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ABSTRACT 

The Rutaceae family comprises several edible plants with high quercetin content, a bioactive flavonol 

recognized for its diverse therapeutic properties. This review specifically focuses on profiling quercetin 

in edible Rutaceae species available in West Bengal, emphasizing part-wise distribution (leaves, peels, 

fruits), extraction techniques, and pharmacological relevance. Among the species evaluated, Citrus 

sinensis and Aegle marmelos demonstrated the highest quercetin concentrations in leaves and peels, 

correlating strongly with their antioxidant, antidiabetic, anti-inflammatory, cardioprotective, 

hepatoprotective, neuroprotective, and anticancer properties. These mechanisms of action are linked 

to key molecular pathways, including NF-κB, Nrf2, PI3K/Akt, and AMPK. Methanolic extraction emerged 

as the most effective method for quercetin recovery across most species. Critical evaluation revealed 

notable knowledge gaps in bioavailability enhancement strategies, standardization across species, and 

clinical validation. By narrowing the scope exclusively to quercetin and its therapeutic functions, this 

review offers a targeted resource for future pharmacognostic exploration, bioavailability studies, and 

quercetin-based phytopharmaceutical development. 
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1. Introduction  

The Rutaceae family, commonly known as the citrus family, 

is a vast and diverse group of flowering plants comprising 

approximately 150 genera and over 2,000 species [1]. These 

plants are distributed globally, with tropical and subtropical 

regions being the primary habitats. It is renowned for its 

immense agricultural, medicinal, and ornamental value [2], 

[3], [4]. West Bengal, a biodiversity-rich state, is home to 

several important species of the Rutaceae family that are 

valued both for their nutritional benefits and traditional use 

in folk medicine. Notably, several edible plants belonging to 

this family, especially available in West Bengal, such as 

Aegle marmelos (Bael) [5], Murraya paniculata (Kamini) [6], 

Murraya koenigii (Curry leaves) [7], Triphasia trifolia 

(Limeberry) [8], Limonia acidissima (Wood Apple/Kadbel) 

[9], Citrus sinensis (Musambi/Sweet orange) [10], Citrus 

limon (Lemon) [11], Citrus paradisi (Grapefruit) [11], Citrus 

aurantifolia (Kaghzi Nimbu) [12], Citrus maxima / Citrus 

grandis (Pomelo) [13], Citrus bergamia (Bergamot) [14], 

Citrus aurantium (Khatta/Bitter Orange) [15] have long been 

revered in traditional medicinal systems for their health-

promoting properties. These species are rich in various 

bioactive compounds, particularly flavonoids, secondary 

metabolites known for their diverse pharmacological 

activities [16]. Quercetin is a naturally occurring flavonoid, 

specifically a flavonol, commonly found in many plants, 

including those in the Rutaceae family [17]. Quercetin is a 

naturally occurring polyphenolic compound belonging to 

the flavonoid family, specifically the flavonol subclass. 

Flavonols are characterized by a 3-hydroxyflavone 

backbone (3-hydroxy-2-phenylchromen-4-one), which 

distinguishes them from other flavonoid subclasses such as 

flavones and flavanones. Quercetin (molecular formula: 

C15H10O7; molecular weight: 302.24 g/mol) is widely 

distributed in fruits, vegetables, and edible plants of the 

Rutaceae family. Its chemical structure (Figure 1) consists 

of two benzene rings (A and B) linked by a heterocyclic 

pyrone ring (C), incorporating five hydroxyl groups that 

confer high antioxidant potential and enable multiple 

biological interactions. The flavonol scaffold of quercetin is 

thus central to its pharmacological versatility, influencing 

its roles in antioxidant defense, enzyme modulation, and 

cell signaling regulation. Quercetin enhances its medicinal 

and nutritional value through various biological activities, 

including antioxidant, anti-inflammatory, antidiabetic, 

antiviral, and anticancer properties [18], [19]. Numerous in 

vitro and in vivo studies have highlighted its role in 

mitigating oxidative stress, modulating inflammatory 

responses, and protecting against various chronic diseases, 
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including cardiovascular conditions, neurodegenerative 

disorders, and diabetes [20], [21], [22]. Therefore, this 

review aims to focus specifically on the quercetin content 

and pharmacological relevance of edible Rutaceae family 

plants available in West Bengal. This includes part-wise 

profiling, biological evaluation, mechanistic insights, and 

identification of gaps for future clinical and pharmacological 

studies. While other phytochemicals may be briefly 

mentioned, they are discussed only about their synergism 

with quercetin.  

