1. Zhang, Y.; Li, J.; Mouser, VHM; Roumans, N.; Moroni, L.; Habibovic, P. Biomimetic mechanically strong one-dimensional hydroxyapatite/poly(d,l-lactide) composite inducing formation of anisotropic collagen matrix. ACS Nano. 2021, 15 (11), 17480—17498. DOI: 10.1021/acsnano.1c03905
2. Kołodziejska, B.; Kaflak, A.; Kolmas, J. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration—A review. Materials. 2020, 13 (7), 1748. DOI: 10.3390/ma13071748
3. Awasthi, S.; Pandey, SK; Arunan, E.; Srivastava, C. A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. J. Mater. Chem. B. 2021, 9, 228—249. DOI: 10.1039/D0TB02407D
4. Alkaron, W.; Almansoori, A.; Balázsi, C.; Balázsi, K. A critical review of natural and synthetic polymer-based biological apatite composites for bone tissue engineering. J. Compos. Sci. 2024, 8 (12), 523. DOI: 10.3390/jcs8120523
5. Haider, A.; Haider, S.; Han, SS; Kang, IK. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv. 2017, 7, 7442—7458. DOI: 10.1039/C6RA26124H
6. Sobczak-Kupiec, A.; Wzorek, Z. Physicochemical properties of calcium orthophosphate significant for medicine ¬¬— TCP and HAp. Techn. Transactions. Chem. 2010, 1-Ch 10 (107), 309—322. DOI: -
7. Du, M.; Chen, J.; Liu, K.; Xing, H.; Song, C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Composites Part B: Eng. 2021, 215, Art. No: 108790. DOI: 10.1016/j.compositesb.2021.108790
8. Šupová, M. Problem of hydroxyapatite dispertion in polymer matrices: A review. J. Mater. Sci.: Mater. Med. 2009, 20, 1201—1213. DOI: 10.1007/s10856-009-3696-2
9. Murugesan, V.; Vayiapuri, M.; Murugeasan, A. Fabrication and characterization of strontium substituted chitosan modify hydroxyapatite for biomedical applications. Inorg. Chem. Commun. 2022, 142, Art. No: 109653. DOI: 10.1016/j.inoche.2022.109653
10. Pu'ad, N. M.; Haq, R. A.; Noh, H. M.; Abdullah, H. Z.; Idris, M. I.; Lee, T. C. Synthesis method of hydroxyapatite: A review. Mater. Today: Proc. 2020, 29, 233—239. DOI: 10.1016/j.matpr.2020.05.536
11. Sobczak, A.; Kowalski, Z. Hydroxyapatite materials applied in implantology. Techn. Transactions. Chem. 2007, 1-Ch 8 (108), 149—158. DOI: -
12. Siddiqi, S. A.; Manzoor, F.; Jamal, A.; Tariq, M.; Ahmad, R.; Kamran, M.; Chaudhry, A.; Rehman, I. U. Mesenchymal stem cell (MSC) viability on PVA and PCL polymer coated hydroxyapatite scaffolds derived from cuttlefish. RSC Adv. 2016, 6 (39), 32897—32904. DOI: 10.1039/C5RA22423C
13. Dorozhkin, S. V. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J. Funct. Biomater. 2015, 6, 708—832. DOI: 10.3390/jfb6030708
14. Ogaji, I.; Nep, E. I.; Audu-Peter, J. D. Advances in natural polymers as pharmaceutical excipients. Pharm. Anal. Acta 2012, 3 (1), 1—16. DOI: 10.4172/2153-2435.1000146.
