Seneta, W., Dendrologia; Dział Wydawnictw SGGW: Warszawa, 1967.
Yao, R.; Heinrich, M.; Weckerle, C. S. The genus Lycium as food and medicine: a botanical, ethnobotanical and historical review. J. Ethnopharmacol. 2018, 212, 50-66. DOI: 10.1016/j.jep.2017.10.010.
DOI: https://doi.org/10.1016/j.jep.2017.10.010
Schmiedel, D. A.-V. D. R., 2019. European Pharmacopoeia, 10th Edition 2019. Deutscher Apotheker Verlag.
Farmakopea Polska XII, 2020. Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych, Produktów Biobójczych, Warszawa.
Chang, R. C. C.; So, K. F., Lycium barbarum and human health; Springer Netherlands, 2015.
DOI: https://doi.org/10.1007/978-94-017-9658-3
Lim, T. K., Edible medicinal and non-medicinal plants: Fruits; Springer Netherlands, 2013.
DOI: https://doi.org/10.1007/978-94-007-5628-1
Adamowicz, A., Orgelbrand, S., Encyklopedia powszechna; Wydawn. Artystyczne i Filmowe, 1865.
Miejski Ogród Botaniczny w Zabrzu; Available online: https://mob.zabrze.pl/wp-content/uploads/2020/02/lycium_barbarum_l.pdf (accessed on 20.03.2024).
Harsh, M. Tropane alkaloids from Lycium barbarum Linn. in vivo and in vitro. 1989.
Marosz, A. Owoce jagody goji (Lycium barbarum i Lycium chinense) – nowe możliwości dla ogrodnictwa czy zagrożenie dla konsumentów? Ann. Hortic. 2017, 27, 19-30. DOI: 10.24326/ah.2017.1.3.
DOI: https://doi.org/10.24326/ah.2017.1.3
Kokotkiewicz, A.; Migas, P.; Stefanowicz, J.; Luczkiewicz, M.; Krauze-Baranowska, M. Densitometric TLC analysis for the control of tropane and steroidal alkaloids in Lycium barbarum. Food Chem. 2017, 221, 535-540. DOI: 10.1016/j.foodchem.2016.11.142.
DOI: https://doi.org/10.1016/j.foodchem.2016.11.142
Haratym, W.; Weryszko-Chmielewska, E.; Żuraw, B.; Tietze, M. Krzewy o właściwościach trujących. Alergoprofil 2013, 9(4), 26-34.
Kwok, S. S.; Bu, Y.; Lo, A. C.; Chan, T. C.; So, K. F.; Lai, J. S.; Shih, K. C. A systematic review of potential therapeutic use of Lycium barbarum polysaccharides in disease. Biomed. Res. Int. 2019, 2019, 4615745. DOI: 10.1155/2019/4615745.
DOI: https://doi.org/10.1155/2019/4615745
Gao, Y.; Wei, Y.; Wang, Y.; Gao, F.; Chen, Z. Lycium barbarum: a traditional Chinese herb and a promising anti-aging agent. Aging Dis. 2017, 8(6), 778-791. DOI: 10.14336/ad.2017.0725.
DOI: https://doi.org/10.14336/AD.2017.0725
Ni, J.; Au, M.; Kong, H.; Wang, X.; Wen, C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement. Med. Ther. 2021, 21(1), 212. DOI: 10.1186/s12906-021-03385-0.
DOI: https://doi.org/10.1186/s12906-021-03385-0
Yang, C.; Zhao, Q.; Li, S.; Pu, L.; Yu, L.; Liu, Y.; Lai, X. Effects of Lycium barbarum L. polysaccharides on vascular retinopathy: an insight review. Molecules 2022, 27(17). DOI: 10.3390/molecules27175628.
DOI: https://doi.org/10.3390/molecules27175628
Xing, X.; Liu, F.; Xiao, J.; So, K. F. Neuro-protective mechanisms of Lycium barbarum. Neuromolecular Med. 2016, 18(3), 253-263. DOI: 10.1007/s12017-016-8393-y.