2. Phytochemistry of the Rutaceae family Edible plants 

The Rutaceae family is highly regarded for both its 

agricultural and medicinal contributions. Although these 

plants contain a wide variety of secondary metabolites, 

this section gives particular emphasis to flavonoids, 

especially quercetin, as the principal phytochemical of 

interest due to its proven therapeutic potential and 

relevance to the central theme of this review. This family 

includes many edible plants, especially valued in 

traditional medicine and as nutritious foods. The following 

Table 1 describes the details of primary phytochemical 

groups and major components, such as flavonoids, 

alkaloids, coumarins, terpenoids, phenolics, and other 

compound groups, which contribute to the medicinal 

potential of each plant of the Rutaceae family.  

 

Table 1. Major Phytoconstituents of Rutaceae family edible plants available in West Bengal 

 

Sl No 

Plant Source with 

common name 
Parts used in 

the plant 

Phytochemical 

Class 
Major Phytoconstituents References 

1 
Aegle marmelos (Bael) 

Fruits 

Flavonoids 

Quercetin, isoflavone, 

anthocyanidin, catechin, 

chalconoid, luteolin 

[23], [24], 

[25], [26] 

Alkaloids Aegeline, marmeline, aegelenine 

Coumarins 
Marmin, marmelide, psoralen, 

imperatonin 

Terpenoids Cineol, caryophyllene 

Phenolic 

compounds 

Gallic acid, 2,3-dihydroxybenzoic 

acid, chlorogenic acid, p-coumaric 

acid, vanillic acid, caffeic acid, 

quinic acid, protocatechuic acid, 

arbutin 

Other 

Compounds 

Vitamin b and c, carotenes, 

saponins, tannins, minerals like 

potassium, calcium, phosphorus, 

sodium, iron, copper, magnesium. 

2 

Murraya paniculata 

(Kamini) Leaves 

Flavonoids 

5,7,3',4',5'-pentamethoxyflavone 

(p1), 

5,7,3',4'-tetramethoxyflavone (p3), 

5-hydroxy-6,7,8,3',4'-

pentamethoxyflavone (p8) 

 

 

[6], [27], 

[28] 

 

 

 

Alkaloids 
Carbazole, pyridine, pyrrole, n-

substituted indole, dimerics. 

Coumarins 
Meranzin hydrate, murpanidin, 
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murragatin, murralongin, β-

methylesculetin. 

Other 

Compounds 

Phenolic compounds, terpenoids, 

steroids, tannins, saponins, 

benzenoids, cinamates 

3 

Murraya koenigii 

(Curry leaves) Leaves 

Flavonoids 

Quercetin, apigenin, kaempferol, 

rutin, catechin, myricetin, 4-o-β-d-

rutinosyl-3-methoxyphenyl-1-

propanone, 1-o-β-d-rutinosyl-2(r)-

ethyl-1-pentanol, 8-phenylethyl-o-

β-d-rutinoside. 

[7], [29], 

[30] 

Alkaloids 

Mahanine, mahanimbine, 

murrayanol, koenimbine, 

koenidine, 2-methoxy-3-methyl-

carbazole, kurryam, koenine, 

koenigine, bicyclomahanimbicine. 

Coumarins Heraclenin, imperatorin. 

Terpenoids 

Cyclomahanimbine, 

tetrahydromahanimbine, blumenol 

c, blumenol a, icariside b1, 

icariside b1 aglycone, 3β-

glucopyranosyloxy-β-ionone, 

loliolide, (-)-epiloliolide, 5,6-

dihydrovomifoliol. 

Other compounds 

Phenolic compounds, vitamins, 

carbohydrates, ketones, acetate 

esters 

4 

Triphasia trifolia 

(Limeberry) Fruits 

Flavonoids 
Quercetin, kaempferol, rutin, 

isorhamnetin 

[31], [32] 

Alkaloids 
n-methyltyramine, ephedrine, 

trifoliine 

Coumarins Bergamottin, xanthyletin 

Terpenoids 
Limonene, myrcene, β-

caryophyllene 

Other compounds Ascorbic acid, β-sitosterol 

5 

Limonia acidissima 

(Wood Apple/Kadbel) Fruits 

Flavonoids Quercetin, rutin, apigenin, luteolin 

[11], [33], 

[34], [35] 
Alkaloids Tetrahydroisoquinoline, tyramine 

Coumarins Scopoletin, xanthotoxin 
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Terpenoids Limonene, sabinene, α-pinene 

Other compounds 
Psoralen, ferulic acid, cinnamic 

acid 

6 

Citrus sinensis 

(Musambi/Sweet 

orange) 
Fruits 

Flavonoids 
Quercetin, naringenin, hesperidin, 

rutin 

[11], [36], 

[37], [38], 

[39], [40] 