15. Govindan, R.; Kumar, G. S.; Girija, E. K. Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Adv. 2015, 5 (74), 60188—60198. DOI: 10.1039/C5RA09258B
16. Kim, H. W.; Knowles, J. C.; Kim, H. E. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J. Mater. Sci.: Mater. Med. 2005, 16, 189—195. DOI: 10.1007/s10856-005-6679-y
17. Zhao, J.; Duan, K.; Zhang, J. W.; Lu, X.; Weng, J. The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds. Appl. Surf. Sci. 2010, 256 (14), 4586—4590. DOI: 10.1016/j.apsusc.2010.02.053
18. Song, J.; Winkeljann, B.; Lieleg, O. Biopolymer-based coatings: Promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Adv. Mater. Interfaces 2020, 7, Art. No: 2000850. DOI: 10.1002/admi.202000850
19. Reneker, D. H.; Chun, I. Nanometre diameter fibres of polymer produced by electrospinning. Nanotechnol. 1996, 7 (3), 216—223. DOI: 10.1088/0957-4484/7/3/009
20. Yang, G.; Li, X.; He, Y.; Ma, J.; Ni, G.; Zhou, S. From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 2018, 81, 80—113. DOI: 10.1016/j.progpolymsci.2017.12.003
21. Himma, N. F.; Wardani, A. K.; Wenten, I. G. Preparation of superhydrophobic polypropylene membrane using dip-coating method: The effects of solution and process parameters. Polym.-Plast. Technol. Eng. 2017, 56 (2), 184—194. DOI: 10.1080/03602559.2016.1185666
22. Tang, X.; Yan, X. Dip-coating for fibrous materials: Mechanism, methods and applications. J. Sol-Gel Sci. Technol. 2017, 81, 378—404. DOI: 10.1007/s10971-016-4197-7
23. Wu, X.; Wyman, I.; Zhang, G.; Lin, J.; Liu, Z.; Wang, Y.; Hu, H. Preparation of superamphiphobic polymer-based coatings via spray-and dip-coating strategies. Prog. Org. Coatings 2016, 90, 463—471. DOI: 10.1016/j.porgcoat.2015.08.008
24. Li, S. J.; Niinomi, M.; Akahori, T.; Kasuga, T.; Yang, R.; Hao, Y. L. Fatigue characteristics of bioactive glass-ceramic-coated Ti—29Nb—13Ta—4.6 Zr for biomedical application. Biomater. 2004, 25 (17), 3369—3378. DOI: 10.1016/j.biomaterials.2003.09.108
25. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Sci. 2007, 318 (5849), 426—430. DOI: 10.1126/science.1147241
26. Norrman, K.; Ghanbari-Siahkali, A.; Larsen, N. B. Studies of spin-coated polymer films. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2005, 101, 174—201. DOI: doi.org/10.1039/B408857N
27. Sahu, N.; Parija, B.; Panigrahi, S. Fundamental understanding of and modeling of spin coating process: A review. Indian J. Phys. 2009, 83, 493—502. DOI: 10.1007/s12648-009-0009-z.
28. Habeeb, A. F. S. A.; Hiramoto, R. Reaction of proteins with glutaraldehyde. Archives of Biochem. Biophys. 1968, 126 (1), 16—26. DOI: 10.1016/0003-9861(68)90554-7
29. Facci, P.; Alliata, D.; Andolfi, L.; Schnyder, B.; Kötz, R. Formation and characterization of protein monolayers on oxygen-exposing surfaces by multiple-step self-chemisorption. Surf. Sci. 2002, 504, 282—292. DOI: 10.1016/S0039-6028(02)01148-2
30. Sargeant, T. D.; Rao, M. S.; Koh, C. Y.; Stupp, S. I. Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers. Biomater. 2008, 29 (8), 1085—1098. DOI: 10.1016/j.biomaterials.2007.11.002
31. Migneault, I.; Dartiguenave, C.; Bertrand, M. J.; Waldron, K. C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37 (5), 790—802. DOI: 10.2144/04375RV01
32. Khorana, H. G. The chemistry of carbodiimides. Chem. Rev. 1953, 53 (2), 145—166. DOI: 10.1021/cr60165a001
33. Staros, J. V.; Wright, R. W.; Swingle, D. M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 1986, 156 (1), 220—222. DOI: 10.1016/0003-2697(86)90176-4
34. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40 (11), 2004—2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
35. Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed. 2009, 48 (27), 4900—4908. DOI: 10.1002/anie.200900755
36. Makhlouf, A. S. H.; Perez, A.; Guerrero, E. Chapter 13: Recent trends in smart polymeric coatings in biomedicine and drug delivery applications. In Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications; Makhlouf, A. S. H., Abu-Thabit, N. Y., Eds.; Elsevier: Oxford, United Kingdom, 2020; pp. 359—381. DOI: 10.1016/B978-0-12-849870-5.00019-7
37. Nathanael, A. J.; Oh, T. H. Biopolymer coatings for biomedical applications. Polym. 2020, 12 (12), Art. No: 3061. DOI: 10.3390/polym12123061
38. Augello, C.; Liu, H. Surface modification of magnesium by functional polymer coatings for neural applications. In Surface Modification of Magnesium and its Alloys for Biomedical Applications; Sankara Narayanan T. S. N., Park, I. S., Lee, M. H., Eds.; Elsevier: Cambridge, United Kingdom, 2015; Volume II, pp. 335—353. DOI: 10.1016/B978-1-78242-078-1.00012-8.