DOI: https://doi.org/10.1007/s12017-016-8393-y
Huang, Y.; Zhang, X.; Chen, L.; Ren, B. X.; Tang, F. R. Lycium barbarum ameliorates neural damage induced by experimental ischemic stroke and radiation exposure. Front Biosci (Landmark Ed) 2023, 28(2), 38. DOI: 10.31083/j.fbl2802038.
DOI: https://doi.org/10.31083/j.fbl2802038
Li, J.; Guo, H.; Dong, Y.; Yuan, S.; Wei, X.; Zhang, Y.; Dong, L.; Wang, F.; Bai, T.; Yang, Y. Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism. Chin. J. Nat. Med. 2024, 22(1), 4-14. DOI: 10.1016/s1875-5364(24)60558-3.
DOI: https://doi.org/10.1016/S1875-5364(24)60558-3
Zhou, B.; Xia, H.; Yang, L.; Wang, S.; Sun, G. The effect of Lycium barbarum polysaccharide on the glucose and lipid metabolism: a systematic review and meta-analysis. J. Am. Nutr. Assoc. 2022, 41(6), 618-626. DOI: 10.1080/07315724.2021.1925996.
DOI: https://doi.org/10.1080/07315724.2021.1925996
Liu, H.; Cui, B.; Zhang, Z. Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: a review. Food Res. Int. 2022, 159, 111408. DOI: 10.1016/j.foodres.2022.111408.
DOI: https://doi.org/10.1016/j.foodres.2022.111408
Teixeira, F.; Silva, A. M.; Delerue-Matos, C.; Rodrigues, F. Lycium barbarum berries (Solanaceae) as source of bioactive compounds for healthy purposes: a review. Int. J. Mol. Sci. 2023, 24(5), 4777. DOI: 10.3390/ijms24054777.
DOI: https://doi.org/10.3390/ijms24054777
Cao, C.; Wang, Z.; Gong, G.; Huang, W.; Huang, L.; Song, S.; Zhu, B. Effects of Lycium barbarum polysaccharides on immunity and metabolic syndrome associated with the modulation of gut microbiota: a review. Foods 2022, 11(20). DOI: 10.3390/foods11203177.
DOI: https://doi.org/10.3390/foods11203177
Xiao, Z.; Deng, Q.; Zhou, W.; Zhang, Y. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacol. Therapeut. 2022, 229, 107921. DOI: 10.1016/j.pharmthera.2021.107921.
DOI: https://doi.org/10.1016/j.pharmthera.2021.107921
Tian, X.; Liang, T.; Liu, Y.; Ding, G.; Zhang, F.; Ma, Z. Extraction, structural characterization, and biological functions of Lycium barbarum polysaccharides: a review. Biomolecules 2019, 9(9). DOI: 10.3390/biom9090389.
DOI: https://doi.org/10.3390/biom9090389
Yu, Z.; Xia, M.; Lan, J.; Yang, L.; Wang, Z.; Wang, R.; Tao, H.; Shi, Y. A comprehensive review on the ethnobotany, phytochemistry, pharmacology and quality control of the genus Lycium in China. Food Funct. 2023, 14(7), 2998-3025. DOI: 10.1039/d2fo03791b.
DOI: https://doi.org/10.1039/D2FO03791B
MapChart; Available online: https://www.mapchart.net/ (accessed on 20.03.2024).
Amagase, H.; Farnsworth, N. R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Int. Food Res. J. 2011, 44(7), 1702-1717. DOI: 10.1016/j.foodres.2011.03.027.
DOI: https://doi.org/10.1016/j.foodres.2011.03.027
Healthcare, T., PDR for herbal medicines; Montvale: Thomson Healthcare, 2004.
Potterat, O. Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 2010, 76(1), 7-19. DOI: 10.1055/s-0029-1186218.
DOI: https://doi.org/10.1055/s-0029-1186218
Yao, R.; Heinrich, M.; Zou, Y.; Reich, E.; Zhang, X.; Chen, Y.; Weckerle, C. S. Quality variation of goji (Fruits of Lycium spp.) in China: a comparative morphological and metabolomic analysis. Front. Pharmacol. 2018, 9. DOI: 10.3389/fphar.2018.00151.
