Bal, C.; Akgul, H.; Sevindik, M.; Akata, I.; Yumrutas, O. Determination of the anti-oxidative activities of six mushrooms. Fresenius Environ. Bull., 2017, 26(10), 6246-6252.
Sevindik, M. The novel biological tests on various extracts of Cerioporus varius. Fresenius Environ. Bull., 2019, 28(5), 3713-3717.
Sevindik, M.; Akgul, H.; Bal, C.; Selamoglu, Z. Phenolic contents, oxidant/antioxidant potential and heavy metal levels in Cyclocybe cylindracea. Indian J. Pharm. Educ. Res., 2018, 52(3), 437-441. https://doi.org/10.5530/ijper.52.3.50
DOI: https://doi.org/10.5530/ijper.52.3.50
Bal, C.; Sevindik, M.; Akgul, H.; Selamoglu, Z. Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/ Turkey. Sigma J. Engin. Nat. Sci., 2019, 37(1), 1-5.
Korkmaz, A. I.; Akgul, H.; Sevindik, M.; Selamoglu, Z. Study on determination of bioactive potentials of certain lichens. Acta Aliment., 2018, 47(1), 80-87. http://dx.doi.org/10.1556/066.2018.47.1.10
DOI: https://doi.org/10.1556/066.2018.47.1.10
Sevindik, M.; Akgül, H.; Dogan, M.; Akata, I.; Selamoglu, Z. Determination of antioxidant, antimicrobial, DNA protective activity and heavy metals content of Laetiporus sulphureus. Fresenius Environ. Bull., 2018, 27(3), 1946-1952.
Selamoglu, Z.; Sevindik, M.; Bal, C.; Ozaltun, B.; Sen, İ.; Pasdaran, A. Antioxidant, antimicrobial and DNA protection activities of phenolic content of Tricholoma virgatum (Fr.) P. Kumm. Biointerface Res. Appl. Chem., 2020, 10(3), 5500-5506. http://dx.doi.org/10.33263/BRIAC103.500506
DOI: https://doi.org/10.33263/BRIAC103.500506
Sevindik, M.; Akgul, H.; Selamoglu, Z.; Braidy, N. Antioxidant and antigenotoxic potential of Infundibulicybe geotropa mushroom collected from Northwestern Turkey. Oxid. Med. Cell. Longev., 2020, https://doi.org/10.1155/2020/5620484
DOI: https://doi.org/10.1155/2020/5620484
Mushtaq, W.; Baba, H.; Akata, I.; Sevindik, M. Antioxidant potential and element contents of wild edible mushroom Suillus granulatus. KSU J. Agric. Nat., 2020, 23(3), 592-595. http://dx.doi.org/10.18016/ksutarimdoga.vi.653241
DOI: https://doi.org/10.18016/ksutarimdoga.vi.653241
Sevindik, M.; Akata, I. Antioxidant, oxidant potentials and element content of edible wild mushroom Helvella leucopus. Indian J. Nat. Prod. Resour., 2020, 10(4), 266-271.
Saridogan, B. G. O.; Islek, C.; Baba, H.; Akata, I.; Sevindik, M. Antioxidant antimicrobial oxidant and elements contents of Xylaria polymorpha and X. hypoxylon (Xylariaceae). Fresenius Environ. Bull., 2021, 30(5), 5400-5404.
Sevindik, M.; Anticancer, antimicrobial, antioxidant and DNA protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl. Indian J. Exp. Biol., 2021, 59(05), 310-315.
Eraslan, E. C.; Altuntas, D.; Baba, H.; Bal, C.; Akgül, H.; Akata, I.; Sevindik, M. Some biological activities and element contents of ethanol extract of wild edible mushroom Morchella esculenta. Sigma J. Engin. Nat. Sci., 2021, 39(1), 24-28.
Islek, C.; Saridogan, B. G. O.; Sevindik, M.; Akata, I. Biological activities and heavy metal contents of some Pholiota species. Fresenius Environ. Bull., 2021, 30(6), 6109-6114.
Sevindik, M.; Bal, C. Antioxidant, antimicrobial, and antiproliferative activities of wild mushroom, Laeticutis cristata (Agaricomycetes), from Turkey. Int. J. Med. Mushrooms, 2021, 23(11), 85-90. https://doi.org/10.1615/intjmedmushrooms.2021040415
DOI: https://doi.org/10.1615/IntJMedMushrooms.2021040415
Sevindik, M. Antioxidant and antimicrobial capacity of Lactifluus rugatus and its antiproliferative activity on A549 cells. Indian J. Tradit. Knowl., 2020, 19(2), 423-427.
DOI: https://doi.org/10.56042/ijtk.v19i2.35356
Bal, C.; Baba, H.; Akata, I.; Sevindik, M.; Selamoglu, Z.; Akgül, H. Biological Activities of Wild Poisonous Mushroom Entoloma sinuatum (Bull.) P. Kumm (Boletales). KSU J. Agric. Nat., 2022, 25(1), 83-87. http://dx.doi.org/10.18016/ksutarimdoga.vi.880151
DOI: https://doi.org/10.18016/ksutarimdoga.vi.880151
Krupodorova, T.; Sevindik, M. Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta. AgroLife Sci. J., 2020, 9(1), 186-191.
