like Soxhlet extraction and ultrasonicationassisted extraction further enhance yield by improving cell wall penetration and reducing processing time. However, green extraction technologies (e.g., supercritical fluid extraction) remain underexplored and warrant future investigation for eco-friendly scalability.

Thus, critically evaluating quercetin concentration, pharmacological relevance, and extraction efficiency reveals interrelated insights that should guide future standardization, therapeutic applications, and functional food formulation from Rutaceae family plants.

5. Conclusion

In conclusion, this review highlights the diverse pharmacological potential of quercetin, a key flavonol is present in edible Rutaceae species of West Bengal. Among the profiled plants, Citrus sinensis and Aegle marmelos emerged as particularly rich sources of quercetin, especially in their leaves and peels, suggesting their relevance as guercetin-enriched botanical resources. Correlations between higher quercetin concentrations and potent biological activities, particularly antioxidant, antidiabetic, anti-inflammatory, and cardioprotective effects, were describes quercetin's therapeutic potential. And also, mechanisms underscore the quercetin's therapeutic potential in managing cardiovascular diseases and malignancies, emphasizing its significance as a multifunctional bioactive compound. Among various solvents and extraction techniques, methanolic extraction proved to be the most efficient for quercetin recovery. This supports the importance of standardizing both extraction protocols and quantification methods to ensure reproducibility in pharmacological assessments.

The key take-home message is that edible Rutaceae plants not only represent valuable nutritional sources but also serve as promising candidates for nutraceutical development and phytomedicine formulation. Future efforts should focus on the standardization of quercetin

extraction, improvement of bioavailability using delivery systems like nanocarriers or liposomes, and the validation of therapeutic outcomes through clinical studies targeting molecular pathways such as PI3K/Akt, NF-κB, and Nrf2. Additionally, long-term dietary studies and regulatory evaluation are needed to promote the safe use of quercetin-rich Rutaceae plants in functional food. This review encourages further research into underutilized species and supports the pharmacognostic exploration of quercetin as a natural therapeutic lead compound.

Acknowledgments

We would like to acknowledge our institution, Guru Nanak Institute of Pharmaceutical Sciences and Technology, Kolkata, for its support throughout this work. We are also grateful to the corresponding author, as well as all our authors and co-authors, for their valuable contributions. All the authors read and approved the final manuscript.

Author Contributions

Conceptualization, S.G. and P.S.; Data curation, I.D.; Supervision, P.S.; Writing-original draft: S.G. and I.D.; Writing-review & editing, P.S.

Funding

The work received no external funding

Conflicts of Interest

The authors declare no conflict of interest.

Consent for Publication

Not applicable.

Ethical Approval

Not applicable.

References

- [1] D. M. Allevato, M. Groppo, E. Kiyota, P. Mazzafera, and K. C. Nixon, "Evolution of phytochemical diversity in Pilocarpus (Rutaceae)," Phytochemistry, vol. 163, pp. 132-146, Jul. 2019, doi: 10.1016/j.phytochem.2019.03.027.
- [2] P. C. Palangasinghe et al., "Reviews on Asian citrus species: Exploring traditional uses, biochemistry, conservation, and disease resistance," Ecol Genet Genom, vol. 32, p. 100269, Sep. 2024, doi: 10.1016/j.egg.2024.100269.
- [3] V. S. Meena et al., "Underutilized Fruit Crops of Indian Arid and Semi-Arid Regions: Importance, Conservation and Utilization Strategies," Horticulturae, vol. 8, no. 2, p. 171, Feb. 2022, doi: 10.3390/horticulturae8020171.
- [4] R. K. Joshi, "Bioactive Usual and Unusual Triterpenoids Derived from Natural Sources Used in Traditional Medicine," Chem Biodivers, vol. 20, no. 2, Feb. 2023, doi: 10.1002/cbdv.202200853.
- [5] S. Joshi, K. Bhattarai, A. R. Subedi, J. Bhattarai, S. Amatya, and B. Baral, "Validation of ethnopharmacological findings of Aegle marmelos (L.) Correa through phytochemical screening and bioactivity assay," Pharmacological Research Natural Products, vol. 5, p. 100114, Dec. 2024, doi: 10.1016/j.prenap.2024.100114.
- [6] R. Yohanes, D. Harneti, U. Supratman, S. Fajriah, and T. Rudiana, "Phytochemistry and Biological Activities of Murraya Species," Molecules, vol. 28, no. 15,