DOI: https://doi.org/10.3389/fphar.2018.00151
Jin, M.; Huang, Q.; Zhao, K.; Shang, P. Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L. Int. J. Biol. Macromol. 2013, 54, 16-23. DOI: 10.1016/j.ijbiomac.2012.11.023.
DOI: https://doi.org/10.1016/j.ijbiomac.2012.11.023
Zhu, M.; Jinggang, M.; ChangSheng, H.; Haiping, X.; Ning, M.; Caijiao, W. Extraction, characterization of polysaccharides from Lycium barbarum and its effect on bone gene expression in rats. Carbohydr. Polym. 2010, 80(3), 672-676. DOI: 10.1016/j.carbpol.2009.11.038.
DOI: https://doi.org/10.1016/j.carbpol.2009.11.038
Wu, H. T.; He, X. J.; Hong, Y. K.; Ma, T.; Xu, Y. P.; Li, H. H. Chemical characterization of Lycium barbarum polysaccharides and its inhibition against liver oxidative injury of high-fat mice. Int. J. Biol. Macromol. 2010, 46(5), 540-543. DOI: 10.1016/j.ijbiomac.2010.02.010.
DOI: https://doi.org/10.1016/j.ijbiomac.2010.02.010
Ke, M.; Zhang, X.-J.; Han, Z.-H.; Yu, H.-Y.; Lin, Y.; Zhang, W.-G.; Sun, F.-H.; Wang, T.-J. Extraction, purification of Lycium barbarum polysaccharides and bioactivity of purified fraction. Carbohydr. Polym. 2011, 86(1), 136-141. DOI: 10.1016/j.carbpol.2011.04.023.
DOI: https://doi.org/10.1016/j.carbpol.2011.04.023
Redgwell, R. J.; Curti, D.; Wang, J.; Dobruchowska, J. M.; Gerwig, G. J.; Kamerling, J. P.; Bucheli, P. Cell wall polysaccharides of Chinese wolfberry (Lycium barbarum): Part 2. Characterisation of arabinogalactan-proteins. Carbohydrate Polymers 2011, 84(3), 1075-1083. DOI: 10.1016/j.carbpol.2010.12.071.
DOI: https://doi.org/10.1016/j.carbpol.2010.12.071
Redgwell, R. J.; Curti, D.; Wang, J.; Dobruchowska, J. M.; Gerwig, G. J.; Kamerling, J. P.; Bucheli, P. Cell wall polysaccharides of Chinese wolfberry (Lycium barbarum): Part 1. Characterisation of soluble and insoluble polymer fractions. Carbohydr. Polym. 2011, 84(4), 1344-1349. DOI: 10.1016/j.carbpol.2011.01.032.
DOI: https://doi.org/10.1016/j.carbpol.2011.01.032
Qian, D.; Zhao, Y.; Yang, G.; Huang, L. Systematic review of chemical constituents in the genus Lycium (Solanaceae). Molecules 2017, 22(6), 911. DOI: 10.3390/molecules22060911.
DOI: https://doi.org/10.3390/molecules22060911
Wu, D.-T.; Guo, H.; Lin, S.; Lam, S.-C.; Zhao, L.; Lin, D.-R.; Qin, W. Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends Food Sci. Technol. 2018, 79, 171-183. DOI: 10.1016/j.tifs.2018.07.016.
DOI: https://doi.org/10.1016/j.tifs.2018.07.016
Wojdyło, A.; Nowicka, P.; Bąbelewski, P. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J. Funct. Foods 2018, 48, 632-642. DOI: 10.1016/j.jff.2018.07.061.
DOI: https://doi.org/10.1016/j.jff.2018.07.061
Inbaraj, B. S.; Lu, H.; Hung, C. F.; Wu, W. B.; Lin, C. L.; Chen, B. H. Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC–DAD–APCI–MS. J. Pharm. Biomed. Anal. 2008, 47(4), 812-818. DOI: 10.1016/j.jpba.2008.04.001.
DOI: https://doi.org/10.1016/j.jpba.2008.04.001
Wang, C. C.; Chang, S. C.; Inbaraj, B. S.; Chen, B. H. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem. 2010, 120(1), 184-192. DOI: 10.1016/j.foodchem.2009.10.005.