Alkaloids Synephrine, hordenine 

Coumarins Bergamottin, osthol 

Terpenoids 
limonene, α-pinene, β-myrcene, β-

caryophyllene 

Phenolic 

compounds 

Ferulic acid, sinapic acid, cinnamic 

acid 

Other compounds Pectin, ascorbic acid, carotenoids 

7 
Citrus limon (Lemon) 

Fruits 

Flavonoids 
Quercetin, diosmin, hesperidin, 

naringin 

[11], [41], 

[42], [43] 

Alkaloids Synephrine, tyramine 

Terpenoids 
Limonene, citral, β-pinene, γ-

terpinene 

Others 

compounds 
Ascorbic acid, linalool, pectin 

8 

Citrus paradisi 

(Grapefruit) Fruits 

Flavonoids 
Quercetin, naringin, hesperidin, 

kaempferol 

[44], [45], 

[46], [47] 

Alkaloids Synephrine, phenethylamine 

Coumarins Bergamottin, imperatorin 

Terpenoids Limonene, myrcene, linalool 

Other compounds 

Gallic acid, cinnamic acid, ferulic 

acid, p-coumaric acid, lycopene, 

pectin 

9 

Citrus aurantifolia 

(Kaghzi Nimbu) Fruits 

Flavonoids 
Quercetin, hesperidin, apigenin, 

luteolin 

[48], [49] 
Alkaloids Synephrine, octopamine 

Coumarins Bergamottin, xanthyletin, citropten 

Other compounds Limonene, α-pinene, γ-terpinene, 

ascorbic acid, pectin, β-sitosterol 
 

10 

Citrus maxima / Citrus 

grandis (Pomelo) Fruits 
Flavonoids 

Quercetin, naringin, kaempferol, 

hesperidin 

[11], [50], 

[51] 
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Alkaloids Synephrine, tyramine 

Coumarins Bergapten, xanthotoxin 

Terpenoids Limonene, α-pinene, γ-terpinene 

Other compounds 

Gallic acid, ferulic acid, cinnamic 

acid, pectin, ascorbic acid, 

lycopene 

11 

Citrus bergamia 

(Bergamot) Fruits 

Flavonoids 
Quercetin, neoeriocitrin, naringin, 

rutin 

[37], [52], 

[53], [54] 

Alkaloids Synephrine, octopamine 

Coumarins 
Bergamottin, bergaptol, 

imperatorin 

Terpenoids Limonene, linalyl acetate, geraniol 

Other compounds 

Ascorbic acid, caffeic acid, gallic 

acid, ferulic acid, bergaptene, 

pectin 

12 

Citrus aurantium 

(Khatta/Bitter Orange) Fruits 

Flavonoids 
Naringin, quercetin, hesperidin, 

limonin 

[11], [45], 

[55], [56], 

[57] 

Alkaloids Synephrine, tyramine, hordenine 

Coumarins Bergamottin, isopimpinellin 

Terpenoids Limonene, linalool, myrcene 

Other compounds 
Ascorbic acid, caffeic acid, ferulic 

acid, cinnamic acid 

Rutaceae family edible plants contain various of secondary metabolites; flavonoid is one of them. Different flavonoid contains 

various medicinal potential, among which flavonol like quercetin plays a pivotal role in case of this therapeutic 

contribution. 

3. Quercetin: Biological activities and mechanisms of 
action 

Quercetin is a prominent flavonoid found abundantly in the 

Rutaceae family. It has diverse medicinal properties and 

potential health benefits, such as antioxidant, anti-

inflammatory, antidiabetic, anticancer, antimicrobial, 

hepatoprotective, cardioprotective, and neuroprotective 

activities, that are highly relevant in traditional and modern 

medicine for a broad therapeutic profile [58]. The 

bioavailability of quercetin, largely present in fruits, 

vegetables, and various plant species, has been a focal point 

for enhancing its applications in nutraceuticals and 

pharmaceutical formulations. Table 2 describes major 

sources of quercetin along with quantity. As well as, Figure 

1 depicts various bioactive properties and sources of 

quercetin. All referenced figures illustrating the source of 

quercetin and quercetin’s other mechanisms of action 

(Figures 1-9) are now embedded below their respective 

sections with proper captions. 