- p. 5901, Aug. 2023, doi: 10.3390/molecules28155901.
- [7] R. Balakrishnan, D. Vijayraja, S.-H. Jo, P. Ganesan, I. Su-Kim, and D.-K. Choi, "Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds," Antioxidants, vol. 9, no. 2, p. 101, Jan. 2020, doi: 10.3390/antiox9020101.
- [8] N. T. Son, "Notes on the genus Paramignya: Phytochemistry and biological activity," Bulletin of Faculty of Pharmacy, Cairo University, vol. 56, no. 1, pp. 1-10, Jun. 2018, doi: 10.1016/j.bfopcu.2017.12.001.
- [9] A. D. Reegan, A. Stalin, M. Rajiv Gandhi, S. S. Irudayaraj, R. Rajagopal, and A. Alfarhan, "Mosquitocidal efficacy of niloticin, isolated from Limonia acidissima L. (Rutaceae) against filarial vector Culex quinquefasciatus Say. (Diptera: Culicidae)," Toxin Rev, vol. 43, no. 2, pp. 201-210, Apr. 2024, doi: 10.1080/15569543.2024.2319213.
- [10] J. Favela-Hernández, O. González-Santiago, M. Ramírez-Cabrera, P. Esquivel-Ferriño, and M. Camacho-Corona, "Chemistry and Pharmacology of Citrus sinensis," Molecules, vol. 21, no. 2, p. 247, Feb. 2016, doi: 10.3390/molecules21020247.
- [11] F. Alam, K. Mohammadin, Z. Shafique, S. T. Amjad, and M. H. H. bin Asad, "Citrus flavonoids as potential therapeutic agents: A review," Phytotherapy Research, vol. 36, no. 4, pp. 1417-1441, Apr. 2022, doi: 10.1002/ptr.7261.
- [12] S. Md Othman, M. Hassan, L. Nahar, N. Basar, S. Jamil, and S. Sarker, "Essential Oils from the Malaysian Citrus (Rutaceae) Medicinal Plants," Medicines, vol. 3, no. 2, p. 13, Jun. 2016, doi: 10.3390/medicines3020013.
- [13] U. M. Khan et al., "Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application," Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 1-17, Oct. 2021, doi: 10.1155/2021/2488804.
- [14] M. Navarra, C. Mannucci, M. Delbò, and G. Calapai, "Citrus bergamia essential oil: from basic research to clinical application," Front Pharmacol, vol. 6, Mar. 2015, doi: 10.3389/fphar.2015.00036.
- [15] I. Suntar, H. Khan, S. Patel, R. Celano, and L. Rastrelli, "An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent," Oxid Med Cell Longev, vol. 2018, no. 1, Jan. 2018, doi: 10.1155/2018/7864269.
- [16] C. M. Santos Junior et al., "Coumarins from Rutaceae: Chemical diversity and biological activities," Fitoterapia, vol. 168, p. 105489, Jul. 2023, doi: 10.1016/j.fitote.2023.105489.
- [17] A. Roy et al., "Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications," Biomed Res Int, vol. 2022, pp. 1-9, Jun. 2022, doi: 10.1155/2022/5445291.
- [18] M. Azeem, M. Hanif, K. Mahmood, N. Ameer, F. R. S. Chughtai, and U. Abid, "An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review," Polymer Bulletin, vol. 80, no. 1, pp. 241-262, Jan. 2023, doi: 10.1007/s00289-022-04091-8.
- [19] F. Aghababaei and M. Hadidi, "Recent Advances in Potential Health Benefits of Quercetin," Pharmaceuticals, vol. 16, no. 7, p. 1020, Jul. 2023, doi: 10.3390/ph16071020.
- [20] T. S. Leyane, S. W. Jere, and N. N. Houreld, "Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in