39. Ignjatović, N.; Wu, V.; Ajduković, Z.; Mihajilov-Krstev, T.; Uskoković, V.; Uskoković, D. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Mater. Sci. Eng. 2016, 60, 357—364. DOI: 10.1016/j.msec.2015.11.061
40. Schnettler, R.; Pfefferle, HJ; Kilian, O.; Heiss, Ch.; Kreuter, J.; Lommel, D.; Pavlidis, T.; Stahl, JP; Meyer, Ch.; Wenisch, S.; Alt, V. Glycerol-l-lactide coating polymer leads to delay in bone ingrowth in hydroxyapatite implants. J. Contr. Release 2005, 106 (1—2), 154—161. DOI: 10.1016/j.jconrel.2005.04.011
41. Kasprzak, M.; Szabłowska, A.; Kurzyk, A.; Tymowicz-Grzyb, P.; Najmrodzki, A.; Woźniak, A.; Antosik, A.; Pagacz, J.; Szterner, P.; Plichta, A.; Wieciński, P.; Rusek-Wala, P.; Krupa, A.; Płociński, P.; Rudnicka, K.; Biernat, M. Effects of Sterilization and Hydrolytic Degradation on the Structure, Morphology and Compressive Strength of Polylactide-Hydroxyapatite Composites. Int. J. Mol. Sci. 2022, 23 (18), 10454. DOI: 10.3390/ijms231810454
42. Kucharska-Jastrząbek, A.; Chmal-Fudali, E.; Rudnicka, D.; Kosińska, B. Effect of Sterilization on Bone Implants Based on Biodegradable Polylactide and Hydroxyapatite. Materials 2023, 16, 5389. DOI: 10.3390/ma16155389
43. Dickson, KF; Friedman, J.; Buchholz, JG; Flandry, FD. The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling. J. Trauma. 2002, 53 (6), 1103—1108. DOI: 10.1097/00005373-200212000-00012
44. Cornell, C. N.; Lane, J. M.; Chapman, M.; Merkow, R.; Seligson, D.; Henry, S.; Gustilo, R.; Vincent, K. Multicenter trial of Collagraft as bone graft substitute. J. Orthop. Trauma 1991, 5 (1), 1—8. DOI: -
45. Khan Safdar, N.; Tomin, E.; Lane, Joseph M. Clinical applications of bone graft substitutes. Orthop. Clin. 2000, 31 (3), 389—398. DOI: 10.1016/S0030-5898(05)70158-9
46. Bisht, S.; Bhakta, G.; Mitra, S.; Maitra, A. pDNA loaded calcium phosphate nanoparticles: Highly efficient non-viral vector for gene delivery. Int. J. Pharm. 2005, 288 (1), 157—168. DOI: 10.1016/j.ijpharm.2004.07.035
47. Loo, S. C. J.; Moore, T.; Banik, B.; Alexis, F. Biomedical applications of hydroxyapatite nanoparticles. Curr. Pharm. Biotechnol. 2010, 11 (4), 333—342. DOI: 10.2174/138920110791233343
48. Do, T. N. T.; Lee, W. H.; Loo, C. Y.; Zavgorodniy, A. V.; Rohanizadeh, R. Hydroxyapatite nanoparticles as vectors for gene delivery. Ther. Delivery 2012, 3 (5), 623—632. DOI: 10.4155/tde.12.39
49. Ong, H. T.; Loo, J. S.; Boey, F. Y.; Russell, S. J.; Ma, J.; Peng, K. W. Exploiting the high-affinity phosphonate-hydroxyapatite nanoparticle interaction for delivery of radiation and drugs. J. Nanopart. Res. 2008, 10, 141—150. DOI: 10.1007/s11051-007-9239-1
50. Müller, K. H.; Motskin, M.; Philpott, A. J.; Routh, A. F.; Shanahan, C. M.; Duer, M. J.; Skepper, J. N. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomater. 2014, 35 (3), 1074—1088. DOI: 10.1016/j.biomaterials.2013.10.041
51. Aoki, H.; Aoki, H.; Kutsuno, T.; Li, W.; Niwa, M. An in vivo study on the reaction of hydroxyapatite-sol injected into blood. J. Mater. Sci.: Mater. Med. 2000, 11 (2), 67—72. DOI: 10.1023/A:1008993814033
52. Fan, Q.; Wang, Y. E.; Zhao, X.; Loo, J. S.; Zuo, Y. Y. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano 2011, 5 (8), 6410—6416. DOI: 10.1021/nn2015997
53. Yang, P.; Quan, Z.; Li, C.; Kang, X.; Lian, H.; Lin, J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomater. 2008, 29 (32), 4341—4347. DOI: 10.1016/j.biomaterials.2008.07.042
54. Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8 (7), 543—557. DOI: 10.1038/nmat2442
55. Moore, T. L.; Schreurs, A. S.; Morrison, R. A.; Jelen. E. K.; Loo, J.; Globus, R. K.; Alexis, F. Polymer-coated hydroxyapatite nanoparticles for the delivery of statins. J. Nanomed. Nanotechnol. 2014, 5 (5), Art. No: 237. DOI: 10.4172/2157-7439.1000237
56. Wang, S.; Wang, X.; Xu, H.; Abe, H.; Tan, Z.; Zhao, Y.; Guo, J.; Naito, M.; Ichikawa, H.; Fukumori, Y. Towards sustained delivery of small molecular drugs using hydroxyapatite microspheres as the vehicle. Adv. Powder Technol. 2010, 21 (3), 268—272. DOI: 10.1016/j.apt.2009.12.001
57. Dubnika, A.; Loca, D.; Berzina-Cimdina, L. Functionalized hydroxyapatite scaffolds coated with sodium alginate and chitosan for controlled drug delivery. Proc. Est. Acad. Sci. 2012, 61 (3), 193—199. DOI: 10.3176/proc.2012.3.08
58. Bloemers, F. W.; Blokhuis, T. J.; Patka, P.; Bakker, F. C.; Wippermann, B. W.; Haarman, H. J. T. M. Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J. Biomed. Mater. Res. B: Appl. Biomater. 2003, 66 (2), 526—531. DOI: 10.1002/jbm.b.10045
59. Goulet, J. A.; Senunas, L. E.; DeSilva, G. L.; Greenfield, M. L. V. Autogenous iliac crest bone graft: Complications and functional assessment. Clin. Orthop. Relat. Res. 1997, 339, 76—81. DOI: 10.1097/00003086-199706000-00011
60. Alt, V.; Pfefferle, H. J.; Kreuter, J.; Stahl, J. P.; Pavlidis, T.; Meyer, C.; Mockwitz, J.; Wenisch, S.; Schnettler, R. Effect of glycerol-L-lactide coating polymer on bone ingrowth of bFGF-coated hydroxyapatite implants. J. Contr. Release 2004, 99 (1), 103—111. DOI: 10.1016/j.jconrel.2004.06.017.
61. Venkatesan, J.; Kim, S. K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J. Biomed. Nanotechnol. 2014, 10 (10), 3124—3140. DOI: 10.1166/jbn.2014.1893
62. Ignjatović, N. L.; Liu, C. Z.; Czernuszka, J.; Uskoković, D. P. Micro-and nano-injectable composite biomaterials containing calcium phosphate coated with poly (DL-lactide-co-glycolide). Acta Biomater. 2007, 3 (6), 927—935. DOI: 10.1016/j.actbio.2007.04.001
63. Ignjatović, N. L.; Ajduković, Z. R.; Savić, V. P.; Uskoković, D. P. Size effect of calcium phosphate coated with poly‐DL‐lactide‐co‐glycolide on healing processes in bone reconstruction. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2010, 94 (1), 108—117. DOI: 10.1002/jbm.b.31630
64. Yamaguchi, I.; Tokuchi, K.; Fukuzahi, K.; Koyama, Y.; Takakuda, K.; Monma, H.; Tanaka, J. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res. 2001, 55 (1), 20—27. DOI: 10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F
65. Tavakol, S.; Nikpour, M. R.; Amani, A.; Soltani, M.; Rabiee, S. M.; Rezayat, S. M.; Chen, P.; Jahanshahi, M. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: An in vitro and in vivo comparative study. J. Nanopart. Res. 2013, 15, 1—16. DOI: 10.1007/s11051-012-1373-8
66. Uskoković, V. When 1 + 1 > 2: Nanostructured composites for hard tissue engineering applications. Mater. Sci. Eng. C 2015, 57, 434—451. DOI: 10.1016/j.msec.2015.07.050
67. Mahanty, A.; Shikha, D. Changes in the morphology, mechanical strength and biocompatibility of polymer and metal/polymer fabricated hydroxyapatite for orthopaedic implants: A review. J. Polym. Eng. 2022, 42 (4), 298—322. DOI: 10.1515/polyeng-2021-0171.