Karaltı, İ.; Eraslan, E. C.; Sarıdoğan, B. G. Ö.; Akata, I.; Sevindik, M. Total Antioxidant, Antimicrobial, Antiproliferative Potentials and Element Contents of Wild Mushroom Candolleomyces candolleanus (Agaricomycetes) from Turkey. Int. J. Med. Mushrooms, 2022, 24(12), 69-76. https://doi.org/10.1615/intjmedmushrooms.2022045389
DOI: https://doi.org/10.1615/IntJMedMushrooms.2022045389
Sevindik, M. Mushrooms as natural antiviral sources and supplements foods against coronavirus (COVID-19). J. Bacteriol. Mycol. Open Access, 2021, 9, 73-76. https://doi.org/10.15406/jbmoa.2021.09.00299
DOI: https://doi.org/10.15406/jbmoa.2021.09.00299
Sevindik, M.; Akgul, H.; Akata, I.; Alli, H.; Selamoglu, Z. Fomitopsis pinicola in healthful dietary approach and their therapeutic potentials. Acta Aliment., 2017, 46(4), 464-469. https://doi.org/10.1556/066.2017.46.4.9
DOI: https://doi.org/10.1556/066.2017.46.4.9
Baba, H.; Sevindik, M.; Dogan, M.; Akgül, H.; Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes. Fresenius Environ. Bull., 2020, 29(09), 7840-7846.
Sevindik, M.; Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus. Adv. Pharmacol. Sci., 2018, Art. No. 1718025. https://doi.org/10.1155%2F2018%2F1718025
Mohammed, F. S.; Uysal, I.; Sevindik, M. A Review on Antiviral Plants Effective against Different Virus Types. Prospects Pharm. Sci., 2023, 21(2), 1-21. https://doi.org/10.56782/pps.128
DOI: https://doi.org/10.56782/pps.128
Muylkens, B.; Thiry, J.; Kirten, P.; Schynts, F.; Thiry, E. Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet. Res., 2007, 38(2), 181-209. https://doi.org/10.1051/vetres:2006059
DOI: https://doi.org/10.1051/vetres:2006059
Griffiths, P.; Baraniak, I.; Reeves, M. The pathogenesis of human cytomegalovirus. J. Pathol., 2015; 235(2), 288-297. https://doi.org/10.1002/path.4437
DOI: https://doi.org/10.1002/path.4437
Amoros, M.; Boustie, J.; Py, M. L.; Hervé, V.; Robin, V. Antiviral activity of Homobasidiomycetes: evaluation of 121 Basidiomycetes extracts on four viruses. Int. J. Pharmacogn., 1997, 35(4), 255-260. https://doi.org/10.1076/phbi.35.4.255.13308
DOI: https://doi.org/10.1076/phbi.35.4.255.13308
Mothana, R. A. A.; Ali, N. A.; Jansen, R.; Wegner, U.; Mentel, R.; Lindequist, U. Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia, 2003, 74(1-2), 177-180. https://doi.org/10.1016/s0367-326x(02)00305-2
DOI: https://doi.org/10.1016/S0367-326X(02)00305-2
Lee, S. M.; Kim, S. M.; Lee, Y. H.; Kim, W. J.; Park, J. K.; Park, Y. I.; Synytsya, A. Macromolecules isolated from Phellinus pini fruiting body: chemical characterization and antiviral activity. Macromol. Res., 2010, 18, 602-609. https://doi.org/10.1007/s13233-010-0615-9
DOI: https://doi.org/10.1007/s13233-010-0615-9
Minari, M. C.; Rincão, V. P.; Soares, S. A.; Ricardo, N. M. P. S.; Nozawa, C.; Linhares, R. E. C. Antiviral properties of polysaccharides from Agaricus brasiliensis in the replication of bovine herpesvirus 1. Acta Virol., 2011, 55(3), 255-259. https://doi.org/10.4149/av_2011_03_255
DOI: https://doi.org/10.4149/av_2011_03_255
Rincão, V. P.; Yamamoto, K. A.; Silva Ricardo, N. M. P.; Soares, S. A.; Paccola Meirelles, L. D.; Nozawa, C.; Carvalho Linhares, R. E. Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity. Virol. J., 2012, 9(1), 1-6. https://doi.org/10.1186%2F1743-422X-9-37
DOI: https://doi.org/10.1186/1743-422X-9-37
Santoyo, S.; Ramírez-Anguiano, A.C.; Aldars-García, L.; Reglero, G.; Soler-Rivas, C. Antiviral activities of Boletus edulis, Pleurotus ostreatus and Lentinus edodes extracts and polysaccharide fractions against Herpes simplex virus type 1. J. Food Nutr. Res., 2012, 51, 225–235.
Krupodorova, T.; Rybalko, S.; Barshteyn, V. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol. Sin., 2014, 29, 284-290. https://doi.org/10.1007/s12250-014-3486-y
DOI: https://doi.org/10.1007/s12250-014-3486-y
Manoj, R.; Earanna, N.; Chandranaik, B. M. Molecular characterization of Trametes species and screening their aqueous extracts for antiviral properties. Biosci. Trends, 2017, 10(40), 8524-8529.