- Counteracting Oxidative Stress and Chronic Inflammation," Int J Mol Sci, vol. 23, no. 13, p. 7273, Jun. 2022, doi: 10.3390/ijms23137273.
- [21] Deepika and P. K. Maurya, "Health Benefits of Quercetin in Age-Related Diseases," Molecules, vol. 27, no. 8, p. 2498, Apr. 2022, doi: 10.3390/molecules27082498.
- [22] G.-J. Shi et al., "In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature," Biomedicine & Pharmacotherapy, vol. 109, pp. 1085-1099, Jan. 2019, doi: 10.1016/j.biopha.2018.10.130.
- [23] L. N. Silva, K. R. Zimmer, A. J. Macedo, and D. S. Trentin, "Plant Natural Products Targeting Bacterial Virulence Factors," Chem Rev, vol. 116, no. 16, pp. 9162-9236, Aug. 2016, doi: 10.1021/acs.chemrev.6b00184.
- [24] C. K. Pathirana, T. Madhujith, and J. Eeswara, "Bael (Aegle marmelos L. Corrêa), a Medicinal Tree with Immense Economic Potentials," Advances in Agriculture, vol. 2020, pp. 1-13, Dec. 2020, doi: 10.1155/2020/8814018.
- [25] S. Monika, M. Thirumal, and P. Kumar, "Phytochemical and Biological Review of Aegle Marmelos Linn," Future Sci OA, vol. 9, no. 3, Mar. 2023, doi: 10.2144/fsoa-2022-0068.
- [26] N. Sharma et al., "Aegle marmelos (L.) Correa: An Underutilized Fruit with High Nutraceutical Values: A Review," Int J Mol Sci, vol. 23, no. 18, p. 10889, Sep. 2022, doi: 10.3390/ijms231810889.
- [27] S. Sonter, S. Mishra, M. K. Dwivedi, and P. K. Singh, "Chemical profiling, in vitro antioxidant, membrane stabilizing and antimicrobial properties of wild growing Murraya paniculata from Amarkantak (M.P.)," Sci Rep, vol. 11, no. 1, p. 9691, May 2021, doi: 10.1038/s41598-021-87404-7.
- [28] D. Joshi and K. J. Gohil, "A Brief Review on Murraya paniculata (Orange Jasmine): pharmacognosy, phytochemistry and ethanomedicinal uses," J Pharmacopuncture, vol. 26, no. 1, pp. 10-17, Mar. 2023, doi: 10.3831/KPI.2023.26.1.10.
- [29] S. Singh, A. Ahuja, Y. Murti, and A. Khaliq, "Phyto-Pharmacological Review on Murraya koenigii (L.) Spreng: As an Indigenous Plant of India with High Medicinal Potential," Chem Biodivers, vol. 20, no. 7, Jul. 2023, doi: 10.1002/cbdv.202300483.
- [30] S. K. Samanta et al., "Phytochemical portfolio and anticancer activity of Murraya koenigii and its primary active component, mahanine," Pharmacol Res, vol. 129, pp. 227-236, Mar. 2018, doi: 10.1016/j.phrs.2017.11.024.
- [31] "Identification of Bioactive Compounds and Antibacterial Activity of Limeberry (Triphasia trifolia) Fruit Ethanol Extract against Staphylococcus aureus," Tropical Journal of Natural Product Research, vol. 8, no. 1, Feb. 2024, doi: 10.26538/tjnpr/v8i1.16.
- [32] V. Rastija, K. Vrandečić, J. Ćosić, G. Kanižai Šarić, I. Majić, and M. Karnaš, "Prospects of Computer-Aided Molecular Design of Coumarins as Ecotoxicologically Safe Plant Protection Agents," Applied Sciences, vol. 13, no. 11, p. 6535, May 2023, doi: 10.3390/app13116535.
- [33] Md. R. Islam et al., "Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint," Molecules, vol. 27, no. 7, p. 2165, Mar. 2022, doi: 10.3390/molecules27072165.
- [34] S. Khatun and S. Sen, "A Comprehensive Review on Ethnomedicinal Aspects, Phytochemical and

- Pharmacological Properties of Limonia acidissima Linn.," Pharmacognosy Res, vol. 16, no. 4, pp. 688-697, Nov. 2024, doi: 10.5530/pres.16.4.80.
- [35] K. V. Syamasundar, B. Sravan Kumar, S. Srikanth, K. V. N. S. Srinivas, and R. R. Rao, "Limonia acidissima, a rich source of B-pinene, from the Western Ghats of India," Chem Nat Compd, vol. 46, no. 3, pp. 486-488, Jul. 2010, doi: 10.1007/s10600-010-9654-x.
- [36] S. J. Stohs, M. Shara, and S. D. Ray, "p Synephrine, ephedrine, p -octopamine and m -synephrine: Comparative mechanistic, physiological and pharmacological properties," Phytotherapy Research, vol. 34, no. 8, pp. 1838-1846, Aug. 2020, doi: 10.1002/ptr.6649.
- [37] M. Russo, F. Rigano, A. Arigò, P. Dugo, and L. Mondello, "Coumarins, Psoralens and Polymethoxyflavones in Cold-pressed Citrus Essential Oils: a Review," Journal of Essential Oil Research, vol. 33, no. 3, pp. 221-239, May 2021, doi: 10.1080/10412905.2020.1857855.
- [38] S. W. Haokip et al., "Unraveling physicochemical profiles and bioactivities of citrus peel essential oils: a comprehensive review," European Food Research and Technology, vol. 249, no. 11, pp. 2821-2834, Nov. 2023, doi: 10.1007/s00217-023-04330-w.
- [39] B. Singh, J. P. Singh, A. Kaur, and N. Singh, "Phenolic composition, antioxidant potential and health benefits of citrus peel," Food Research International, vol. 132, p. 109114, Jun. 2020, doi: 10.1016/j.foodres.2020.109114.
- [40] A. Seidavi, H. Zaker-Esteghamati, and A. Z. M. Salem, "A review on practical applications of Citrus sinensis by-products and waste in poultry feeding," Agroforestry Systems, vol. 94, no. 4, pp. 1581-1589, Aug. 2020, doi: 10.1007/s10457-018-0319-2.
- [41] S. Raghavan and J. Gurunathan, "Citrus species a golden treasure box of metabolites that is beneficial against disorders," J Herb Med, vol. 28, p. 100438, Aug. 2021, doi: 10.1016/j.hermed.2021.100438.
- [42] R. J. Cannon et al., "Identification, Synthesis, and Characterization of Novel Sulfur-Containing Volatile Compounds from the In-Depth Analysis of Lisbon Lemon Peels (Citrus limon L. Burm. f. cv. Lisbon)," J Agric Food Chem, vol. 63, no. 7, pp. 1915-1931, Feb. 2015, doi: 10.1021/jf505177r.
- [43] S. Zahr, R. Zahr, R. El Hajj, and M. Khalil, "Phytochemistry and biological activities of Citrus sinensis and Citrus limon: an update," J Herb Med, vol. 41, p. 100737, Sep. 2023, doi: 10.1016/j.hermed.2023.100737.
- [44] M. Zhang, C. Duan, Y. Zang, Z. Huang, and G. Liu, "The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China," Food Chem, vol. 129, no. 4, pp. 1530-1536, Dec. 2011, doi: 10.1016/j.foodchem.2011.05.136.
- [45] S. J. Stohs, M. Shara, and S. D. Ray, "p Synephrine, ephedrine, p -octopamine and m -synephrine: Comparative mechanistic, physiological and pharmacological properties," Phytotherapy Research, vol. 34, no. 8, pp. 1838-1846, Aug. 2020, doi: 10.1002/ptr.6649.
- [46] S. Fiorito, F. Epifano, F. Preziuso, V. A. Taddeo, and S. Genovese, "Biomolecular Targets of Oxyprenylated Phenylpropanoids and Polyketides," 2019, pp. 143-205. doi: 10.1007/978-3-030-01099-7_2.
- [47] C. Li et al., "Variation in Compositions and Biological Activities of Essential Oils from Four Citrus Species: Citrus limon , Citrus sinensis , Citrus paradisi , and

