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ABSTRACT

The Rutaceae family comprises several edible plants with high quercetin content, a bioactive flavonol
recognized for its diverse therapeutic properties. This review specifically focuses on profiling quercetin
in edible Rutaceae species available in West Bengal, emphasizing part-wise distribution (leaves, peels,
fruits), extraction techniques, and pharmacological relevance. Among the species evaluated, Citrus
sinensis and Aegle marmelos demonstrated the highest quercetin concentrations in leaves and peels,
correlating strongly with their antioxidant, antidiabetic, anti-inflammatory, cardioprotective,
hepatoprotective, neuroprotective, and anticancer properties. These mechanisms of action are linked
to key molecular pathways, including NF-kB, Nrf2, PI3K/Akt, and AMPK. Methanolic extraction emerged
as the most effective method for quercetin recovery across most species. Critical evaluation revealed
notable knowledge gaps in bioavailability enhancement strategies, standardization across species, and
clinical validation. By narrowing the scope exclusively to quercetin and its therapeutic functions, this
review offers a targeted resource for future pharmacognostic exploration, bioavailability studies, and
quercetin-based phytopharmaceutical development.
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1. Introduction

The Rutaceae family, commonly known as the citrus family,
is a vast and diverse group of flowering plants comprising
approximately 150 genera and over 2,000 species [1]. These
plants are distributed globally, with tropical and subtropical
regions being the primary habitats. It is renowned for its
immense agricultural, medicinal, and ornamental value [2],
[3], [4]. West Bengal, a biodiversity-rich state, is home to
several important species of the Rutaceae family that are
valued both for their nutritional benefits and traditional use
in folk medicine. Notably, several edible plants belonging to
this family, especially available in West Bengal, such as
Aegle marmelos (Bael) [5], Murraya paniculata (Kamini) [6],
Murraya koenigii (Curry leaves) [7], Triphasia trifolia
(Limeberry) [8], Limonia acidissima (Wood Apple/Kadbel)
[9], Citrus sinensis (Musambi/Sweet orange) [10], Citrus
limon (Lemon) [11], Citrus paradisi (Grapefruit) [11], Citrus
aurantifolia (Kaghzi Nimbu) [12], Citrus maxima / Citrus
grandis (Pomelo) [13], Citrus bergamia (Bergamot) [14],
Citrus aurantium (Khatta/Bitter Orange) [15] have long been
revered in traditional medicinal systems for their health-
promoting properties. These species are rich in various
bioactive compounds, particularly flavonoids, secondary
metabolites known for their diverse pharmacological

activities [16]. Quercetin is a naturally occurring flavonoid,
specifically a flavonol, commonly found in many plants,
including those in the Rutaceae family [17]. Quercetin is a
naturally occurring polyphenolic compound belonging to
the flavonoid family, specifically the flavonol subclass.
Flavonols are characterized by a 3-hydroxyflavone
backbone  (3-hydroxy-2-phenylchromen-4-one),  which
distinguishes them from other flavonoid subclasses such as
flavones and flavanones. Quercetin (molecular formula:
CisH1007; molecular weight: 302.24 g/mol) is widely
distributed in fruits, vegetables, and edible plants of the
Rutaceae family. Its chemical structure (Figure 1) consists
of two benzene rings (A and B) linked by a heterocyclic
pyrone ring (C), incorporating five hydroxyl groups that
confer high antioxidant potential and enable multiple
biological interactions. The flavonol scaffold of quercetin is
thus central to its pharmacological versatility, influencing
its roles in antioxidant defense, enzyme modulation, and
cell signaling regulation. Quercetin enhances its medicinal
and nutritional value through various biological activities,
including antioxidant, anti-inflammatory, antidiabetic,
antiviral, and anticancer properties [18], [19]. Numerous in
vitro and in vivo studies have highlighted its role in
mitigating oxidative stress, modulating inflammatory
responses, and protecting against various chronic diseases,
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including cardiovascular conditions, neurodegenerative
disorders, and diabetes [20], [21], [22]. Therefore, this
review aims to focus specifically on the quercetin content
and pharmacological relevance of edible Rutaceae family
plants available in West Bengal. This includes part-wise
profiling, biological evaluation, mechanistic insights, and
identification of gaps for future clinical and pharmacological
studies. While other phytochemicals may be briefly
mentioned, they are discussed only about their synergism
with quercetin.

2. Phytochemistry of the Rutaceae family Edible plants

The Rutaceae family is highly regarded for both its
agricultural and medicinal contributions. Although these
plants contain a wide variety of secondary metabolites,
this section gives particular emphasis to flavonoids,
especially quercetin, as the principal phytochemical of
interest due to its proven therapeutic potential and
relevance to the central theme of this review. This family
includes many edible plants, especially valued in
traditional medicine and as nutritious foods. The following
Table 1 describes the details of primary phytochemical
groups and major components, such as flavonoids,
alkaloids, coumarins, terpenoids, phenolics, and other
compound groups, which contribute to the medicinal
potential of each plant of the Rutaceae family.