Table 2. Major dietary sources of quercetin and their 

content 

Plant Sources (Edible 

part) 

Quercetin 

Content (mg/100 

g FW) 

Reference 

Onion (Allium cepa) 20-40 mg [59], [60] 

Apple (Malus 

domestica) 
2-5 mg [61] 

Grapes (Vitis vinifera) 

1.78 mg (Black 

grapes) 
[62], [63] 

1.62 (Green 

grapes) 

Broccoli (Brassica 

oleracea) 
3-7 mg [64] 

Berries (Fragaria × 3-4 mg [65], [66] 
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ananassa) 

Citrus fruits (Citrus 

sinensis) 
10-25 mg [67] 

Curry leaves (Murraya 

koenigii) 
18-22 mg [68] 

FW - Fresh Weight 

 

 

Figure 1. Numerous bioactive properties and sources of 
quercetin 

3.1. Antioxidant Activity 

Quercetin is recognized as one of nature’s most potent 

antioxidants, mainly due to its ability to neutralize 

reactive oxygen species (ROS), such as superoxide anions, 

hydroxyl radicals, and hydrogen peroxide [69]. The 

flavonoid achieves this through its hydroxyl (OH) groups 

attached to the aromatic rings, which can donate electrons 

to free radicals, stabilizing and inactivating them. This 

radical-scavenging ability interrupts lipid peroxidation 

chain reactions, thereby protecting cellular membranes 

and structures from oxidative damage [70]. Additionally, 

quercetin upregulates endogenous antioxidant enzymes, 

such as superoxide dismutase (SOD), catalase (CAT), and 

glutathione peroxidase (GPx), which further bolsters 

cellular antioxidant defenses [71]. It also modulates the 

expression of nuclear factor erythroid 2-related factor 2 

(Nrf2), a transcription factor that regulates antioxidant 

response elements (AREs) involved in cellular defense 

against oxidative stress [72]. Figure 2 describes the 

antioxidant activity of quercetin. 

 

Figure 2. Antioxidant activity of quercetin in 

scavenging free radicals 

3.2. Anti-Inflammatory Activity 

Quercetin exerts its anti-inflammatory effects by 

inhibiting various pro-inflammatory pathways, primarily 

the nuclear factor-kappa B (NF-κB) signaling pathway. NF-

κB is a crucial regulator of inflammation and immune 

responses, and its activation leads to the transcription of 

inflammatory cytokines, including tumor necrosis factor-

alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-

1β). Quercetin suppresses NF-κB activation by inhibiting 

the degradation of its inhibitory protein, IκB, which 

retains NF-κB in an inactive state in the cytoplasm [73], 

[74]. Furthermore, quercetin modulates MAPK signaling 

cascades, such as ERK1/2, JNK, and p38 MAPK, as 

demonstrated in RAW 264.7 macrophages, where 

quercetin treatment suppressed LPS-induced 

phosphorylation of these kinases, thereby reducing pro-

inflammatory cytokine release. By downregulating these 

signaling cascades, quercetin effectively reduces 

inflammation, making it a valuable compound for 

managing chronic inflammatory diseases such as arthritis, 

asthma, and inflammatory bowel disease [19], [75]. 

Mechanism regarding Histamin inhibition and 

Trypsin inhibition 

Histamine inhibition by quercetin primarily refers to 

its ability to stabilize mast cells and basophils, thereby 

preventing degranulation and subsequent histamine 

release during allergic and inflammatory responses. It 

does not directly block histamine receptors but rather 

reduces histamine availability at the site of inflammation 

[76], [77]. In addition, quercetin has been shown to 

inhibit enzymes such as trypsin, a serine protease 

involved in protein digestion and inflammatory cascades. 

Trypsin inhibition contributes to reduced protease-

mediated tissue damage and attenuation of inflammatory 

signaling. Together, these mechanisms support the anti-

allergic and anti-inflammatory roles of quercetin [78], 

[79]. Figure 3 depicts the anti-inflammatory activities of 

quercetin. 

 

Figure 3. Anti-inflammatory activities of quercetin. 

[TNF-α, tumor necrosis factor-α; MCP-1, monocyte 

chemotactic protein-1; IL-10, interleukin-10; IL-6, 

interleukin-6; IL-1β, interleukin-1β; IL-8, interleukin-8; 

AP-1, activator protein 1; NF-κB, nuclear factor kappa-B; 

p38PAPK, p38 mitogen-activated protein kinase; NLRP3, 

NOD-like receptor thermal protein domain associated 

protein 3; COX-2, cyclooxygenase-2; iNOS, inducible nitric 

oxide synthase] 

3.3. Antidiabetic Activity 

Quercetin has shown significant promise as an 

antidiabetic agent due to its multifaceted effects on 

glucose metabolism, insulin signaling, and pancreatic 
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function. One key mechanism is its ability to inhibit alpha-

glucosidase and alpha-amylase enzymes, which are 

involved in carbohydrate digestion. By inhibiting these 

enzymes, quercetin reduces postprandial blood glucose 

spikes. Additionally, quercetin enhances glucose uptake in 

muscle and adipose tissues by activating the AMP-activated 

protein kinase (AMPK) pathway, which promotes glucose 

transporter (GLUT4) translocation to the cell membrane 

[80], [81]. In pancreatic β-cells, quercetin protects against 

oxidative stress-induced damage and supports insulin 

secretion by preserving cellular integrity. This flavonoid 

also reduces inflammation in insulin-responsive tissues, 

such as the liver and skeletal muscles, which enhances 

insulin sensitivity and glucose homeostasis [82].  