Doğan, H. H.; Karagöz, S.; Duman, R. In vitro evaluation of the antiviral activity of some mushrooms from Turkey. Int. J. Med. Mushrooms, 2018, 20(3), 201-212. https://doi.org/10.1615/intjmedmushrooms.2018025468
DOI: https://doi.org/10.1615/IntJMedMushrooms.2018025468
Roy, D.; Ansari, S.; Chatterjee, A.; Luganini, A.; Ghosh, S. K.; Chakraborty, N. In vitro search for antiviral activity against humancytomegalovirus from medicinal mushrooms Pleurotus sp. and Lentinus sp. J. Antivir. Antiretrovir, 2020, 12(3), 201. DOI: 10.35248/1948-5964.20.12.201
Elhusseiny, S. M.; El-Mahdy, T. S.; Awad, M. F.; Elleboudy, N. S.; Farag, M. M.; Aboshanab, K. M.; Yassien, M. A. Antiviral, cytotoxic, and antioxidant activities of three edible agaricomycetes mushrooms: Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus. J. Fungi., 2021, 7(8), 645. https://doi.org/10.3390/jof7080645
DOI: https://doi.org/10.3390/jof7080645
Boudagga, S.; Bouslama, L.; Papetti, A.; Colombo, R.; Arous, F.; Jaouani, A. Antiviral activity of Inonotusin A an active compound isolated from Boletus bellinii and Boletus subtomentosus. Biologia, 2022, 77(12), 3645–3655. https://doi.org/10.1007%2Fs11756-022-01219-z
DOI: https://doi.org/10.1007/s11756-022-01219-z
Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J.; Chen, L.; Johnson, A.; Tao, Y.; Dreyfus, C.; Yu, W.; McBride, R.; Carney, P.J.; Gilbert, A.T.; Chang, J.; Guo, Z.; Davis, C.T.; Paulson, J.C.; Stevens, J.; Rupprecht, C.E.; Holmes, E.C.; Wilson, I.A.; Donis, R.O. New world bats harbor diverse influenza A viruses. PLoS Pathogens, 2013, 9(10), e1003657. https://doi.org/10.1128/genomea.00965-17
DOI: https://doi.org/10.1371/journal.ppat.1003657
Dadonaite, B.; Vijayakrishnan, S.; Fodor, E.; Bhella, D.; Hutchinson, E. C. Filamentous influenza viruses. J. Gen. Virol., 2016, 97(8), 1755. https://doi.org/10.1099/jgv.0.000535
DOI: https://doi.org/10.1099/jgv.0.000535
Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. (Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med., 2009, 360(25), 2605-2615. https://doi.org/10.1056/nejmoa0903810
DOI: https://doi.org/10.1056/NEJMoa0903810
Jester, B. J.; Uyeki, T. M.; Jernigan, D. B. Fifty years of influenza A (H3N2) following the pandemic of 1968. Am. J. Public Health, 2020, 110(5), 669-676. https://doi.org/10.2105%2FAJPH.2019.305557
DOI: https://doi.org/10.2105/AJPH.2019.305557
Henrickson, K. J. Parainfluenza viruses. Clin. Microbiol. Rev., 2003, 16(2), 242-264. https://doi.org/10.1128/cmr.16.2.242-264.2003
DOI: https://doi.org/10.1128/CMR.16.2.242-264.2003
Teplyakova, T. V.; Psurtseva, N. V.; Kosogova, T. A.; Mazurkova, N. A.; Khanin, V. A.; Vlasenko, V. A. Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int. J. Med. Mushrooms, 2012, 14(1), 37-45. https://doi.org/10.1615/intjmedmushr.v14.i1.40
DOI: https://doi.org/10.1615/IntJMedMushr.v14.i1.40
Lee, S.; Kim, J. I.; Heo, J.; Lee, I.; Park, S.; Hwang, M. W.; Park, M. S. The anti-influenza virus effect of Phellinus igniarius extract. J. Microbiol., 2013, 51, 676-681. https://doi.org/10.1007/s12275-013-3384-2
DOI: https://doi.org/10.1007/s12275-013-3384-2
Gao, L.; Sun, Y.; Si, J.; Liu, J.; Sun, G.; Sun, X.; Cao, L. Cryptoporus volvatus extract inhibits influenza virus replication in vitro and in vivo. PLoS One, 2014, 9(12), e113604. https://doi.org/10.1371%2Fjournal.pone.0113604
DOI: https://doi.org/10.1371/journal.pone.0113604
Kuroki, T.; Lee, S.; Hirohama, M.; Taku, T.; Kumakura, M.; Haruyama, T.; Kawaguchi, A. Inhibition of influenza virus infection by Lentinus edodes mycelia extract through its direct action and immunopotentiating activity. Front. Microbiol., 2018, 9, 1164. https://doi.org/10.3389/fmicb.2018.01164
DOI: https://doi.org/10.3389/fmicb.2018.01164
Vlasenko, V.A., Ilyicheva, T. N., Teplyakova, T. V., Svyatchenko, S. V., Asbaganov, S. V., Zmitrovich, I. V., Vlasenko, A. V. Antiviral activity of total polysaccharide fraction of water and ethanol extracts of Pleurotus pulmonarius against the influenza A virus. Curr. Res. Environ. Appl. Mycol., 2020, 10(1), 224-235. https://doi.org/10.5943/cream/10/1/22