68. Thepphanao, N. Synthesis of hydroxyapatite nanoparticles for polynucleotides delivery in dentistry. Thesis for the degree of Master of Science in chemistry, Chulalongkorn University, Thailand, 2018. DOI: 10.58837/CHULA.THE.2018.106
69. Truong-Le, V. L.; Walsh, S. M.; Schweibert, E.; Mao, H. Q.; Guggino, W. B.; August, J. T.; Leong, K. W. Gene transfer by DNA–gelatin nanospheres. Archiv. Biochem. Biophys. 1999, 361 (1), 47—56. DOI: 10.1006/abbi.1998.0975
70. Elhaj Baddar, Z.; Gurusamy, D.; Laisney, J.; Tripathi, P.; Palli, S. R.; Unrine, J. M. Polymer-coated hydroxyapatite nanocarrier for double-stranded RNA delivery. J. Agric. Food Chem. 2020, 68 (25), 68116818. DOI: 10.1021/acs.jafc.0c02182
71. Li, J.; Chen, Y. C.; Tseng, Y. C.; Mozumdar, S.; Huang, L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Controlled Release 2010, 142 (3), 416421. DOI: 10.1016/j.jconrel.2009.11.008
72. Cheng, X.; Kuhn, L. Chemotherapy drug delivery from calcium phosphate nanoparticles. Int. J. Nanomed. 2007, 2 (4), 667674. DOI: 10.2147/IJN.S2.4.667
73. Roy, I.; Mitra, S.; Maitra, A.; Mozumdar, S. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm. 2003, 250 (1), 2533. DOI: 10.1016/S0378-5173(02)00452-0
74. Mostaghaci, B.; Susewind, J.; Kickelbick, G.; Lehr, C. M.; Loretz, B. Transfection system of amino-functionalized calcium phosphate nanoparticles: In vitro efficacy, biodegradability, and immunogenicity study. ACS Appl. Mater. Interfaces 2015, 7 (9), 51245133. DOI: 10.1021/am507193a
75. Bakhsheshi, H. R.; Hamzah, E.; Abdul-Kadir, M. R.; Saud, S. N.; Kasiri-Asgarani, M.; Ebrahimi-Kahrizsangi, R. The mechanical properties and corrosion behavior of double-layered nano hydroxyapatite-polymer coating on Mg-Ca alloy. J. Mater. Eng. Perform. 2015, 24, 40104021. DOI: 10.1007/s11665-015-1661-4
76. Wang, H.; Zhao, C.; Chen, Y.; Li, J.; Zhang, X. Electrochemical property and in vitro degradation of DCPD-PCL composite coating on the biodegradable Mg-Zn alloy. Mater. Lett. 2012, 68, 435438. DOI: 10.1016/j.matlet.2011.11.029
77. Ji, X. J.; Cheng, Q.; Wang, J.; Zhao, Y. B.; Han, Z. Z.; Zhang, F.; Li, S. Q.; Zeng, R. C.; Wang, Z. L. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy. Front. Mater. Sci. 2019, 13, 8798. DOI: 10.1007/s11706-019-0448-1
78. Taha, M.; Chai, F.; Blanchemain, N.; Neut, C.; Goube, M.; Maton, M.; Martel, B.; Hildebrand, H. F. Evaluation of sorption capacity of antibiotics and antibacterial properties of a cyclodextrin-polymer functionalized hydroxyapatite-coated titanium hip prosthesis. Int. J. Pharm. 2014, 477 (1-2), 380389. DOI: 10.1016/j.ijpharm.2014.10.026