- Citrus reticulata," Chem Biodivers, vol. 19, no. 4, Apr. 2022, doi: 10.1002/cbdv.202100910.
- [48] N. N. Indriyani, J. Al Anshori, N. Permadi, S. Nurjanah, and E. Julaeha, "Bioactive Components and Their Activities from Different Parts of Citrus aurantifolia (Christm.) Swingle for Food Development," Foods, vol. 12, no. 10, p. 2036, May 2023, doi: 10.3390/foods12102036.
- [49] S. Maksoud et al., "Citrus aurantium L. Active Constituents, Biological Effects and Extraction Methods. An Updated Review," Molecules, vol. 26, no. 19, p. 5832, Sep. 2021, doi: 10.3390/molecules26195832.
- [50] R. Bhowal, S. Kumari, C. Sarma, P. Suprasanna, and P. Roy, "Phytochemical Constituents and Bioactivity Profiles of Citrus Genus from India," Analytical Chemistry Letters, vol. 12, no. 6, pp. 770-787, Nov. 2022, doi: 10.1080/22297928.2022.2157223.
- [51] A. Patra, S. Abdullah, and R. C. Pradhan, "Review on the extraction of bioactive compounds and characterization of fruit industry by-products," Bioresour Bioprocess, vol. 9, no. 1, p. 14, Dec. 2022, doi: 10.1186/s40643-022-00498-3.
- [52] E. Janda et al., "Molecular mechanisms of lipidand glucose-lowering activities of bergamot flavonoids," PharmaNutrition, vol. 4, pp. S8-S18, Oct. 2016, doi: 10.1016/j.phanu.2016.05.001.
- [53] V. M. Costa et al., "Natural Sympathomimetic Drugs: From Pharmacology to Toxicology," Biomolecules, vol. 12, no. 12, p. 1793, Nov. 2022, doi: 10.3390/biom12121793.
- [54] V. Sicari, M. R. Loizzo, V. Branca, and T. M. Pellicanò, "Bioactive and Antioxidant Activity from Citrus bergamia Risso (Bergamot) Juice Collected in Different Areas of Reggio Calabria Province, Italy," Int J Food Prop, vol. 19, no. 9, pp. 1962-1971, Sep. 2016, doi: 10.1080/10942912.2015.1089893.
- [55] R. Bruni et al., "Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest," Molecules, vol. 24, no. 11, p. 2163, Jun. 2019, doi: 10.3390/molecules24112163.
- [56] I. Suntar, H. Khan, S. Patel, R. Celano, and L. Rastrelli, "An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent," Oxid Med Cell Longev, vol. 2018, no. 1, Jan. 2018, doi: 10.1155/2018/7864269.
- [57] ١. Jabri karoui and В. Marzouk, "Characterization of Bioactive Compounds in Tunisian Bitter Orange (Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities," Biomed Int, vol. 2013, pp. 1-12, 2013, 10.1155/2013/345415.
- [58] I. Shabir et al., "Promising bioactive properties of quercetin for potential food applications and health benefits: A review," Front Nutr, vol. 9, Nov. 2022, doi: 10.3389/fnut.2022.999752.
- [59] M. G. L. Hertog, P. C. H. Hollman, and M. B. Katan, "Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands," J Agric Food Chem, vol. 40, no. 12, pp. 2379-2383, Dec. 1992, doi: 10.1021/jf00024a011.
- [60] S. A. Aherne and N. M. O'Brien, "Dietary flavonols: chemistry, food content, and metabolism," Nutrition, vol. 18, no. 1, pp. 75-81, Jan. 2002, doi: 10.1016/S0899-9007(01)00695-5.
- [61] P. Knekt et al., "Flavonoid intake and risk of