DOI: https://doi.org/10.5943/cream/10/1/22
Becht, H. Infectious bursal disease virus. Curr. Top. Microbiol. Immunol., 1980, 107-121. https://doi.org/10.1007/978-3-642-67717-5_5
DOI: https://doi.org/10.1007/978-3-642-67717-5_5
Johnston, J. B., & McFadden, G. (2003). Poxvirus immunomodulatory strategies: current perspectives. J. Virol., 2003, 77(11), 6093-6100. https://doi.org/10.1128%2FJVI.77.11.6093-6100.2003
DOI: https://doi.org/10.1128/JVI.77.11.6093-6100.2003
Kaynarcalidan, O.; Moreno Mascaraque, S.; Drexler, I. Vaccinia virus: from crude smallpox vaccines to elaborate viral vector vaccine design. Biomedicines, 2021, 9(12), 1780. https://doi.org/10.3390/biomedicines9121780
DOI: https://doi.org/10.3390/biomedicines9121780
Thompson, K. M.; Kalkowska, D. A. Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication. Expert Rev. Vaccines, 2020, 19(7), 661-686. https://doi.org/10.1080%2F14760584.2020.1791093
DOI: https://doi.org/10.1080/14760584.2020.1791093
Kidukuli, A. W.; Mbwambo, Z. H.; Malebo, H. M.; Mgina, C. A.; Mihale, M. J. In vivo antiviral activity, protease inhibition and brine shrimp lethality of selected Tanzanian wild edible mushrooms. J. Appl. Biosci., 2010, 31(1), 1887-1894.
Kandefer-Szerszeń, M.; Kawecki, Z.; Sałata, B.; Witek, M. Mushrooms as a source of substances with antiviral activity. Acta Mycol., 1980, 16(2), 215-220. https://doi.org/10.5586/am.1980.014
DOI: https://doi.org/10.5586/am.1980.014
Faccin, L. C.; Benati, F.; Rincão, V. P.; Mantovani, M. S.; Soares, S. A.; Gonzaga, M. L.; Carvalho Linhares, R. E. Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Lett. Appl. Microbiol., 2007, 45(1), 24-28. https://doi.org/10.1111/j.1472-765x.2007.02153.x
DOI: https://doi.org/10.1111/j.1472-765X.2007.02153.x
Munis, A. M.; Bentley, E. M.; Takeuchi, Y. A tool with many applications: vesicular stomatitis virus in research and medicine. Expert. Opin. Biol. Ther., 2020, 20(10), 1187-1201. https://doi.org/10.1080/14712598.2020.1787981
DOI: https://doi.org/10.1080/14712598.2020.1787981
Gallardo, J.; Pérez-Illana, M.; Martín-González, N.; San Martín, C. Adenovirus structure: what is new?. Int. J. Mol. Sci., 2021, 22(10), 5240. https://doi.org/10.3390%2Fijms22105240
DOI: https://doi.org/10.3390/ijms22105240
Battles, M. B.; McLellan, J. S. Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol., 2019, 17(4), 233-245. https://doi.org/10.1038/s41579-019-0149-x
DOI: https://doi.org/10.1038/s41579-019-0149-x
Palomar, Q.; Xu, X.; Gondran, C.; Holzinger, M.; Cosnier, S.; Zhang, Z. Voltammetric sensing of recombinant viral dengue virus 2 NS1 based on Au nanoparticle–decorated multiwalled carbon nanotube composites. Microchimica Acta, 2020, 187, 1-10. https://doi.org/10.1007/s00604-020-04339-y
DOI: https://doi.org/10.1007/s00604-020-04339-y
Takehara, M.; Kuida, K.; Mori, K. Antiviral activity of virus-like particles from Lentinus edodes (Shiitake). Arch. Virol., 1979, 59, 269-274. https://doi.org/10.1007/bf01317423
DOI: https://doi.org/10.1007/BF01317423
Zhu, Y. C.; Wang, G.; Yang, X. L.; Luo, D. Q.; Zhu, Q. C.; Peng, T.; Liu, J. K. Agrocybone, a novel bis-sesquiterpene with a spirodienone structure from basidiomycete Agrocybe salicacola. Tetrahedron Lett., 2010, 51(26), 3443-3445. https://doi.org/10.1016/j.tetlet.2010.04.128
DOI: https://doi.org/10.1016/j.tetlet.2010.04.128
Ellan, K.; Thayan, R.; Raman, J.; Hidari, K. I.; Ismail, N.; Sabaratnam, V. Anti-viral activity of culinary and medicinal mushroom extracts against dengue virus serotype 2: an in-vitro study. BMC Complement Altern. Med., 2019, 19, 1-12. https://doi.org/10.1186/s12906-019-2629-y
DOI: https://doi.org/10.1186/s12906-019-2629-y
Lim, W. Z.; Cheng, P. G.; Abdulrahman, A. Y.; Teoh, T. C. The identification of active compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus serine protease and its computational studies. J. Biomol. Struct. Dyn., 2020, 38(14), 4273-4288. https://doi.org/10.1080/07391102.2019.1678523