Table 1. Major Phytoconstituents of Rutaceae family edible plants available in West Bengal

Plant Source with Parts used in

SI No
common name the plant

Phytochemical

Major Phytoconstituents References

Flavonoids

Quercetin, isoflavone,
anthocyanidin, catechin,
chalconoid, luteolin

Aegeline, marmeline, aegelenine

Coumarins

Marmin, marmelide, psoralen,

imperatonin

Aegle marmelos (Bael)

Terpenoids

Cineol, caryophyllene
[23], [24],

Fruits

compounds

Gallic acid, 2,3-dihydroxybenzoic [25], [26]
acid, chlorogenic acid, p-coumaric
acid, vanillic acid, caffeic acid,
quinic acid, protocatechuic acid,

arbutin

Compounds

Vitamin b and c, carotenes,
saponins, tannins, minerals like
potassium, calcium, phosphorus,

sodium, iron, copper, magnesium.

Murraya paniculata
2 (Kamini) Leaves

Flavonoids

5,7,3,4',5'-pentamethoxyflavone
(p1),

5,7,3',4'-tetramethoxyflavone (p3),

[61, [27],
5-hydroxy-6,7,8,3',4'- [28]

pentamethoxyflavone (p8)

Carbazole, pyridine, pyrrole, n-

substituted indole, dimerics.

Coumarins

Meranzin hydrate, murpanidin,
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murragatin, murralongin, B-

methylesculetin.

Phenolic compounds, terpenoids,

Other
steroids, tannins, saponins,
Compounds . .
benzenoids, cinamates
Quercetin, apigenin, kaempferol,
rutin, catechin, myricetin, 4-0-8-d-
rutinosyl-3-methoxyphenyl-1-
Flavonoids
propanone, 1-0-B-d-rutinosyl-2(r)-
ethyl-1-pentanol, 8-phenylethyl-o-
B-d-rutinoside.
Mahanine, mahanimbine,
murrayanol, koenimbine,
Alkaloids koenidine, 2-methoxy-3-methyl-
carbazole, kurryam, koenine,
koenigine, bicyclomahanimbicine.
Murraya koenigii [71, [29],
3 (Curry leaves) Leaves Coumarins Heraclenin, imperatorin. [30]
Cyclomahanimbine,
tetrahydromahanimbine, blumenol
¢, blumenol a, icariside b1,
Terpenoids icariside b1 aglycone, 38-
glucopyranosyloxy-B-ionone,
loliolide, (-)-epiloliolide, 5,6-
dihydrovomifoliol.
Phenolic compounds, vitamins,
Other compounds carbohydrates, ketones, acetate
esters
. Quercetin, kaempferol, rutin,
Flavonoids
isorhamnetin
n-methyltyramine, ephedrine,
Alkaloids Y o P
trifoliine
Triphasia trifolia
4 . . : . : [31], [32]
(Limeberry) Fruits Coumarins Bergamottin, xanthyletin
Limonene, myrcene, B-
Terpenoids
caryophyllene
Other compounds Ascorbic acid, B-sitosterol
Flavonoids Quercetin, rutin, apigenin, luteolin
Limonia acidissima _ _ — ; [11], [33],
. Alkaloids Tetrahydroisoquinoline, tyramine
5 (Wood Apple/Kadbel) Fruits [34], [35]
Coumarins Scopoletin, xanthotoxin
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Terpenoids Limonene, sabinene, a-pinene
Psoralen, ferulic acid, cinnamic
Other compounds .
acid
) Quercetin, naringenin, hesperidin,
Flavonoids .
rutin
Alkaloids Synephrine, hordenine
Citrus sinensis Coumarins Bergamottin, osthol 111, [36],
6 (Musambi/Sweet Fruits T y limonene, a-pinene, B-myrcene, B- 371, 38,
erpenoids
orange) P caryophyllene [39], [40]
Phenolic Ferulic acid, sinapic acid, cinnamic
compounds acid
Other compounds Pectin, ascorbic acid, carotenoids
. Quercetin, diosmin, hesperidin,
Flavonoids o
naringin
Alkaloids Synephrine, tyramine
. , [11], [41],
Citrus limon (Lemon) . - - -
7 Fruits ) Limonene, citral, B-pinene, y- [42], [43]
Terpenoids . ’
terpinene
Others
Ascorbic acid, linalool, pectin
compounds
Quercetin, naringin, hesperidin,
Flavonoids
kaempferol
Alkaloids Synephrine, phenethylamine
Citrus paradisi Coumarins Bergamottin, imperatorin [44], [45],
8 (Grapefruit) Fruits [46], [47]
Terpenoids Limonene, myrcene, linalool
Gallic acid, cinnamic acid, ferulic
Other compounds acid, p-coumaric acid, lycopene,
pectin
Quercetin, hesperidin, apigenin,
Flavonoids
luteolin
Citrus aurantifolia Alkaloids Synephrine, octopamine
. ; [48], [49]
9 (Kaghzi Nimbu) Fruits
Coumarins Bergamottin, xanthyletin, citropten
Other compounds | Limonene, a-pinene, y-terpinene,
ascorbic acid, pectin, B-sitosterol
Citrus maxima / Citrus Quercetin, naringin, kaempferol, [11], [50],
. Flavonoids
10 grandis (Pomelo) Fruits hesperidin [51]
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Alkaloids Synephrine, tyramine
Coumarins Bergapten, xanthotoxin
Terpenoids Limonene, a-pinene, y-terpinene