DOI: https://doi.org/10.1016/j.foodchem.2009.10.005
Pires, T. C. S. P.; Dias, M. I.; Barros, L.; Calhelha, R. C.; Alves, M. J.; Santos-Buelga, C.; Ferreira, I. C. F. R. Phenolic compounds profile, nutritional compounds and bioactive properties of Lycium barbarum L.: A comparative study with stems and fruits. Ind. Crops Prod. 2018, 122, 574-581. DOI: 10.1016/j.indcrop.2018.06.046.
DOI: https://doi.org/10.1016/j.indcrop.2018.06.046
Tripodo, G.; Ibáñez, E.; Cifuentes, A.; Gilbert-López, B.; Fanali, C. Optimization of pressurized liquid extraction by response surface methodology of goji berry (Lycium barbarum L.) phenolic bioactive compounds. Electrophoresis 2018, 39(13), 1673-1682. DOI: 10.1002/elps.201700448.
DOI: https://doi.org/10.1002/elps.201700448
Toyoda-Ono, Y.; Maeda, M.; Nakao, M.; Yoshimura, M.; Sugiura-Tomimori, N.; Fukami, H. 2-O-(β-d-Glucopyranosyl)ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit. J. Agric. Food Chem. 2004, 52(7), 2092-2096. DOI: 10.1021/jf035445w.
DOI: https://doi.org/10.1021/jf035445w
Guo, M.; Shi, T.; Duan, Y.; Zhu, J.; Li, J.; Cao, Y. Investigation of amino acids in wolfberry fruit (Lycium barbarum) by solid-phase extraction and liquid chromatography with precolumn derivatization. J. Food Compos. Anal. 2015, 42, 84-90. DOI: 10.1016/j.jfca.2015.03.004.
DOI: https://doi.org/10.1016/j.jfca.2015.03.004
Yao, X.; Peng, Y.; Xu, L.-J.; Li, L.; Wu, Q.-L.; Xiao, P.-G. Phytochemical and biological studies of Lycium medicinal plants. Chem. Biodiversity 2011, 8(6), 976-1010. DOI: 10.1002/cbdv.201000018.
DOI: https://doi.org/10.1002/cbdv.201000018
Zhou, Z. Q.; Fan, H. X.; He, R. R.; Xiao, J.; Tsoi, B.; Lan, K. H.; Kurihara, H.; So, K. F.; Yao, X. S.; Gao, H. Lycibarbarspermidines A-O, new dicaffeoylspermidine derivatives from wolfberry, with activities against Alzheimer's disease and oxidation. J. Agric. Food Chem. 2016, 64(11), 2223-2237. DOI: 10.1021/acs.jafc.5b05274.
DOI: https://doi.org/10.1021/acs.jafc.5b05274
Gao, Z.; Ali, Z.; Khan, I. A. Glycerogalactolipids from the fruit of Lycium barbarum. Phytochemistry 2008, 69(16), 2856-2861. DOI: 10.1016/j.phytochem.2008.09.002.
DOI: https://doi.org/10.1016/j.phytochem.2008.09.002
Gao, K.; Ma, D.; Cheng, Y.; Tian, X.; Lu, Y.; Du, X.; Tang, H.; Chen, J. Three new dimers and two monomers of phenolic amides from the fruits of Lycium barbarum and their antioxidant activities. J. Agric. Food Chem. 2015, 63(4), 1067-1075. DOI: 10.1021/jf5049222.
DOI: https://doi.org/10.1021/jf5049222
Wang, K.; Sasaki, T.; Li, W.; Li, Q.; Wang, Y.; Asada, Y.; Kato, H.; Koike, K. Two novel steroidal alkaloid glycosides from the seeds of Lycium barbarum. Chem. Biodiv. 2011, 8(12), 2277-2284. DOI: 10.1002/cbdv.201000293.
DOI: https://doi.org/10.1002/cbdv.201000293
Masci, A.; Carradori, S.; Casadei, M. A.; Paolicelli, P.; Petralito, S.; Ragno, R.; Cesa, S. Lycium barbarum polysaccharides: extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chem. 2018, 254, 377-389. DOI: 10.1016/j.foodchem.2018.01.176.