- chronic diseases," Am J Clin Nutr, vol. 76, no. 3, pp. 560-568, Sep. 2002, doi: 10.1093/ajcn/76.3.560.
- [62] S. F. Price, P. J. Breen, M. Valladao, and B. T. Watson, "Cluster Sun Exposure and Quercetin in Pinot noir Grapes and Wine," Am J Enol Vitic, vol. 46, no. 2, pp. 187-194, 1995, doi: 10.5344/ajev.1995.46.2.187.
- [63] M. Eftekhari, M. Alizadeh, and P. Ebrahimi, "Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield," Ind Crops Prod, vol. 38, pp. 160-165, Jul. 2012, doi: 10.1016/j.indcrop.2012.01.022.
- [64] P. C. Hollman and I. C. Arts, "Flavonols, flavones and flavanols nature, occurrence and dietary burden," J Sci Food Agric, vol. 80, no. 7, pp. 1081-1093, May 2000, doi: 10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G.
- [65] C. Kaur and H. C. Kapoor, "Antioxidants in fruits and vegetables the millennium's health," Int J Food Sci Technol, vol. 36, no. 7, pp. 703-725, Oct. 2001, doi: 10.1111/j.1365-2621.2001.00513.x.
- [66] C. Kaur and H. C. Kapoor, "Anti-oxidant activity and total phenolic content of some Asian vegetables," Int J Food Sci Technol, vol. 37, no. 2, pp. 153-161, Mar. 2002, doi: 10.1046/j.1365-2621.2002.00552.x.
- [67] E. Tripoli, M. La Guardia, S. Giammanco, D. Di Majo, and M. Giammanco, "Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review," Food Chem, vol. 104, no. 2, pp. 466-479, Jan. 2007, doi: 10.1016/j.foodchem.2006.11.054.
- [68] M. Roy et al., "Assessment of antioxidant and antibacterial efficacy of some indigenous vegetables consumed by the Manipuri community in Sylhet, Bangladesh," Heliyon, vol. 10, no. 18, p. e37750, Sep. 2024, doi: 10.1016/j.heliyon.2024.e37750.
- [69] X. Song, Y. Wang, and L. Gao, "Mechanism of antioxidant properties of quercetin and quercetin-DNA complex," J Mol Model, vol. 26, no. 6, p. 133, Jun. 2020, doi: 10.1007/s00894-020-04356-x.
- [70] V. Unsal, T. Dalkiran, M. Çiçek, and E. Kölükçü, "The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review," Adv Pharm Bull, vol. 10, no. 2, pp. 184-202, Feb. 2020, doi: 10.34172/apb.2020.023.
- [71] S. Heydarzadeh, S. K. Kia, M. Zarkesh, S. Pakizehkar, S. Hosseinzadeh, and M. Hedayati, "The Cross-Talk between Polyphenols and the Target Enzymes Related to Oxidative Stress-Induced Thyroid Cancer," Oxid Med Cell Longev, vol. 2022, pp. 1-20, May 2022, doi: 10.1155/2022/2724324.
- [72] S. Fakhri et al., "Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases," Crit Rev Food Sci Nutr, pp. 1-25, Sep. 2022, doi: 10.1080/10408398.2022.2118226.
- [73] S. Ashari et al., "Quercetin ameliorates Di (2-ethylhexyl) phthalate-induced nephrotoxicity by inhibiting NF-κB signaling pathway," Toxicol Res (Camb), vol. 11, no. 2, pp. 272-285, Apr. 2022, doi: 10.1093/toxres/tfac006.
- [74] P. Shen et al., "Potential Implications of Quercetin in Autoimmune Diseases," Front Immunol, vol. 12, Jun. 2021, doi: 10.3389/fimmu.2021.689044.
- [75] Y. Yang et al., "Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses," Mediators Inflamm, vol. 2014, pp. 1-13, 2014, doi: 10.1155/2014/352371.