Other compounds

Gallic acid, ferulic acid, cinnamic
acid, pectin, ascorbic acid,

lycopene

Quercetin, neoeriocitrin, naringin,

Other compounds

Ascorbic acid, caffeic acid, ferulic

acid, cinnamic acid

Flavonoids .
rutin
Alkaloids Synephrine, octopamine
. . . Bergamottin, bergaptol,
Citrus bergamia Coumarins ) . [37], [52],
. imperatorin
" (Bergamot) Fruits [53], [54]
Terpenoids Limonene, linalyl acetate, geraniol
Ascorbic acid, caffeic acid, gallic
Other compounds acid, ferulic acid, bergaptene,
pectin
Naringin, quercetin, hesperidin,
Flavonoids
limonin
Alkaloids Synephrine, tyramine, hordenine
. ) [11], [45],
Citrus aurantium c _ 5 TR [55]. [56]
. oumarins ergamottin, isopimpinellin s ,
12 (Khatta/Bitter Orange) Fruits s pimp -
Terpenoids Limonene, linalool, myrcene

Rutaceae family edible plants contain various of secondary metabolites; flavonoid is one of them. Different flavonoid contains

3. Quercetin:

action

Quercetin is a prominent flavonoid found abundantly in the
Rutaceae family. It has diverse medicinal properties and
such as antioxidant,

anticancer,

potential
inflammatory,
hepatoprotective,

health benefits,

antidiabetic,

cardioprotective,

Biological activities and mechanisms of

largely present in fruits,

anti-
antimicrobial,
and neuroprotective
activities, that are highly relevant in traditional and modern
medicine for a broad therapeutic profile [58].
bioavailability of quercetin,

contribution.

various medicinal potential, among which flavonol like quercetin plays a pivotal role in case of this therapeutic

Table 2. Major dietary sources of quercetin and their

The

vegetables, and various plant species, has been a focal point
for enhancing its applications in nutraceuticals and
pharmaceutical formulations. Table 2 describes major
sources of quercetin along with quantity. As well as, Figure
1 depicts various bioactive properties and sources of
quercetin. All referenced figures illustrating the source of
quercetin and quercetin’s other mechanisms of action
(Figures 1-9) are now embedded below their respective
sections with proper captions.

content
. Quercetin
Plant Sou::; (Edible Content (mg/100 | Reference
P g FW)
Onion (Allium cepa) 20-40 mg [59], [60]
Apple (Malus
domestica) 2-5mg [61]
1.78 mg (Black
grapes)
Grapes (Vitis vinifera) [62], [63]
1.62 (Green
grapes)
Broccoli (Brassica 3-7mg [64]
oleracea)
Berries (Fragaria x 3-4mg [65], [66]
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ananassa)
Citrus .fru1ts.(Cltrus 10-25 mg [67]
sinensis)
Curry leaves (Murraya 18-22 mg [68]

koenigii)

FW - Fresh Weight

/ Neuroprotective

'

‘Antimicrobial Antioxidan

a\
o
Quercetin

Anti-inflammatory Cardioprotective
A ;. (Hepatoprotective
43

Anticancer

Figure 1. Numerous bioactive properties and sources of
quercetin

3.1. Antioxidant Activity

Quercetin is recognized as one of nature’s most potent
antioxidants, mainly due to its ability to neutralize
reactive oxygen species (ROS), such as superoxide anions,
hydroxyl radicals, and hydrogen peroxide [69]. The
flavonoid achieves this through its hydroxyl (OH) groups
attached to the aromatic rings, which can donate electrons
to free radicals, stabilizing and inactivating them. This
radical-scavenging ability interrupts lipid peroxidation
chain reactions, thereby protecting cellular membranes
and structures from oxidative damage [70]. Additionally,
quercetin upregulates endogenous antioxidant enzymes,
such as superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPx), which further bolsters
cellular antioxidant defenses [71]. It also modulates the
expression of nuclear factor erythroid 2-related factor 2
(Nrf2), a transcription factor that regulates antioxidant
response elements (AREs) involved in cellular defense
against oxidative stress [72]. Figure 2 describes the
antioxidant activity of quercetin.