DOI: https://doi.org/10.1016/j.foodchem.2018.01.176
Wang, W.-F.; Yang, J.-L.; Shi, Y.-P. Quality evaluation of six bioactive constituents in goji berry based on capillary electrophoresis field amplified sample stacking. Electrophoresis 2018, 39(16), 2117-2124. DOI: 10.1002/elps.201800102.
DOI: https://doi.org/10.1002/elps.201800102
Zhou, Z.-Q.; Xiao, J.; Fan, H.-X.; Yu, Y.; He, R.-R.; Feng, X.-L.; Kurihara, H.; So, K.-F.; Yao, X.-S.; Gao, H. Polyphenols from wolfberry and their bioactivities. Food Chem. 2017, 214, 644-654. DOI: 10.1016/j.foodchem.2016.07.105.
DOI: https://doi.org/10.1016/j.foodchem.2016.07.105
Inbaraj, B. S.; Lu, H.; Kao, T. H.; Chen, B. H. Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC–DAD–ESI-MS. J. Pharm. Biomed. Anal. 2010, 51(3), 549-556. DOI: 10.1016/j.jpba.2009.09.006.
DOI: https://doi.org/10.1016/j.jpba.2009.09.006
Rodrigues Sá, R.; da Cruz Caldas, J.; de Andrade Santana, D.; Vieira Lopes, M.; dos Santos, W. N. L.; Graças Andrade Korn, M.; de Freitas Santos Júnior, A. Multielementar/centesimal composition and determination of bioactive phenolics in dried fruits and capsules containing goji berries (Lycium barbarum L.). Food Chem. 2019, 273, 15-23. DOI: 10.1016/j.foodchem.2018.05.124.
DOI: https://doi.org/10.1016/j.foodchem.2018.05.124
Kulczyński, B.; Gramza-Michałowska, A. Goji berry (Lycium barbarum): composition and health effects – a review. Pol. J. Food Nutr. Sci. 2016, 66(2), 67-75. DOI: 10.1515/pjfns-2015-0040.
DOI: https://doi.org/10.1515/pjfns-2015-0040
Montesano, D.; Rocchetti, G.; Cossignani, L.; Lucini, L.; Simonetti, M. S.; Blasia, F. Italian Lycium barbarum L. berry: chemical characterization and nutraceutical value. Nat. Prod. Commun. 2018, 13(9), 1934578X1801300913. DOI: 10.1177/1934578x1801300913.
DOI: https://doi.org/10.1177/1934578X1801300913
Taulavuori, K.; Julkunen-Tiitto, R.; Hyöky, V.; Taulavuori, E. Blue Mood for Superfood. Nat. Prod. Commun. 2013, 8(6), 1934578X1300800627. DOI: 10.1177/1934578x1300800627.
DOI: https://doi.org/10.1177/1934578X1300800627
Tan, F.; Chen, Y.; Tan, X.; Ma, Y.; Peng, Y. Chinese materia medica used in medicinal diets. J. Ethnopharmacol. 2017, 206, 40-54. DOI: 10.1016/j.jep.2017.05.021.
DOI: https://doi.org/10.1016/j.jep.2017.05.021
Dafni, A.; Yaniv, Z. Solanaceae as medicinal plants in Israel. J. Ethnopharmacol. 1994, 44(1), 11-18. DOI: 10.1016/0378-8741(94)90093-0.
DOI: https://doi.org/10.1016/0378-8741(94)90093-0
Magiera, S.; Zaręba, M. Chromatographic determination of phenolic acids and flavonoids in Lycium barbarum L. and evaluation of antioxidant activity. Food Anal. Methods 2015, 8(10), 2665-2674. DOI: 10.1007/s12161-015-0166-y.
DOI: https://doi.org/10.1007/s12161-015-0166-y
Lin, C. L.; Wang, C. C.; Chang, S. C.; Inbaraj, B. S.; Chen, B. H. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int. J. Biol. Macromol. 2009, 45(2), 146-151. DOI: 10.1016/j.ijbiomac.2009.04.014.
DOI: https://doi.org/10.1016/j.ijbiomac.2009.04.014
Benchennouf, A.; Grigorakis, S.; Loupassaki, S.; Kokkalou, E. Phytochemical analysis and antioxidant activity of Lycium barbarum (Goji) cultivated in Greece. Pharm. Biol. 2017, 55(1), 596-602. DOI: 10.1080/13880209.2016.1265987.