Quercetin exerts potent antidiabetic effects through 

multiple mechanisms. A well-documented pathway is the 

inhibition of key digestive enzymes such as α-glucosidase 

and α-amylase, thereby delaying carbohydrate hydrolysis 

and absorption, which ultimately attenuates postprandial 

blood glucose spikes. Studies have shown that quercetin 

exhibits significant inhibitory activity against α-

glucosidase, with IC50 values ranging from 6.2-15.8 µM, 

which is comparable to standard antidiabetic agents like 

acarbose [83], [84]. In addition to this peripheral action, 

quercetin improves glucose homeostasis by enhancing 

cellular glucose uptake. It activates the AMPK signaling 

pathway, leading to increased translocation of the glucose 

transporter GLUT4 to the plasma membrane in muscle and 

adipose tissues [85], [86]. This dual action of quercetin 

decreasing intestinal glucose absorption and increasing 

peripheral glucose utilization highlights its potential as a 

nutraceutical or supplemental treatment option for the 

treatment of type 2 diabetes. Figure 4 describes the 

antidiabetic mechanism of quercetin. 

 

Figure 4. Antidiabetic Mechanism of quercetin 

3.4. Anticancer Activity 

The anticancer properties of quercetin are attributed 

to its ability to interfere with multiple stages of tumor 

development, including initiation, promotion, and 

progression. Quercetin induces apoptosis in cancer cells by 

modulating several apoptosis-related proteins, such as p53, 

Bax, Bcl-2, and caspases [87]. For instance, it upregulates 

pro-apoptotic proteins like Bax and downregulates anti-

apoptotic proteins like Bcl-2, promoting cell death in 

cancerous cells [88]. Quercetin exerts anticancer effects 

through modulation of multiple apoptotic pathways. 

Specifically, it induces apoptosis in cancer cells by 

regulating apoptosis-related proteins, including 

upregulation of p53 and Bax, downregulation of anti-

apoptotic Bcl-2, and activation of caspase-3 and caspase-

9 cascades [89], [90]. For example, in breast and colon 

cancer models, quercetin enhanced p53 expression and 

promoted mitochondrial-dependent apoptosis, while in 

leukemia cells it induced caspase-mediated DNA 

fragmentation [91], [92]. These literatures support the 

potential of quercetin as a pro-apoptotic agent targeting 

intrinsic pathways of cancer cell death. Quercetin arrests 

the cell cycle at G1/S and G2/M phases by 

downregulating cyclins (Cyclin E, D, B) and CDKs while 

upregulating cell cycle inhibitors [93]. Furthermore, it 

inhibits angiogenesis by suppressing VEGF expression and 

disrupts metastasis through modulation of epithelial-

mesenchymal transition markers like E-cadherin and 

vimentin. It also affects key cell signaling pathways, 

including the PI3K/AKT/mTOR and MAPK/ERK pathways, 

which are crucial for cell proliferation and survival [94], 

[95], [96]. Through these actions, quercetin suppresses 

tumor growth and inhibits metastasis in various cancer 

types, including breast, prostate, and colon cancers [97]. 

Figure 5 describes the anticancer mechanism of 

quercetin. 

 

Figure 5. Anticancer Mechanism of quercetin 

3.5. Antimicrobial Activity 

Quercetin exhibits broad-spectrum antimicrobial 

properties against bacteria, fungi, and viruses through 

several mechanisms. Its antibacterial activity is largely 

due to its ability to disrupt bacterial cell membranes and 

inhibit the synthesis of nucleic acids, which hampers 

bacterial replication [98]. Quercetin also interferes with 

bacterial fatty acid synthesis by inhibiting key enzymes 

like β-ketoacyl-ACP synthase [99]. Additionally, quercetin 

prevents biofilm formation, a critical factor in bacterial 

resistance, by disrupting extracellular polysaccharide 

production [100]. Quercetin’s antiviral mechanisms 

include inhibition of viral entry, replication, and protein 

assembly. For instance, quercetin binds to viral proteins 

and receptors, blocking their attachment and entry into 

host cells. Several in vitro studies have indicated that 

quercetin exhibits potential antiviral activity against 

various viruses including influenza and hepatitis C. 