- [76] J. Mlcek, T. Jurikova, S. Skrovankova, and J. Sochor, "Quercetin and Its Anti-Allergic Immune Response," Molecules, vol. 21, no. 5, p. 623, May 2016, doi: 10.3390/molecules21050623.
- [77] M. Jafarinia et al., "Quercetin with the potential effect on allergic diseases," Allergy, Asthma & Clinical Immunology, vol. 16, no. 1, p. 36, Dec. 2020, doi: 10.1186/s13223-020-00434-0.
- [78] O. G. Famutimi, V. G. Adebiyi, B. G. Akinmolu, O. V. Dada, and I. O. Adewale, "Trypsin, chymotrypsin and elastase in health and disease," Futur J Pharm Sci, vol. 10, no. 1, p. 126, Sep. 2024, doi: 10.1186/s43094-024-00709-y.
- [79] X. Jian, C. Shi, W. Luo, L. Zhou, L. Jiang, and K. Liu, "Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders," Biomedicine & Pharmacotherapy, vol. 173, p. 116418, Apr. 2024, doi: 10.1016/j.biopha.2024.116418.
- [80] P. Ansari et al., "Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus," Life, vol. 12, no. 8, p. 1146, Jul. 2022, doi: 10.3390/life12081146.
- [81] D. Günal-Köroğlu et al., "Quercetin: Potential antidiabetic effects through enzyme inhibition and starch digestibility," Food Safety and Health, Oct. 2024, doi: 10.1002/fsh3.12066.
- [82] M. Zhou, W. H. Konigsberg, C. Hao, Y. Pan, J. Sun, and X. Wang, "Bioactivity and mechanisms of flavonoids in decreasing insulin resistance," J Enzyme Inhib Med Chem, vol. 38, no. 1, Dec. 2023, doi: 10.1080/14756366.2023.2199168.
- [83] C. Proença et al., "a-Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study," J Enzyme Inhib Med Chem, vol. 32, no. 1, pp. 1216-1228, Jan. 2017, doi: 10.1080/14756366.2017.1368503.
- [84] O. Kwon et al., "Inhibition of the intestinal glucose transporter GLUT2 by flavonoids," The FASEB Journal, vol. 21, no. 2, pp. 366-377, Feb. 2007, doi: 10.1096/fj.06-6620com.
- [85] N. Nooron, A. Athipornchai, A. Suksamrarn, and A. Chiabchalard, "Mahanine enhances the glucose-lowering mechanisms in skeletal muscle and adipocyte cells," Biochem Biophys Res Commun, vol. 494, no. 1-2, pp. 101-106, Dec. 2017, doi: 10.1016/j.bbrc.2017.10.075.
- [86] R. Dhanya, "Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy," Biomedicine & Pharmacotherapy, vol. 146, p. 112560, Feb. 2022, doi: 10.1016/j.biopha.2021.112560.
- [87] G. Sethi et al., "Apoptotic Mechanisms of Quercetin in Liver Cancer: Recent Trends and Advancements," Pharmaceutics, vol. 15, no. 2, p. 712, Feb. 2023, doi: 10.3390/pharmaceutics15020712.
- [88] P. Asgharian et al., "Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets," Cancer Cell Int, vol. 22, no. 1, p. 257, Aug. 2022, doi: 10.1186/s12935-022-02677-w.
- [89] F. Khan et al., "Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update," Nutrients, vol. 8, no. 9, p. 529, Aug. 2016, doi: 10.3390/nu8090529.
- [90] S.-M. Tang, X.-T. Deng, J. Zhou, Q.-P. Li, X.-X. Ge, and L. Miao, "Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects," Biomedicine & Pharmacotherapy, vol. 121, p. 109604, Jan. 2020, doi: 10.1016/j.biopha.2019.109604.