OH
Hydroxyl groups
oH Scavenges ROS/free
radicals Oxidative stress
—_—
OH O
Quercetin Stimulates

antioxidants

Antioxidant enzymes (SOD, CAT, GPx)
Restores cellular redox —e—

balance Cellular Signaling pathways (Nrf2-ARE)

Figure 2. Antioxidant activity of quercetin in
scavenging free radicals

3.2. Anti-Inflammatory Activity

Quercetin exerts its anti-inflammatory effects by

inhibiting various pro-inflammatory pathways, primarily
the nuclear factor-kappa B (NF-kB) signaling pathway. NF-
kB is a crucial regulator of inflammation and immune
responses, and its activation leads to the transcription of
inflammatory cytokines, including tumor necrosis factor-
alpha (TNF-a), interleukin-6 (IL-6), and interleukin-18 (IL-
1B8). Quercetin suppresses NF-kB activation by inhibiting
the degradation of its inhibitory protein, IkB, which
retains NF-kB in an inactive state in the cytoplasm [73],
[74]. Furthermore, quercetin modulates MAPK signaling
cascades, such as ERK1/2, JNK, and p38 MAPK, as
demonstrated in RAW 264.7 macrophages, where
quercetin treatment suppressed LPS-induced
phosphorylation of these kinases, thereby reducing pro-
inflammatory cytokine release. By downregulating these
signaling cascades, quercetin effectively reduces
inflammation, making it a valuable compound for
managing chronic inflammatory diseases such as arthritis,
asthma, and inflammatory bowel disease [19], [75].

Mechanism regarding Histamin inhibition and
Trypsin inhibition

Histamine inhibition by quercetin primarily refers to
its ability to stabilize mast cells and basophils, thereby
preventing degranulation and subsequent histamine
release during allergic and inflammatory responses. It
does not directly block histamine receptors but rather
reduces histamine availability at the site of inflammation
[76], [77]. In addition, quercetin has been shown to
inhibit enzymes such as trypsin, a serine protease
involved in protein digestion and inflammatory cascades.
Trypsin inhibition contributes to reduced protease-
mediated tissue damage and attenuation of inflammatory
signaling. Together, these mechanisms support the anti-
allergic and anti-inflammatory roles of quercetin [78],
[79]. Figure 3 depicts the anti-inflammatory activities of
quercetin.

IL-1p IL-10 ~ * TNF-a

IL-8 IL-6 MCP-1

NF-kB" (_AP-1 » (P38MAPK

NLRP-3
ol 9 Histamin ~ Trypsin
Quercetin
COX-2» _iNOS
— Inhibition

Figure 3. Anti-inflammatory activities of quercetin.
[TNF-a, tumor necrosis factor-a; MCP-1, monocyte
chemotactic protein-1; IL-10, interleukin-10; IL-6,
interleukin-6; IL-1B8, interleukin-18; IL-8, interleukin-8;
AP-1, activator protein 1; NF-kB, nuclear factor kappa-B;
p38PAPK, p38 mitogen-activated protein kinase; NLRP3,
NOD-like receptor thermal protein domain associated
protein 3; COX-2, cyclooxygenase-2; iNOS, inducible nitric
oxide synthase]

3.3. Antidiabetic Activity

Quercetin has shown significant promise as an
antidiabetic agent due to its multifaceted effects on
glucose metabolism, insulin signaling, and pancreatic
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function. One key mechanism is its ability to inhibit alpha-
glucosidase and alpha-amylase enzymes, which are
involved in carbohydrate digestion. By inhibiting these
enzymes, quercetin reduces postprandial blood glucose
spikes. Additionally, quercetin enhances glucose uptake in
muscle and adipose tissues by activating the AMP-activated
protein kinase (AMPK) pathway, which promotes glucose
transporter (GLUT4) translocation to the cell membrane
[80], [81]. In pancreatic B-cells, quercetin protects against
oxidative stress-induced damage and supports insulin
secretion by preserving cellular integrity. This flavonoid
also reduces inflammation in insulin-responsive tissues,
such as the liver and skeletal muscles, which enhances
insulin sensitivity and glucose homeostasis [82].