DOI: https://doi.org/10.1080/13880209.2016.1265987
Li, X. M.; Li, X. L.; Zhou, A. G. Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur. Polym. J. 2007, 43(2), 488-497. DOI: 10.1016/j.eurpolymj.2006.10.025.
DOI: https://doi.org/10.1016/j.eurpolymj.2006.10.025
Le, K.; Chiu, F.; Ng, K. Identification and quantification of antioxidants in Fructus lycii. Food Chem. 2007, 105(1), 353-363. DOI: 10.1016/j.foodchem.2006.11.063.
DOI: https://doi.org/10.1016/j.foodchem.2006.11.063
Vicente, O.; Boscaiu, M. Flavonoids: antioxidant compounds for plant defence... and for a healthy human diet. Not. Bot. Horti Agrobo. 2018, 46(1), 14-21. DOI: 10.15835/nbha46110992.
DOI: https://doi.org/10.15835/nbha46110992
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64(4), 555-559. DOI: 10.1016/S0308-8146(98)00102-2.
DOI: https://doi.org/10.1016/S0308-8146(98)00102-2
Trevithick-Sutton, C. C.; Foote, C. S.; Collins, M.; Trevithick, J. R. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study. Mol. Vis. 2006, 12(12), 1127-1135.
Liang, B.; Peng, L.; Li, R.; Li, H.; Mo, Z.; Dai, X.; Jiang, N.; Liu, Q.; Zhang, E.; Deng, H.; Li, Z.; Zhu, H. Lycium barbarum polysaccharide protects HSF cells against ultraviolet-induced damage through the activation of Nrf2. Cell. Mol. Biol. Lett. 2018, 23, 18. DOI: 10.1186/s11658-018-0084-2.
DOI: https://doi.org/10.1186/s11658-018-0084-2
Li, H.; Li, Z.; Peng, L.; Jiang, N.; Liu, Q.; Zhang, E.; Liang, B.; Li, R.; Zhu, H. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage. Free Radic. Res. 2017, 51(2), 200-210. DOI: 10.1080/10715762.2017.1294755.
DOI: https://doi.org/10.1080/10715762.2017.1294755
Yang, Y.; Li, W.; Li, Y.; Wang, Q.; Gao, L.; Zhao, J. Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates Insulin resistance induced by high-fat via activation of PI3K/AKT signaling. Oxid. Med. Cell. Longev. 2014, 2014, 145641. DOI: 10.1155/2014/145641.
DOI: https://doi.org/10.1155/2014/145641
Niu, A.-j.; Wu, J.-m.; Yu, D.-h.; Wang, R. Protective effect of Lycium barbarum polysaccharides on oxidative damage in skeletal muscle of exhaustive exercise rats. Int. J. Biol. Macromol. 2008, 42(5), 447-449. DOI: 10.1016/j.ijbiomac.2008.02.003.
DOI: https://doi.org/10.1016/j.ijbiomac.2008.02.003
Zhao, R.; Hao, W.; Ma, B.; Chen, Z. Improvement effect of Lycium barbarum polysaccharide on sub-health mice. Iran. J. Basic Med. Sci. 2015, 18(12), 1245-1252.
Wang, S.-F.; Liu, X.; Ding, M.-Y.; Ma, S.; Zhao, J.; Wang, Y.; Li, S. 2-O-β-d-glucopyranosyl-l-ascorbic acid, a novel vitamin C derivative from Lycium barbarum, prevents oxidative stress. Redox Biol. 2019, 24, 101173. DOI: 10.1016/j.redox.2019.101173.
DOI: https://doi.org/10.1016/j.redox.2019.101173
Amagase, H.; Sun, B.; Borek, C. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr. Res. 2009, 29(1), 19-25. DOI: 10.1016/j.nutres.2008.11.005.
DOI: https://doi.org/10.1016/j.nutres.2008.11.005
Wu, W.-B.; Hung, D.-K.; Chang, F.-W.; Ong, E.-T.;Chen, B.-H. Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum Linnaeus on human umbilical vein endothelial cells. Food Funct. 2012, 3(10), 1068-1081. DOI: 10.1039/C2FO30051F.