DOI: https://doi.org/10.1080/07391102.2019.1678523
Bharadwaj, S.; Lee, K. E.; Dwivedi, V. D.; Yadava, U.; Panwar, A.; Lucas, S. J.; Kang, S. G. Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease. Sci. Rep., 2019, 9(1), 19059. https://doi.org/10.1038/s41598-019-55723-5
DOI: https://doi.org/10.1038/s41598-019-55723-5
Douek, D. C.; Roederer, M.; Koup, R. A. Emerging concepts in the immunopathogenesis of AIDS. Annu. Rev. Med., 2009, 60, 471. https://doi.org/10.1146%2Fannurev.med.60.041807.123549
DOI: https://doi.org/10.1146/annurev.med.60.041807.123549
Powell, M. K., Benková, K., Selinger, P., Dogoši, M., Kinkorová Luňáčková, I., Koutníková, H., Laštíková, J.; Roubíčková, A.; Špůrková, Z.; Laclová, L.; Eis, V.; Šach, J.; Heneberg, P. Opportunistic infections in HIV-infected patients differ strongly in frequencies and spectra between patients with low CD4+ cell counts examined postmortem and compensated patients examined antemortem irrespective of the HAART era. PLoS One, 2016, 11(9), e0162704. https://doi.org/10.1371/journal.pone.0162704
DOI: https://doi.org/10.1371/journal.pone.0162704
Sharp, P. M., & Hahn, B. H.; The evolution of HIV-1 and the origin of AIDS. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 2010, 365(1552), 2487-2494. https://doi.org/10.1098%2Frstb.2010.0031
DOI: https://doi.org/10.1098/rstb.2010.0031
Board, N. L.; Moskovljevic, M.; Wu, F.; Siliciano, R. F.; Siliciano, J. D. Engaging innate immunity in HIV-1 cure strategies. Nat. Rev. Immunol., 2022, 22(8), 499-512. https://doi.org/10.1038/s41577-021-00649-1
DOI: https://doi.org/10.1038/s41577-021-00649-1
Sumba, J. D. GACOCA Formulation of East African wild mushrooms show promise in combating Kaposi's sarcoma and HIV/AIDS. Int. J. Med. Mushrooms, 2005, 7(3), 473-474. https://doi.org/10.1615/IntJMedMushrooms.v7.i3.1040
DOI: https://doi.org/10.1615/IntJMedMushr.v7.i3.1040
Wang, J.; Wang, H. X.; Ng, T. B. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides, 2007, 28(3), 560-565. https://doi.org/10.1016/j.peptides.2006.10.004
DOI: https://doi.org/10.1016/j.peptides.2006.10.004
El Dine, R. S.; El Halawany, A. M.; Ma, C. M.; Hattori, M. Anti-HIV-1 protease activity of lanostane triterpenes from the vietnamese mushroom Ganoderma colossum. J. Nat. Prod., 2008, 71(6), 1022-1026. https://doi.org/10.1021/np8001139
DOI: https://doi.org/10.1021/np8001139
Guo, H.; Sun, B.; Gao, H.; Chen, X.; Liu, S.; Yao, X.; Che, Y. Diketopiperazines from the Cordyceps-colonizing fungus Epicoccum nigrum. J. Nat. Prod., 2009, 72(12), 2115-2119. https://doi.org/10.1021/np900654a
DOI: https://doi.org/10.1021/np900654a
Sato, N.; Zhang, Q.; Ma, C. M.; Hattori, M. Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from Ganoderma sinense. Chem. Pharm. Bull., 2009, 57(10), 1076-1080. https://doi.org/10.1248/cpb.57.1076
DOI: https://doi.org/10.1248/cpb.57.1076
Jiang, Y.; Wong, J. H.; Fu, M.; Ng, T. B.; Liu, Z. K.; Wang, C. R.; Liu, F. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine, 2011,18(2-3), 189-193. https://doi.org/10.1016/j.phymed.2010.04.010
DOI: https://doi.org/10.1016/j.phymed.2010.04.010
Adotey, G.; Quarcoo, A.; Holliday, J.; Fofie, S.; Saaka, B. Effect of immunomodulating and antiviral agent of medicinal mushrooms (immune assist 24/7 TM) on CD4+ T-lymphocyte counts of HIV-infected patients. Int. J. Med. Mushrooms, 2011, 13(2), 109-113. https://doi.org/10.1615/intjmedmushr.v13.i2.20
DOI: https://doi.org/10.1615/IntJMedMushr.v13.i2.20
Zhang, W.; Tao, J.; Yang, X.; Yang, Z.; Zhang, L.; Liu, H.; Wu, J. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem. Biophys. Res. Commun., 2014, 449(3), 307-312. https://doi.org/10.1016/j.bbrc.2014.05.019
DOI: https://doi.org/10.1016/j.bbrc.2014.05.019
Flórez-Sampedro, L.; Zapata, W.; Orozco, L. P.; Mejía, A. I.; Arboleda, C.; Rugeles, M. T. In vitro anti-HIV-1 activity of the enzymatic extract enriched with laccase produced by the fungi Ganoderma sp. and Lentinus sp. Vitae, 2016, 23(2), 109-118. https://doi.org/10.17533/udea.vitae.v23n2a03