Quercetin exerts potent antidiabetic effects through
multiple mechanisms. A well-documented pathway is the
inhibition of key digestive enzymes such as a-glucosidase
and a-amylase, thereby delaying carbohydrate hydrolysis
and absorption, which ultimately attenuates postprandial
blood glucose spikes. Studies have shown that quercetin
exhibits  significant inhibitory activity against a-
glucosidase, with IC50 values ranging from 6.2-15.8 pM,
which is comparable to standard antidiabetic agents like
acarbose [83], [84]. In addition to this peripheral action,
quercetin improves glucose homeostasis by enhancing
cellular glucose uptake. It activates the AMPK signaling
pathway, leading to increased translocation of the glucose
transporter GLUT4 to the plasma membrane in muscle and
adipose tissues [85], [86]. This dual action of quercetin
decreasing intestinal glucose absorption and increasing
peripheral glucose utilization highlights its potential as a
nutraceutical or supplemental treatment option for the
treatment of type 2 diabetes. Figure 4 describes the
antidiabetic mechanism of quercetin.

Pancreas | 'D + & ‘
Inhibit )

+ Insulin secretion Alpha Alpha

glucosidase  amylase

* Onxadative stress enzyme enzyme

: OH | q
GLUT 4 HO (o] O I B / AGLUT 4
1‘,\1\41'14 - O | oH . i GLUT 1
' OH

'
' "
' ' Adipose tissue
Skeletal muscle - OH OH 0 P
\ Quercetin g
hd -
T(i]ucnkma.\u W ((
activity T + AGE's
GLUT 2 Oxidative stress
- Liver
GLUT | e

Diabetic neurapathy

Figure 4. Antidiabetic Mechanism of quercetin
3.4. Anticancer Activity

The anticancer properties of quercetin are attributed
to its ability to interfere with multiple stages of tumor
development, including initiation, promotion, and
progression. Quercetin induces apoptosis in cancer cells by
modulating several apoptosis-related proteins, such as p53,
Bax, Bcl-2, and caspases [87]. For instance, it upregulates
pro-apoptotic proteins like Bax and downregulates anti-
apoptotic proteins like Bcl-2, promoting cell death in
cancerous cells [88]. Quercetin exerts anticancer effects
through modulation of multiple apoptotic pathways.
Specifically, it induces apoptosis in cancer cells by

regulating apoptosis-related proteins, including
upregulation of p53 and Bax, downregulation of anti-
apoptotic Bcl-2, and activation of caspase-3 and caspase-
9 cascades [89], [90]. For example, in breast and colon
cancer models, quercetin enhanced p53 expression and
promoted mitochondrial-dependent apoptosis, while in
leukemia cells it induced caspase-mediated DNA
fragmentation [91], [92]. These literatures support the
potential of quercetin as a pro-apoptotic agent targeting
intrinsic pathways of cancer cell death. Quercetin arrests
the cell cycle at G1/S and G2/M phases by
downregulating cyclins (Cyclin E, D, B) and CDKs while
upregulating cell cycle inhibitors [93]. Furthermore, it
inhibits angiogenesis by suppressing VEGF expression and
disrupts metastasis through modulation of epithelial-
mesenchymal transition markers like E-cadherin and
vimentin. It also affects key cell signaling pathways,
including the PI3K/AKT/mTOR and MAPK/ERK pathways,
which are crucial for cell proliferation and survival [94],
[95], [96]. Through these actions, quercetin suppresses
tumor growth and inhibits metastasis in various cancer
types, including breast, prostate, and colon cancers [97].
Figure 5 describes the anticancer mechanism of
quercetin.

z \‘.?/
/": =
Angiogenesis
Y VEGF
ﬂ o .
A Bcl-2, Mcl-1 ¥ E2F, Cyclin E & D
¢ Quercetin. —) ‘
¥ Bax & Bad 4 Cyclin B .
Apoptosis % Cell Cycle arrest
4 E-Cadherin T
i T 4K VOA Formation A R
* Vimentin & N-cadherin mTOR LC31—> L0311 Wiy
Autophagy

Metastasis

Figure 5. Anticancer Mechanism of quercetin
3.5. Antimicrobial Activity

Quercetin exhibits broad-spectrum antimicrobial
properties against bacteria, fungi, and viruses through
several mechanisms. Its antibacterial activity is largely
due to its ability to disrupt bacterial cell membranes and
inhibit the synthesis of nucleic acids, which hampers
bacterial replication [98]. Quercetin also interferes with
bacterial fatty acid synthesis by inhibiting key enzymes
like B-ketoacyl-ACP synthase [99]. Additionally, quercetin
prevents biofilm formation, a critical factor in bacterial
resistance, by disrupting extracellular polysaccharide
production [100]. Quercetin’s antiviral mechanisms
include inhibition of viral entry, replication, and protein
assembly. For instance, quercetin binds to viral proteins
and receptors, blocking their attachment and entry into
host cells. Several in vitro studies have indicated that
quercetin exhibits potential antiviral activity against
various viruses including influenza and hepatitis C.
Notably, a recent study has shown that quercetin
inhibited SARS-CoV-2 viral entry and replication in
cellular models by interfering with spike protein, ACE2
receptor interaction; however, these findings are
preliminary and require validation through in vivo and
clinical trials [101]. Figure 6 depicts the antimicrobial
mechanism of quercetin.
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Figure 6. Antimicrobial Mechanism of quercetin