- [91] A. B. Granado-Serrano, M. A. Martín, L. Bravo, L. Goya, and S. Ramos, "Quercetin Modulates NF-κ B and AP-1/JNK Pathways to Induce Cell Death in Human Hepatoma Cells," Nutr Cancer, vol. 62, no. 3, pp. 390-401, Apr. 2010, doi: 10.1080/01635580903441196.
- [92] D. Kumar and P. K. Sharma, "Quercetin: A Comprehensive Review," Curr Nutr Food Sci, vol. 20, no. 2, pp. 143-166, Feb. 2024, doi: 10.2174/1573401319666230428152045.
- [93] S. Srivastava et al., "Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis," Sci Rep, vol. 6, no. 1, p. 24049, Apr. 2016, doi: 10.1038/srep24049.
- [94] S. A. Almatroodi et al., "Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways," Molecules, vol. 26, no. 5, p. 1315, Mar. 2021, doi: 10.3390/molecules26051315.
- [95] P. Pratheeshkumar et al., "Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways," PLoS One, vol. 7, no. 10, p. e47516, Oct. 2012, doi: 10.1371/journal.pone.0047516.
- [96] L. Mirossay, L. Varinská, and J. Mojžiš, "Antiangiogenic Effect of Flavonoids and Chalcones: An Update," Int J Mol Sci, vol. 19, no. 1, p. 27, Dec. 2017, doi: 10.3390/ijms19010027.
- [97] N. Lotfi et al., "The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update," Front Immunol, vol. 14, Feb. 2023, doi: 10.3389/fimmu.2023.1077531.
- [98] D. Yang, T. Wang, M. Long, and P. Li, "Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine," Oxid Med Cell Longev, vol. 2020, pp. 1-13, Dec. 2020, doi: 10.1155/2020/8825387.
- [99] L. Zhang et al., "Three flavonoids targeting the B-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: Crystal structure characterization with enzymatic inhibition assay," Protein Science, vol. 17, no. 11, pp. 1971-1978, Nov. 2008, doi: 10.1110/ps.036186.108.
- [100] Y. Mu, H. Zeng, and W. Chen, "Quercetin Inhibits Biofilm Formation by Decreasing the Production of EPS and Altering the Composition of EPS in Staphylococcus epidermidis," Front Microbiol, vol. 12, Mar. 2021, doi: 10.3389/fmicb.2021.631058.
- [101] A. V. Roy et al., "Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells coexpressing the viral spike protein and human ACE2," Virol J, vol. 21, no. 1, p. 29, Jan. 2024, doi: 10.1186/s12985-024-02299-w.
- [102] D. Xu, M.-J. Hu, Y.-Q. Wang, and Y.-L. Cui, "Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application," Molecules, vol. 24, no. 6, p. 1123, Mar. 2019, doi: 10.3390/molecules24061123.
- [103] J. Odenthal et al., "The Influence of Curcumin, Quercetin, and Eicosapentaenoic Acid on the Expression of Phase II Detoxification Enzymes in the Intestinal Cell Lines HT-29, Caco-2, HuTu 80, and LT97," Nutr Cancer, vol. 64, no. 6, pp. 856-863, Aug. 2012, doi: 10.1080/01635581.2012.700994.
- [104] L. Chen et al., "Quercetin and non-alcoholic fatty liver disease: A review based on experimental data and bioinformatic analysis," Food and Chemical Toxicology, vol. 154, p. 112314, Aug. 2021, doi:

- 10.1016/j.fct.2021.112314.
- [105] J. Zhang et al., "Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism," J Zhejiang Univ Sci B, vol. 15, no. 12, pp. 1039-1047, Dec. 2014, doi: 10.1631/jzus.B1400104.
- [106] O. Dagher, P. Mury, N. Thorin-Trescases, P. E. Noly, E. Thorin, and M. Carrier, "Therapeutic Potential of Quercetin to Alleviate Endothelial Dysfunction in Age-Related Cardiovascular Diseases," Front Cardiovasc Med, vol. 8, Mar. 2021, doi: 10.3389/fcvm.2021.658400.
- [107] Y.-F. Chen et al., "Coenzyme Q10 Alleviates Chronic Nucleoside Reverse Transcriptase Inhibitor-Induced Premature Endothelial Senescence," Cardiovasc Toxicol, vol. 19, no. 6, pp. 500-509, Dec. 2019, doi: 10.1007/s12012-019-09520-1.
- [108] C. Sun et al., "The role of Sirtuin 1 and its activators in age-related lung disease," Biomedicine & Pharmacotherapy, vol. 162, p. 114573, Jun. 2023, doi: 10.1016/j.biopha.2023.114573.
- [109] W. Zhang, Y. Zheng, F. Yan, M. Dong, and Y. Ren, "Research progress of quercetin in cardiovascular disease," Front Cardiovasc Med, vol. 10, Nov. 2023, doi: 10.3389/fcvm.2023.1203713.
- [110] S. S. ul Hassan et al., "The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress," Front Pharmacol, vol. 13, Oct. 2022, doi: 10.3389/fphar.2022.1015835.
- [111] H. Khan, H. Ullah, M. Aschner, W. S. Cheang, and E. K. Akkol, "Neuroprotective Effects of Quercetin in Alzheimer's Disease," Biomolecules, vol. 10, no. 1, p. 59, Dec. 2019, doi: 10.3390/biom10010059.
- [112] M. Naoi, Y. Wu, M. Shamoto-Nagai, and W. Maruyama, "Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure," Int J Mol Sci, vol. 20, no. 10, p. 2451, May 2019, doi: 10.3390/ijms20102451.
- [113] S. K. Biswas, Md. Z. Abedin, B. C. Dey, Md. S. Al Reza, L. Bari, and Md. A. Zubair, "Nutritional Composition and Bioactive Compounds of Bael (& mp;lt;i& mp;gt; Aegle marmelos & mp;lt;/i& mp;gt;) and Development of Functional Food Products," Food Nutr Sci, vol. 14, no. 04, pp. 328-340, 2023, doi: 10.4236/fns.2023.144022.
- [114] I. R. A. Menezes et al., "Chemical composition and evaluation of acute toxicological, antimicrobial and modulatory resistance of the extract of Murraya paniculata," Pharm Biol, vol. 53, no. 2, pp. 185-191, Feb. 2015, doi: 10.3109/13880209.2014.913068.
- [115] S. H. Warsito et al., "Analysis of Quercetin Levels in the Ethanol Extract of Curry Leaves (Murraya koenigii L.) as a Potential Animal Feed using High-Performance Liquid Chromatography," BIO Integration, vol. 5, no. 1, 2024, doi: 10.15212/bioi-2024-0031.
- [116] T. K. Lim, "Triphasia trifolia," in Edible Medicinal And Non-Medicinal Plants, Dordrecht: Springer Netherlands, 2012, pp. 900-903. doi: 10.1007/978-94-007-4053-2_104.
- [117] S. Verma, A. Gupta, M. V. Ramana, and A. K. S. Rawat, "High-performance thin-layer chromatographic analysis for the simultaneous quantification of gallic acid, vanillic acid, protocatechuic acid, and quercetin in the methanolic fraction of Limonia acidissima L. fruits," JPC Journal of Planar Chromatography Modern TLC, vol. 29, no. 5, pp. 356-360, Oct. 2016, doi:

- 10.1556/1006.2016.29.5.5.
- [118] KAMRAN GHASEMI, YOSEF GHASEMI, and MOHAMMAD ALI EBRAHIMZADEH, "ANTIOXIDANT ACTIVITY, PHENOL AND FLAVONOID CONTENTS OF 13 CITRUS SPECIES PEELS AND TISSUES," Pak J Pharm Sci, vol. 22, no. 3, pp. 277-281, 2009, doi: 10.1556/1006.2016.29.5.5.
- [119] M. DELOURDESMATABILBAO, C. ANDRESLACUEVA, O. JAUREGUI, and R. LAMUELARAVENTOS, "Determination of flavonoids in a Citrus fruit extract by LC-DAD and LC-MS," Food Chem, vol. 101, no. 4, pp. 1742-1747, 2007, doi: 10.1016/j.foodchem.2006.01.032.
- [120] J. Akinyelu et al., "Phenolic-rich extract from Citrus sinensis leaves attenuates diabetic cardiomyopathy in male wistar rats by modulating oxidative stress, hyperlipidemia, and pyroptosis-related gene expression," Food Chemistry Advances, vol. 6, p. 100877, Mar. 2025, doi: 10.1016/j.focha.2024.100877.
- [121] J. Wang, Y. Bian, Y. Cheng, R. Sun, and G. Li, "Effect of lemon peel flavonoids on UVB-induced skin damage in mice," RSC Adv, vol. 10, no. 52, pp. 31470-31478, 2020, doi: 10.1039/D0RA05518B.
- [122] P. Mattila, J. Astola, and J. Kumpulainen, "Determination of Flavonoids in Plant Material by HPLC with Diode-Array and Electro-Array Detections," J Agric Food Chem, vol. 48, no. 12, pp. 5834-5841, Dec. 2000, doi: 10.1021/jf000661f.
- [123] W. Inthachat et al., "Optimization of Phytochemical-Rich Citrus maxima Albedo Extract Using Response Surface Methodology," Molecules, vol. 28, no. 10, p. 4121, May 2023, doi: 10.3390/molecules28104121.
- [124] M. Gabriele et al., "Citrus bergamia powder: Antioxidant, antimicrobial and anti-inflammatory properties," J Funct Foods, vol. 31, pp. 255-265, Apr. 2017, doi: 10.1016/j.jff.2017.02.007.
- [125] B. Khettal, N. Kadri, K. Tighilet, A. Adjebli, F. Dahmoune, and F. Maiza-Benabdeslam, "Phenolic compounds from Citrus leaves: antioxidant activity and enzymatic browning inhibition," J Complement Integr Med, vol. 14, no. 1, May 2017, doi: 10.1515/jcim-2016-0030.
- [126] Fatima Zahra Essadik, Sara Haida, Kribii Abderahim, Abdelaziz Ramadane KRIBII, Ounine Khadija, and Amar Habsaoui, "Antioxidant activity of Citrus aurantium L. var. amara Peel from western of Morocco, identification of volatile compounds of its essential oil by GC-MS and a preliminary study of their antibacterial activity," International Journal of Innovation and Scientific Research, vol. 16, no. 2, pp. 425-432, Jul. 2015.
- [127] M. G. L. Hertog, P. C. H. Hollman, and D. P. Venema, "Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits," J Agric Food Chem, vol. 40, no. 9, pp. 1591-1598, Sep. 1992, doi: 10.1021/jf00021a023.
- [128] A. Shakthi Deve, T. Sathish kumar, K. Kumaresan, and V. S. Rapheal, "Extraction process optimization of polyphenols from Indian Citrus sinensis as novel antiglycative agents in the management of diabetes mellitus," J Diabetes Metab Disord, vol. 13, no. 1, p. 11, Jan. 2014, doi: 10.1186/2251-6581-13-11.