DOI: https://doi.org/10.17533/udea.vitae.v23n2a03
Lingala, S.; Ghany, M. G. Natural history of hepatitis C. Gastroenterol. Clin., 2015, 4(4), 717-734. https://doi.org/10.1016/j.gtc.2015.07.003
DOI: https://doi.org/10.1016/j.gtc.2015.07.003
Thomas, D. L. Global elimination of chronic hepatitis. N. Engl. J. Med., 2019, 380(21), 2041-2050. https://doi.org/10.1056/nejmra1810477
DOI: https://doi.org/10.1056/NEJMra1810477
Basra, S.; Anand, B. S. Definition, epidemiology and magnitude of alcoholic hepatitis. World J. Hepatol., 2011, 3(5), 108. https://doi.org/10.4254%2Fwjh.v3.i5.108
DOI: https://doi.org/10.4254/wjh.v3.i5.108
Terziroli Beretta-Piccoli, B.; Mieli-Vergani, G.; Vergani, D. Autoimmmune hepatitis. Cell. Mol. Immunol., 2022, 19(2), 158-176. https://doi.org/10.1038/s41423-021-00768-8
DOI: https://doi.org/10.1038/s41423-021-00768-8
Suleiman, W. B.; Shehata, R. M.; Younis, A. M. In vitro assessment of multipotential therapeutic importance of Hericium erinaceus mushroom extracts using different solvents. Bioresour. Bioprocess., 2022, 9(1), 1-13. https://doi.org/10.1186/s40643-022-00592-6
DOI: https://doi.org/10.1186/s40643-022-00592-6
Hsu, C. H.; Hwang, K. C.; Chiang, Y. H.; Chou, P. The mushroom Agaricus blazei Murill extract normalizes liver function in patients with chronic hepatitis B. J. Altern. Complement. Med., 2008, 14(3), 299-301. https://doi.org/10.1089/acm.2006.6344
DOI: https://doi.org/10.1089/acm.2006.6344
Gu, C. Q.; Li, J. W.; Chao, F. H. Inhibition of hepatitis B virus by D-fraction from Grifola frondosa: Synergistic effect of combination with interferon-α in HepG2 2.2. Antivir. Res., 2006, 72(2), 162-165. https://doi.org/10.1016/j.antiviral.2006.05.011
DOI: https://doi.org/10.1016/j.antiviral.2006.05.011
Li, Y. Q.; Zhang, K. C. In vitro inhibitory efects on HBsAg and HBeAg secretion of 3 new components produced by Ganoderma lucidum in the medium contained Radix sophorae flavescentis extract. Acta Microbiol. Sin., 2005, 45(4), 643-646.
Li, Y. Q.; Wang, S. F. Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol. Lett., 2006, 28, 837-841. https://doi.org/10.1007/s10529-006-9007-9
DOI: https://doi.org/10.1007/s10529-006-9007-9
del Mar Delgado-Povedano, M.; de Medina, V. S.; Bautista, J.; Priego-Capote, F.; de Castro, M. D. L. Tentative identification of the composition of Agaricus bisporus aqueous enzymatic extracts with antiviral activity against HCV: A study by liquid chromatography–tandem mass spectrometry in high resolution mode. J. Funct. Foods, 2016, 24, 403-419. https://doi.org/10.1016/j.jff.2016.04.020
DOI: https://doi.org/10.1016/j.jff.2016.04.020
EL-Fakharany, E.; Haroun, B.; Ng, T.; Redwan, E. R. Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept. Lett., 2010, 17(8), 1031-1039. https://doi.org/10.2174/092986610791498948
DOI: https://doi.org/10.2174/092986610791498948
Gallego, P.; Rojas, Á.; Falcón, G.; Carbonero, P.; García-Lozano, M. R.; Gil, A.; Del Campo, J. A. Water-soluble extracts from edible mushrooms (Agaricus bisporus) as inhibitors of hepatitis C viral replication. Food Funct., 2019, 10(6), 3758-3767. https://doi.org/10.1039/C9FO00733D
DOI: https://doi.org/10.1039/C9FO00733D
Sandargo, B.; Michehl, M.; Praditya, D.; Steinmann, E.; Stadler, M.; Surup, F. Antiviral meroterpenoid rhodatin and sesquiterpenoids rhodocoranes A–E from the Wrinkled Peach Mushroom, Rhodotus palmatus. Org. Lett., 2019, 21(9), 3286-3289. https://doi.org/10.1021/acs.orglett.9b01017
DOI: https://doi.org/10.1021/acs.orglett.9b01017
Peñaflor-Téllez, Y.; Chávez-Munguía, B.; Lagunes-Guillén, A.; Salazar-Villatoro, L.; Gutiérrez-Escolano, A. L. The feline calicivirus leader of the capsid protein has the functional characteristics of a viroporin. Viruses, 2022, 14(3), 635. https://doi.org/10.3390%2Fv14030635
DOI: https://doi.org/10.3390/v14030635
Lalani, S.; Poh, C. L. Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses, 2020, 12(2), 184. https://doi.org/10.3390/v12020184
DOI: https://doi.org/10.3390/v12020184