3.6. Hepatoprotective Activity

The hepatoprotective effects of quercetin are primarily
due to its antioxidant properties, which protect liver cells
(hepatocytes) from oxidative stress and toxin-induced
damage [102]. Quercetin modulates detoxification
enzymes, such as glutathione S-transferase (GST) and UDP-
glucuronosyltransferase (UGT), enhancing the liver’s ability
to process and eliminate toxins [103]. Furthermore,
quercetin reduces inflammation in the liver by suppressing
pro-inflammatory cytokines and inhibiting the NF-kB
pathway. It also decreases hepatic lipid accumulation and
improves lipid metabolism, reducing the risk of non-
alcoholic fatty liver disease (NAFLD) and related liver
disorders [104]. Quercetin has shown protective effects in
liver injury models induced by toxins like carbon
tetrachloride (CCl4) and acetaminophen [105]. Figure 7
describes the Hepatoprotective mechanism of quercetin.

liver by suppressing and chmination
pro-inflammatory of toxins.
cylokines 2. Lipid metabolism

l Inflammation in the T 1. Activity of liver

OH

— Detoxification enzymes
OH (GST, UGT)

Hepatic protection HO (o] O Regulation
Antioxidant O I OH ]

Anti-inflammatory
Anti-apoptosis
Cytoprotection

OH O

Quercetin
T—' NE-&B pathway:

CCly

GSH depletion
Lipid Peroxidation

— Inhibition

Liver injury

Shows protective
effects

Figure 7. Hepatoprotective mechanism of quercetin
3.7. Cardioprotective Activity

Quercetin exhibits profound cardioprotective effects by
modulating endothelial function, preventing myocardial
dysfunction, and mitigating ischemic heart disease. It
enhances endothelial nitric oxide synthase (eNOS) activity,
promotes nitric oxide (NO) production, and regulates
vascular tone through VGKCs and BK channels, thereby
reducing  hypertension [106]. Quercetin  combats
endothelial senescence by upregulating SIRT1 and SOD
while reducing SASP factors. Its anti-ischemic potential is
evident through improvements in LVSP, peak dP/dt, and
LVEF, alongside reduced oxidative stress and inflammation
[107], [108]. Additionally, quercetin prevents
atherosclerosis by facilitating cholesterol efflux, inhibiting
HMG-CoA reductase, and suppressing inflammatory
mediators like cytokines and oxidized LDL [109]. Figure 8

describes the cardioprotective activity of quercetin.

Endothelial Myocardial
dysfunction dysfunction Disease

Ischemic Heart Discase

®

LVSP
LVEF

LVEDP, Infarct size
CK-ME nin T
Inflammation
Oxidative stress

eNOS, NO SCFAs +\m|| SMAD

VGKCs Ch Thux son ET-1 *[” g

BK channels | f cav:L

HM ductase SASP NFxB
LTCCs ROS, ox-LDLs
l;\cl L Ang Il AATK. CDKN2A

ET-1

IGFBP38
PI3K. PAL-1

Atherosclerosis| Endomt

I Primary Prevention | | Tertiary Prevention |

I Secondary Prevention |

Figure 8. Diagram representation of quercetin's
protective effects on the endothelium and, consequently,
the heart. [AATK: apoptosis-associated tyrosine kinase;
ACE: angiotensin-converting enzyme; Angll, angiotensin Il;
BK, big K, large-conductance Ca2+-sensitive K+ channels;
CAV-1, caveolin-1; CDKN2A, p16, cyclin-dependent kinase
inhibitor 2A; CK-MB, creatinine kinase-MB; EndoMT,
endothelial-to-mesenchymal transition; ET-1, endothelin-
1; IGFBP3, insulin-like growth factor binding protein-3;
eNOS, endothelial nitric oxide synthase; NFkB, nuclear
factor-kappa B; NO, nitric oxide; ox-LDLs, oxidized low
density lipoproteins; Fyn, Src family 59 kDa non-receptor
protein tyrosine-kinase; LAT, linker for activation of T
cells; LTCCs, L-type Ca2+ channels; LVEDP, left
ventricular end-diastolic pressure; LVEF, left ventricular
ejection fraction; LVSP, left ventricular systolic pressure;
MMPs, matrix metalloproteases; PAI-1, plasminogen-
activated inhibitor-1; PCSK9, proprotein convertase
subtilisin/kexin type 9; PI3K, phosphatidylinositol-4,5-
bisphosphate 3 kinase; PCy2, phospholipase Cy2; SCFAs,
short-chain fatty acids; ROS, reactive oxygen species;
SASP, senescence-associated secretory phenotype; SIRT1,
sirtuin-1, nicotinamide adenine dinucleotide [NAD(+)]-
dependent protein deacetylase; SOD, superoxide
dismutase; TGF-B, transforming growth factor beta;
VGKCs, voltage-gated K+ channels.]