Notably, a recent study has shown that quercetin 

inhibited SARS-CoV-2 viral entry and replication in 

cellular models by interfering with spike protein, ACE2 

receptor interaction; however, these findings are 

preliminary and require validation through in vivo and 

clinical trials [101]. Figure 6 depicts the antimicrobial 

mechanism of quercetin. 
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Figure 6. Antimicrobial Mechanism of quercetin 

3.6. Hepatoprotective Activity 

The hepatoprotective effects of quercetin are primarily 

due to its antioxidant properties, which protect liver cells 

(hepatocytes) from oxidative stress and toxin-induced 

damage [102]. Quercetin modulates detoxification 

enzymes, such as glutathione S-transferase (GST) and UDP-

glucuronosyltransferase (UGT), enhancing the liver’s ability 

to process and eliminate toxins [103]. Furthermore, 

quercetin reduces inflammation in the liver by suppressing 

pro-inflammatory cytokines and inhibiting the NF-κB 

pathway. It also decreases hepatic lipid accumulation and 

improves lipid metabolism, reducing the risk of non-

alcoholic fatty liver disease (NAFLD) and related liver 

disorders [104]. Quercetin has shown protective effects in 

liver injury models induced by toxins like carbon 

tetrachloride (CCl4) and acetaminophen [105]. Figure 7 

describes the Hepatoprotective mechanism of quercetin. 

 

Figure 7. Hepatoprotective mechanism of quercetin 

3.7. Cardioprotective Activity 

Quercetin exhibits profound cardioprotective effects by 

modulating endothelial function, preventing myocardial 

dysfunction, and mitigating ischemic heart disease. It 

enhances endothelial nitric oxide synthase (eNOS) activity, 

promotes nitric oxide (NO) production, and regulates 

vascular tone through VGKCs and BK channels, thereby 

reducing hypertension [106]. Quercetin combats 

endothelial senescence by upregulating SIRT1 and SOD 

while reducing SASP factors. Its anti-ischemic potential is 

evident through improvements in LVSP, peak dP/dt, and 

LVEF, alongside reduced oxidative stress and inflammation 

[107], [108]. Additionally, quercetin prevents 

atherosclerosis by facilitating cholesterol efflux, inhibiting 

HMG-CoA reductase, and suppressing inflammatory 

mediators like cytokines and oxidized LDL [109]. Figure 8 

describes the cardioprotective activity of quercetin. 

 

 

Figure 8. Diagram representation of quercetin's 

protective effects on the endothelium and, consequently, 

the heart. [AATK: apoptosis-associated tyrosine kinase; 

ACE: angiotensin-converting enzyme; AngII, angiotensin II; 

BK, big K, large-conductance Ca2+-sensitive K+ channels; 

CAV-1, caveolin-1; CDKN2A, p16, cyclin-dependent kinase 

inhibitor 2A; CK-MB, creatinine kinase-MB; EndoMT, 

endothelial-to-mesenchymal transition; ET-1, endothelin-

1; IGFBP3, insulin-like growth factor binding protein-3; 

eNOS, endothelial nitric oxide synthase; NFκB, nuclear 

factor-kappa B; NO, nitric oxide; ox-LDLs, oxidized low 

density lipoproteins; Fyn, Src family 59 kDa non-receptor 

protein tyrosine-kinase; LAT, linker for activation of T 

cells; LTCCs, L-type Ca2+ channels; LVEDP, left 

ventricular end-diastolic pressure; LVEF, left ventricular 

ejection fraction; LVSP, left ventricular systolic pressure; 

MMPs, matrix metalloproteases; PAI-1, plasminogen-

activated inhibitor-1; PCSK9, proprotein convertase 

subtilisin/kexin type 9; PI3K, phosphatidylinositol-4,5-

bisphosphate 3 kinase; PCγ2, phospholipase Cγ2; SCFAs, 

short-chain fatty acids; ROS, reactive oxygen species; 

SASP, senescence-associated secretory phenotype; SIRT1, 

sirtuin-1, nicotinamide adenine dinucleotide [NAD(+)]-

dependent protein deacetylase; SOD, superoxide 

dismutase; TGF-β, transforming growth factor beta; 

VGKCs, voltage-gated K+ channels.] 

3.8. Neuroprotective Activity 

Quercetin exhibits neuroprotective effects by mitigating 

oxidative stress, neuroinflammation, and mitochondrial 

dysfunction, all of which are implicated in 

neurodegenerative diseases [110]. It scavenges ROS and 

enhances antioxidant defenses within the brain, 

protecting neurons from oxidative damage. Quercetin 

also reduces neuroinflammation by inhibiting the 

activation of microglia, the brain’s resident immune cells, 

which can release neurotoxic substances when activated. 