DOI: https://doi.org/10.1039/c2fo30051f
Liu, Y.; Lv, J.; Yang, B.; Liu, F.; Tian, Z.; Cai, Y.; Yang, D.; Ouyang, J.; Sun, F.; Shi, Y.; Xia, P. Lycium barbarum polysaccharide attenuates type II collagen-induced arthritis in mice. Int. J. Biol. Macromol. 2015, 78, 318-323. DOI: 10.1016/j.ijbiomac.2015.04.025.
DOI: https://doi.org/10.1016/j.ijbiomac.2015.04.025
Cheng, J.; Zhou, Z. W.; Sheng, H. P.; He, L. J.; Fan, X. W.; He, Z. X.; Sun, T.; Zhang, X.; Zhao, R. J.; Gu, L.; Cao, C.; Zhou, S. F. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Des. Devel. Ther. 2015, 9, 33-78. DOI: 10.2147/dddt.S72892.
DOI: https://doi.org/10.2147/DDDT.S72892
Zhang, X. R.; Zhou, W. X.; Zhang, Y. X.; Qi, C. H.; Yan, H.; Wang, Z. F.; Wang, B. Macrophages, rather than T and B cells are principal immunostimulatory target cells of Lycium barbarum L. polysaccharide LBPF4-OL. J. Ethnopharmacol. 2011, 136(3), 465-472. DOI: 10.1016/j.jep.2011.04.054.
DOI: https://doi.org/10.1016/j.jep.2011.04.054
Deng, X.; Liu, Q.; Fu, Y.; Luo, X.; Hu, M.; Ma, F.; Wang, Q.; Lai, X.; Zhou, L. Effects of Lycium barbarum polysaccharides with different molecular weights on function of RAW264.7 macrophages. Food Agric. Immunol. 2018, 29(1), 808-820. DOI: 10.1080/09540105.2018.1457628.
DOI: https://doi.org/10.1080/09540105.2018.1457628
Zhu, J.; Zhao, L.-H.; Zhao, X.-P.; Chen, Z. Lycium barbarum polysaccharides regulate phenotypic and functional maturation of murine dendritic cells. Cell Biol. Int. 2007, 31(6), 615-619. DOI: 10.1016/j.cellbi.2006.12.002.
DOI: https://doi.org/10.1016/j.cellbi.2006.12.002
Amagase, H. S., Bixuang, S.; Nance, D. M. Immunomodulatory effects of a standardized Lycium barbarum fruit juice in Chinese older healthy human subjects. J. Med. Food 2009, 12(5), 1159-1165. DOI: 10.1089/jmf.2008.0300.
DOI: https://doi.org/10.1089/jmf.2008.0300
Vidal, K.; Bucheli, P.; Gao, Q.; Moulin, J.; Shen, L.-S.; Wang, J.; Blum, S.; Benyacoub, J. Immunomodulatory effects of dietary supplementation with a milk-based wolfberry formulation in healthy elderly: a randomized, double-blind, placebo-controlled trial. Rejuvenation Res. 2012, 15(1), 89-97. DOI: 10.1089/rej.2011.1241.
DOI: https://doi.org/10.1089/rej.2011.1241
Alassadi, I. J.; Sabah, F. S.; Alrubaie, L. A. Isolation of flavonoid compound from iraqi awsaj plant (Lycium barbarum L.) fruits and the study of its antibacterial activity. Eur. Sci. J. 2015, 11(24).
Wang, J.; Hu, Y.; Wang, D.; Zhang, F.; Zhao, X.; Abula, S.; Fan, Y.; Guo, L. Lycium barbarum polysaccharide inhibits the infectivity of Newcastle disease virus to chicken embryo fibroblast. Int. J. Biol. Macromol. 2010, 46(2), 212-216. DOI: 10.1016/j.ijbiomac.2009.11.011.
DOI: https://doi.org/10.1016/j.ijbiomac.2009.11.011
Cai, H.; Yang, X.; Cai, Q.; Ren, B.; Qiu, H.; Yao, Z. Lycium barbarum L. polysaccharide (LBP) reduces glucose uptake via down-regulation of SGLT-1 in Caco2 cell. Molecules 2017, 22(2), 341. DOI: 10.3390/molecules22020341.