3.8. Neuroprotective Activity

Quercetin exhibits neuroprotective effects by mitigating
oxidative stress, neuroinflammation, and mitochondrial
dysfunction, all of which are implicated in
neurodegenerative diseases [110]. It scavenges ROS and
enhances antioxidant defenses within the brain,
protecting neurons from oxidative damage. Quercetin
also reduces neuroinflammation by inhibiting the
activation of microglia, the brain’s resident immune cells,
which can release neurotoxic substances when activated.
Furthermore, quercetin regulates neurotransmitter levels
and inhibits enzymes like acetylcholinesterase, which is
beneficial in conditions like Alzheimer’s disease. Its
neuroprotective  action extends to  preventing
mitochondrial dysfunction by stabilizing mitochondrial
membranes and reducing calcium influx, both of which
are essential for neuron survival [111], [112]. Figure 9
describes the neuroprotective activity of quercetin.
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Figure 9. Neuroprotective mechanism of quercetin
4. Quercetin Profiling of Rutaceae Family Edible Plants

Profiling the quercetin content across different plant
parts such as fruits, peels, and leaves not only facilitates
the identification of potent natural sources but also
provides a foundation for targeted pharmacognostic
applications. Table 3 presents an overview of selected
Rutaceae family edible plants available in West Bengal,
detailing their specific plant parts analyzed, quantified
quercetin content (expressed as mg Quercetin Equivalent
per gram). This phytochemical profiling supports the
potential nutraceutical and functional food applications
of these species.

Table 3. Quercetin profiling of Rutaceae family edible
plants in West Bengal: [ND (Not Determined) indicates
that the quercetin content of the corresponding plant
part has not yet been experimentally quantified in the
available literature. However, the presence of quercetin
has been reported through preliminary phytochemical
tests of the mentioned parts.]
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Plant Source Common Name Parts Used Quercetin equivalent | Extraction method/type of | Referenc
mg/g of dry extract solvent used e
Leaves 18.12 + 3.86 mg/g
Aegle marmelos Bael Ethanol Extraction [5], [113]
Fruits ND
Mu’rraya Kamini Leaves 9.15 +0.02 mg/g Ethanol Extraction [114]
paniculata
. Methanol/ethanol
Murraya koenigii Curry Leaves Leaves 0.08 mg/g extractions [115]
Triphasia trifolia Limeberry Fruits ND [116]
Limonia acidissima | Wood Apple/ Kadbel Fruits 1.4 mg/g Methanol Extraction [117]
Peel 23.2 mg/g
. . . Musambi/Sweet Fruits 0.96 mg/g Methanol and ethanol
Citrus sinensis :
Orange extractions [118],
110.23 + 4.62 mg/g of
Leaves dry extract (1191,
y [120]
Peel 23.2 mg/g
Citrus paradisi Grapefruit Methanol extraction
Fruits 0.96 mg/g
. , Peel 3.78 mg/g Methanol and aqueous [121],
Citrus limon Lemon :
Fruits 0.01 mg/g ethanol extractions [122]
Peel 0.041-0.064 mg/g
Citrus aurantifolia | Kaghzi Nimbu (Lime) Fruits 0.089 mg/g dry weight Methanol extractions [48]
Leaves ND
Citrus maxima/ Ethanol/ methanol
Citrus grandis Pomelo Peel 4.56 mg/g extraction [123]
Citrus bergamia Bergamot Fruit 3.91+0.37 mg/g Ethanol/ mgthanol [124]
extraction
11.99+1.80 mg/g
Leaves (aqueous extract) and
5.08+0.40 mg/g
(methanolic extract)
. . : : Ethanol/ methanol
Citrus aurantium | Khatta/Bitter Orange Fruits 0.96 mg/g extraction [125],
1.43 mg/g (aqueous [126]
Peel extract) and 14.82
mg/g (methanolic
extract)
QE: Quercetin Equivalent (mg/g of dry extract); ND: Not Determined
It is noteworthy that while some Rutaceae plant parts g, while capers exhibit some of the highest
are listed as ND (Not determined), they were included in concentrations (180-230 mg/100 g) [59], [127]. By

Table 3 because preliminary phytochemical screenings or
studies on other organs of the same species confirmed the
presence of quercetin. These entries highlight research
gaps rather than absence of the compound, thereby
guiding future phytochemical investigations. For instance,
Aegle marmelos and Citrus maxima have shown quercetin
presence in leaves and peels, but their seeds and roots
remain unquantified.