Furthermore, quercetin regulates neurotransmitter levels 

and inhibits enzymes like acetylcholinesterase, which is 

beneficial in conditions like Alzheimer’s disease. Its 

neuroprotective action extends to preventing 

mitochondrial dysfunction by stabilizing mitochondrial 

membranes and reducing calcium influx, both of which 

are essential for neuron survival [111], [112]. Figure 9 

describes the neuroprotective activity of quercetin. 
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Figure 9. Neuroprotective mechanism of quercetin 

4. Quercetin Profiling of Rutaceae Family Edible Plants 

Profiling the quercetin content across different plant 

parts such as fruits, peels, and leaves not only facilitates 

the identification of potent natural sources but also 

provides a foundation for targeted pharmacognostic 

applications. Table 3 presents an overview of selected 

Rutaceae family edible plants available in West Bengal, 

detailing their specific plant parts analyzed, quantified 

quercetin content (expressed as mg Quercetin Equivalent 

per gram). This phytochemical profiling supports the 

potential nutraceutical and functional food applications 

of these species. 

Table 3. Quercetin profiling of Rutaceae family edible 

plants in West Bengal: [ND (Not Determined) indicates 

that the quercetin content of the corresponding plant 

part has not yet been experimentally quantified in the 

available literature. However, the presence of quercetin 

has been reported through preliminary phytochemical 

tests of the mentioned parts.] 
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It is noteworthy that while some Rutaceae plant parts 

are listed as ND (Not determined), they were included in 

Table 3 because preliminary phytochemical screenings or 

studies on other organs of the same species confirmed the 

presence of quercetin. These entries highlight research 

gaps rather than absence of the compound, thereby 

guiding future phytochemical investigations. For instance, 

Aegle marmelos and Citrus maxima have shown quercetin 

presence in leaves and peels, but their seeds and roots 

remain unquantified. 

When compared with other well-studied dietary sources of 

quercetin outside the Rutaceae family, Rutaceae species 

generally fall within a moderate range. For example, 

onions (Allium cepa) contain 19-33 mg quercetin/100 g 

fresh weight, apples provide 2-5 mg/100  

g, while capers exhibit some of the highest 

concentrations (180-230 mg/100 g) [59], [127]. By 

contrast, Rutaceae fruits such as Citrus sinensis peels  

report 12-20 mg/g dry weight, and Aegle marmelos leaves 

contain 15-25 mg/g dry weight. This suggests that certain 

Rutaceae plants, particularly non-edible parts like peels 

and leaves, may rival or even exceed common quercetin-

rich foods, supporting their relevance for nutraceutical 

applications. 

4.1. Comparative Insights and Critical Evaluation 

Quercetin content varied significantly among Rutaceae 

species and their respective plant parts. Notably, Citrus 

sinensis (No. 6) exhibited the highest quercetin levels in 

leaves (110.23 ± 4.62 mg QE/g dry extract) and peels 

Plant Source Common Name Parts Used 
Quercetin equivalent 

mg/g of dry extract 

Extraction method/type of 

solvent used 

Referenc

e 

Aegle marmelos Bael 
Leaves 18.12 ± 3.86 mg/g 

Ethanol Extraction [5], [113] 
Fruits ND 

Murraya 

paniculata 
Kamini Leaves 9.15 ± 0.02 mg/g Ethanol Extraction [114] 

Murraya koenigii Curry Leaves Leaves 0.08 mg/g 
Methanol/ethanol 

extractions 
[115] 

Triphasia trifolia Limeberry Fruits ND --- [116] 

Limonia acidissima Wood Apple/ Kadbel Fruits 1.4 mg/g Methanol Extraction [117] 

Citrus sinensis 
Musambi/Sweet 

Orange 

Peel 23.2 mg/g 

Methanol and ethanol 

extractions [118], 

[119], 

[120] 

Fruits 0.96 mg/g 

Leaves 
110.23 ± 4.62 mg/g of 

dry extract 

Citrus paradisi Grapefruit 
Peel 23.2 mg/g 

Methanol extraction 
Fruits 0.96 mg/g 

Citrus limon Lemon 
Peel 3.78 mg/g Methanol and aqueous 

ethanol extractions 

[121], 

[122] Fruits 0.01 mg/g 

Citrus aurantifolia Kaghzi Nimbu (Lime) 