Daba, T. M.; Zhao, Y.; Pan, Z. Advancement of mechanisms of coxsackie virus B3-induced myocarditis pathogenesis and the potential therapeutic targets. Curr. Drug Targets, 2019, 20(14), 1461-1473. https://doi.org/10.2174/1389450120666190618124722
DOI: https://doi.org/10.2174/1389450120666190618124722
Tian, J.; Hu, X.; Liu, D.; Wu, H.; Qu, L. Identification of Inonotus obliquus polysaccharide with broad-spectrum antiviral activity against multi-feline viruses. Int. J. Biol. Macromol., 2017, 95, 160-167. https://doi.org/10.1016/j.ijbiomac.2016.11.054
DOI: https://doi.org/10.1016/j.ijbiomac.2016.11.054
Seetaha, S.; Ratanabunyong, S.; Tabtimmai, L.; Choowongkomon, K.; Rattanasrisomporn, J.; Choengpanya, K. Anti-feline immunodeficiency virus reverse transcriptase properties of some medicinal and edible mushrooms. Vet. World, 2020, 13(9), 1798. https://doi.org/10.14202%2Fvetworld.2020.1798-1806
DOI: https://doi.org/10.14202/vetworld.2020.1798-1806
Zhao, C.; Gao, L.; Wang, C.; Liu, B.; Jin, Y.; Xing, Z. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71. Carbohydr. Polym., 2016, 144, 382-389. https://doi.org/10.1016/j.carbpol.2015.12.005
DOI: https://doi.org/10.1016/j.carbpol.2015.12.005
Ang, W. X.; Sarasvathy, S.; Kuppusamy, U. R.; Sabaratnam, V.; Tan, S. H.; Wong, K. T.; Ong, K. C. In vitro antiviral activity of medicinal mushroom Ganoderma neo-japonicum Imazeki against enteroviruses that caused hand, foot and mouth disease. Trop. Biomed., 2021, 38(3), 239-247. https://doi.org/10.47665/tb.38.3.063
DOI: https://doi.org/10.47665/tb.38.3.063
Rehman, M. F. U.; Akhter, S.; Batool, A. I.; Selamoglu, Z.; Sevindik, M.; Eman, R.; Aslam, M. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Antibiotics, 2021, 10(8), 1011. https://doi.org/10.3390%2Fantibiotics10081011
DOI: https://doi.org/10.3390/antibiotics10081011
Hu, B.; Guo, H.; Zhou, P.; Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154. https://doi.org/10.1038/s41579-020-00459-7
DOI: https://doi.org/10.1038/s41579-020-00459-7
Elhusseiny, S. M.; El-Mahdy, T. S.; Elleboudy, N. S.; Yahia, I. S.; Farag, M. M.; Ismail, N. S.; Aboshanab, K. M. In vitro Anti SARS-CoV-2 Activity and Docking Analysis of Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus Edible Mushrooms. Infect. Drug Resist., 2022, 15, 3459-3475. https://doi.org/10.2147/idr.s362823
DOI: https://doi.org/10.2147/IDR.S362823
Teplyakova, T. V.; Pyankov, O. V.; Safatov, A. S.; Ovchinnikova, A. S.; Kosogova, T. A.; Skarnovich, M. O.; Poteshkina, A. L. Water Extract of the Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), Inhibits SARS-CoV-2 Replication in Vero E6 and Vero Cell Culture Experiments. Int. J. Med. Mushrooms, 2022, 24(2), 23-30. https://doi.org/10.1615/IntJMedMushrooms.2021042012
DOI: https://doi.org/10.1615/IntJMedMushrooms.2021042012
Sen, D.; Debnath, B.; Debnath, P.; Debnath, S., Zaki, M. E.; Masand, V. H. Identification of potential edible mushroom as SARS-CoV-2 main protease inhibitor using rational drug designing approach. Sci. Rep., 2022, 12(1), 1503. https://doi.org/10.1038/s41598-022-05349-x
DOI: https://doi.org/10.1038/s41598-022-05349-x
Basal, W. T.; Elfiky, A.; Eid, J. Chaga medicinal mushroom Inonotus obliquus (agaricomycetes) terpenoids may interfere with SARS-CoV-2 spike protein recognition of the host cell: a molecular docking study. Int. J. Med. Mushrooms, 2021, 23(3), 1-14. https://doi.org/10.1615/intjmedmushrooms.2021037942
DOI: https://doi.org/10.1615/IntJMedMushrooms.2021037942
Rangsinth, P.; Sillapachaiyaporn, C.; Nilkhet, S.; Tencomnao, T.; Ung, A. T.; Chuchawankul, S. Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: An in silico approach. J. Tradit. Complement. Med., 2021, 11(2), 158-172. https://doi.org/10.1016/j.jtcme.2020.12.002
DOI: https://doi.org/10.1016/j.jtcme.2020.12.002
AL-jumaili, M. M. O.; Al-dulaimi, F. K.; Ajeel, M. A. The role of Ganoderma lucidum uptake on some hematological and immunological response in patients with coronavirus (COVID-19). Sys. Rev. Pharm., 2020, 11, 537-541.