When compared with other well-studied dietary sources of
quercetin outside the Rutaceae family, Rutaceae species
generally fall within a moderate range. For example,
onions (Allium cepa) contain 19-33 mg quercetin/100 g
fresh weight, apples provide 2-5 mg/100

contrast, Rutaceae fruits such as Citrus sinensis peels

report 12-20 mg/g dry weight, and Aegle marmelos leaves
contain 15-25 mg/g dry weight. This suggests that certain
Rutaceae plants, particularly non-edible parts like peels
and leaves, may rival or even exceed common quercetin-
rich foods, supporting their relevance for nutraceutical
applications.

4.1. Comparative Insights and Critical Evaluation

Quercetin content varied significantly among Rutaceae
species and their respective plant parts. Notably, Citrus
sinensis (No. 6) exhibited the highest quercetin levels in
leaves (110.23 + 4.62 mg QE/g dry extract) and peels
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(23.2 mg/g), whereas Citrus limon (No. 8) and Murraya
koenigii (No. 3) recorded considerably lower levels in fruits
and leaves as 0.01 mg/g and 0.08 mg/g respectively,
suggesting species and organ-specific accumulation. Aegle
marmelos (No. 1) showed moderate quercetin content in
its leaves (18.12 + 3.86 mg QE/g), while its fruits lacked
quantification data. This differential  distribution
underlines the need for plant-part-targeted extraction to
optimize yield for pharmacological applications. There is a
notable correlation between high quercetin content and
reported bioactivities in specific plant parts. For instance,
the high antioxidant and antidiabetic effects reported in
Citrus sinensis (No. 6) and Aegle marmelos (No. 1)
correlate well with their elevated quercetin concentrations
[128]. In contrast, plants with low quercetin content (e.g.,
Murraya koenigii leaves: 0.08 mg/g) showed lesser
bioactivity in mechanistic studies, implying a dose-
dependent therapeutic impact. In terms of extraction,
methanolic and ethanolic solvents are most effective for
quercetin recovery from plant matrices due to their
polarity and compatibility with phenolic compounds.
Studies have demonstrated that methanolic extracts of
Citrus aurantium (No. 12) yielded up to 14.82 mg QE/g in
peel, compared to 1.43 mg QE/g in aqueous extract.
Hence, methanol emerges as the optimal solvent, followed
by ethanol, for quercetin extraction in Rutaceae species.
Techniques like Soxhlet extraction and ultrasonication-
assisted extraction further enhance yield by improving cell
wall penetration and reducing processing time. However,
green extraction technologies (e.g., supercritical fluid
extraction) remain underexplored and warrant future
investigation for eco-friendly scalability.

Thus, critically evaluating quercetin concentration,
pharmacological relevance, and extraction efficiency
reveals interrelated insights that should guide future
standardization, therapeutic applications, and functional
food formulation from Rutaceae family plants.

5. Conclusion

In  conclusion, this review highlights the diverse
pharmacological potential of quercetin, a key flavonol is
present in edible Rutaceae species of West Bengal. Among
the profiled plants, Citrus sinensis and Aegle marmelos
emerged as particularly rich sources of quercetin,
especially in their leaves and peels, suggesting their
relevance as quercetin-enriched botanical resources.
Correlations between higher quercetin concentrations and
potent biological activities, particularly antioxidant,
antidiabetic, anti-inflammatory, and cardioprotective
effects, were describes quercetin’s therapeutic potential.
And also, mechanisms underscore the quercetin’s
therapeutic potential in managing cardiovascular diseases
and malignancies, emphasizing its significance as a
multifunctional bioactive compound. Among various
solvents and extraction techniques, methanolic extraction
proved to be the most efficient for quercetin recovery.
This supports the importance of standardizing both
extraction protocols and quantification methods to ensure
reproducibility in pharmacological assessments.

The key take-home message is that edible Rutaceae plants
not only represent valuable nutritional sources but also
serve as promising candidates for nutraceutical
development and phytomedicine formulation. Future
efforts should focus on the standardization of quercetin

extraction, improvement of bioavailability using delivery
systems like nanocarriers or liposomes, and the validation
of therapeutic outcomes through clinical studies targeting
molecular pathways such as PI3K/Akt, NF-kB, and Nrf2.
Additionally, long-term dietary studies and regulatory
evaluation are needed to promote the safe use of
quercetin-rich Rutaceae plants in functional food. This
review encourages further research into underutilized
species and supports the pharmacognostic exploration of
quercetin as a natural therapeutic lead compound.
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