Peel 0.041-0.064 mg/g 

Methanol extractions [48] Fruits 0.089 mg/g dry weight 

Leaves ND 

Citrus maxima/ 

Citrus grandis 
Pomelo Peel 4.56 mg/g 

Ethanol/ methanol 

extraction 
[123] 

Citrus bergamia Bergamot Fruit 3.91 ± 0.37 mg/g 
Ethanol/ methanol 

extraction 
[124] 

Citrus aurantium Khatta/Bitter Orange 

Leaves 

11.99±1.80 mg/g 

(aqueous extract) and 

5.08±0.40 mg/g 

(methanolic extract) 

Ethanol/ methanol 

extraction 

 

[125], 

[126] 

Fruits 0.96 mg/g 

Peel 

1.43 mg/g (aqueous 

extract) and 14.82 

mg/g (methanolic 

extract) 

QE: Quercetin Equivalent (mg/g of dry extract); ND: Not Determined 
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(23.2 mg/g), whereas Citrus limon (No. 8) and Murraya 

koenigii (No. 3) recorded considerably lower levels in fruits 

and leaves as 0.01 mg/g and 0.08 mg/g respectively, 

suggesting species and organ-specific accumulation. Aegle 

marmelos (No. 1) showed moderate quercetin content in 

its leaves (18.12 ± 3.86 mg QE/g), while its fruits lacked 

quantification data. This differential distribution 

underlines the need for plant-part-targeted extraction to 

optimize yield for pharmacological applications. There is a 

notable correlation between high quercetin content and 

reported bioactivities in specific plant parts. For instance, 

the high antioxidant and antidiabetic effects reported in 

Citrus sinensis (No. 6) and Aegle marmelos (No. 1) 

correlate well with their elevated quercetin concentrations 

[128]. In contrast, plants with low quercetin content (e.g., 

Murraya koenigii leaves: 0.08 mg/g) showed lesser 

bioactivity in mechanistic studies, implying a dose-

dependent therapeutic impact. In terms of extraction, 

methanolic and ethanolic solvents are most effective for 

quercetin recovery from plant matrices due to their 

polarity and compatibility with phenolic compounds. 

Studies have demonstrated that methanolic extracts of 

Citrus aurantium (No. 12) yielded up to 14.82 mg QE/g in 

peel, compared to 1.43 mg QE/g in aqueous extract. 

Hence, methanol emerges as the optimal solvent, followed 

by ethanol, for quercetin extraction in Rutaceae species. 

Techniques like Soxhlet extraction and ultrasonication-

assisted extraction further enhance yield by improving cell 

wall penetration and reducing processing time. However, 

green extraction technologies (e.g., supercritical fluid 

extraction) remain underexplored and warrant future 

investigation for eco-friendly scalability. 

Thus, critically evaluating quercetin concentration, 

pharmacological relevance, and extraction efficiency 

reveals interrelated insights that should guide future 

standardization, therapeutic applications, and functional 

food formulation from Rutaceae family plants. 

5. Conclusion 

In conclusion, this review highlights the diverse 

pharmacological potential of quercetin, a key flavonol is 

present in edible Rutaceae species of West Bengal. Among 

the profiled plants, Citrus sinensis and Aegle marmelos 

emerged as particularly rich sources of quercetin, 

especially in their leaves and peels, suggesting their 

relevance as quercetin-enriched botanical resources. 

Correlations between higher quercetin concentrations and 

potent biological activities, particularly antioxidant, 

antidiabetic, anti-inflammatory, and cardioprotective 

effects, were describes quercetin’s therapeutic potential. 

And also, mechanisms underscore the quercetin’s 

therapeutic potential in managing cardiovascular diseases 

and malignancies, emphasizing its significance as a 

multifunctional bioactive compound. Among various 

solvents and extraction techniques, methanolic extraction 

proved to be the most efficient for quercetin recovery. 

This supports the importance of standardizing both 

extraction protocols and quantification methods to ensure 

reproducibility in pharmacological assessments. 

The key take-home message is that edible Rutaceae plants 

not only represent valuable nutritional sources but also 

serve as promising candidates for nutraceutical 

development and phytomedicine formulation. Future 

efforts should focus on the standardization of quercetin 

extraction, improvement of bioavailability using delivery 

systems like nanocarriers or liposomes, and the validation 

of therapeutic outcomes through clinical studies targeting 

molecular pathways such as PI3K/Akt, NF-κB, and Nrf2. 

Additionally, long-term dietary studies and regulatory 

evaluation are needed to promote the safe use of 

quercetin-rich Rutaceae plants in functional food. This 

review encourages further research into underutilized 

species and supports the pharmacognostic exploration of 

quercetin as a natural therapeutic lead compound. 
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