DOI: https://doi.org/10.24926/iip.v11i2.3249
Jan, J. T.; Cheng, T. J. R.; Juang, Y. P.; Ma, H. H.; Wu, Y. T.; Yang, W. B.; Wong, C. H. Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proc. Natl. Acad. Sci., 2021, 118(5), e2021579118. https://doi.org/10.1073/pnas.2021579118
DOI: https://doi.org/10.1073/pnas.2021579118
Rahman, M. A.; Rahman, M. S.; Bashir, N. M. B.; Mia, R.; Hossain, A.; Saha, S. K.; Sarker, N. C. Rationalization of mushroom-based preventive and therapeutic approaches to COVID-19. Int. J. Med. Mushrooms, 2021, 23(5), 1-11. https://doi.org/10.1615/intjmedmushrooms.2021038285
DOI: https://doi.org/10.1615/IntJMedMushrooms.2021038285
Senthil Kumar, K. J.; Gokila Vani, M.; Hsieh, H. W.; Lin, C. C.; Wang, S. Y. Antcins from Antrodia cinnamomea and Antrodia salmonea inhibit angiotensin-converting enzyme 2 (ACE2) in epithelial cells: Can be potential candidates for the development of SARS-CoV-2 prophylactic agents. Plants, 2021, 10(8), 1736. https://doi.org/10.3390/plants10081736
DOI: https://doi.org/10.3390/plants10081736
Hu, Y.; Chen, W.; Shen, Y.; Zhu, B.; Wang, G. X. Synthesis and antiviral activity of coumarin derivatives against infectious hematopoietic necrosis virus. Bioorg. Med. Chem., 2019, 29(14), 1749-1755. https://doi.org/10.1016/j.bmcl.2019.05.019
DOI: https://doi.org/10.1016/j.bmcl.2019.05.019
Burman, B.; Pesci, G.; Zamarin, D. Newcastle disease virus at the forefront of cancer immunotherapy. Cancers, 2020, 12(12), 3552. https://doi.org/10.3390/cancers12123552
DOI: https://doi.org/10.3390/cancers12123552
Lee, K. Z.; Basnayake Pussepitiyalage, V.; Lee, Y. H.; Loesch‐Fries, L. S.; Harris, M. T.; Hemmati, S.; Solomon, K. V. Engineering tobacco mosaic virus and its virus‐like‐particles for synthesis of biotemplated nanomaterials. Biotechnol. J., 2021, 16(4), 2000311. https://doi.org/10.1002/biot.202000311
DOI: https://doi.org/10.1002/biot.202000311
Ren, G.; Xu, L.; Lu, T.; Yin, J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int. J. Biol. Macromol., 2018, 115, 1202-1210. https://doi.org/10.1016/j.ijbiomac.2018.04.132
DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.132
Lee, D.; Boo, K. H.; Lee, J. M.; Viet, C. D.; Quyen, N.; Unno, T.; Lee, D. S. Anti-viral activity of Hydnellum concrescens, a medicinal mushroom. Afri. J. Biotechnol., 2012, 11(86), 15241-15245.
Shamaki, B. U.; Sandabe, U. K.; Ogbe, A. O.; Abdulrahman, F. I.; El-Yuguda, A. D. Methanolic soluble fractions of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Higher basidiomycetes) Extract inhibit neuraminidase activity in newcastle disease virus (LaSota). Int. J. Med. Mushrooms, 2014, 16(6), 579-583. https://doi.org/10.1615/intjmedmushrooms.v16.i6.70
DOI: https://doi.org/10.1615/IntJMedMushrooms.v16.i6.70
Wang, M.; Meng, X.; Yang, R.; Qin, T.; Li, Y.; Zhang, L.; Fei, C.; Zhen, W.; Zhang, K.; Wang, X.; Hu, Y.; Xue, F. Cordyceps militaris polysaccharides can improve the immune efficacy of Newcastle disease vaccine in chicken. Int. J. Biol. Macromol., 2013, 59, 178-183. https://doi.org/10.1016/j.ijbiomac.2013.04.007
DOI: https://doi.org/10.1016/j.ijbiomac.2013.04.007
Yan, H.; Rong, X.; Chen, P. T.; Zhang, X.; Ma, Z. Q. Two new steroids from sclerotia of the fungus Omphalia lapidescens. J. Asian Nat. Prod. Res., 2014, 16(3), 265-270. https://doi.org/10.1080/10286020.2013.874346
DOI: https://doi.org/10.1080/10286020.2013.874346
Aoki, M.; Tan, M.; Fukushima, A.; Hieda, T.; Kubo, S.; Takabayashi, M.; Mikami, Y. Antiviral substances with systemic effects produced by Basidiomycetes such as Fomes fomentarius. Biosci. Biotechnol. Biochem., 1993, 57(2), 278-282. https://doi.org/10.1271/bbb.57.278
DOI: https://doi.org/10.1271/bbb.57.278