DOI: https://doi.org/10.3390/molecules22020341
Tang, H.-L.; Chen, C.; Wang, S.-K.; Sun, G.-J. Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. Int. J. Biol. Macromol. 2015, 77, 235-242. DOI: 10.1016/j.ijbiomac.2015.03.026.
DOI: https://doi.org/10.1016/j.ijbiomac.2015.03.026
Zhao, R.; Qiu, B.; Li, Q.; Zhang, T.; Zhao, H.; Chen, Z.; Cai, Y.; Ruan, H.; Ge, W.;Zheng, X. LBP-4a improves insulin resistance via translocation and activation of GLUT4 in OLETF rats. Food Funct. 2014, 5(4), 811-820. DOI: 10.1039/C3FO60602C.
DOI: https://doi.org/10.1039/C3FO60602C
Zhao, R.; Gao, X.; Zhang, T.; Li, X. Effects of Lycium barbarum polysaccharide on type 2 diabetes mellitus rats by regulating biological rhythms. Iran. J. Basic Med. Sci. 2016, 19(9), 1024-1030.
Zou, S.; Zhang, X.; Yao, W.; Niu, Y.; Gao, X. Structure characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. Carbohydr. Polym. 2010, 80(4), 1161-1167. DOI: 10.1016/j.carbpol.2010.01.038.
DOI: https://doi.org/10.1016/j.carbpol.2010.01.038
Zhu, J.; Liu, W.; Yu, J.; Zou, S.; Wang, J.; Yao, W.; Gao, X. Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L. Carbohydr. Polym. 2013, 98(1), 8-16. DOI: 10.1016/j.carbpol.2013.04.057.
DOI: https://doi.org/10.1016/j.carbpol.2013.04.057
Kou, L.; Du, M.; Zhang, C.; Dai, Z.; Li, X.; Zhang, B. The hypoglycemic, hypolipidemic, and anti-diabetic nephritic activities of zeaxanthin in diet-streptozotocin-induced diabetic Sprague Dawley rats. Appl. Biochem. Biotechnol. 2017, 182(3), 944-955. DOI: 10.1007/s12010-016-2372-5.
DOI: https://doi.org/10.1007/s12010-016-2372-5
Cui, G.; Jing, L.; Feng, Q.; Xiao, Y.; Putheti, R. Anti-hyperglycemic activity of a polysaccharide fraction from Lycium barbarum. Afr. J. Biomed. Res. 2010, 13(1), 55-59.
Jing, L.; Yin, L. Antihyperglycemic activity of polysaccharide from Lycium barbarum. J. Med. Plant Res. 2010, 4(1), 23-26.
Cai, H.; Liu, F.; Zuo, P.; Huang, G.; Song, Z.; Wang, T.; Lu, H.; Guo, F.; Han, C.; Sun, G. Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes. Med. Chem. 2015, 11(4), 383-390. DOI: 10.2174/1573406410666141110153858.
DOI: https://doi.org/10.2174/1573406410666141110153858
Cheng, D.; Kong, H. The effect of Lycium barbarum polysaccharide on alcohol-induced oxidative stress in rats. Molecules 2011, 16(3), 2542-2550. DOI: 10.3390/molecules16032542.
DOI: https://doi.org/10.3390/molecules16032542
Wang, F.; Tipoe, G. L.; Yang, C.; Nanji, A. A.; Hao, X.; So, K.-F.; Xiao, J. Lycium barbarum polysaccharide supplementation improves alcoholic liver injury in female mice by inhibiting stearoyl-CoA desaturase 1. Mol. Nutr. Food Res. 2018, 62(13), 1800144. DOI: 10.1002/mnfr.201800144.
DOI: https://doi.org/10.1002/mnfr.201800144
Xiao, J.; Xing, F.; Huo, J.; Fung, M. L.; Liong, E. C.; Ching, Y. P.; Xu, A.; Chang, R. C. C.; So, K. F.; Tipoe, G. L. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Sci. Rep. 2014, 4(1), 5587. DOI: 10.1038/srep05587.
DOI: https://doi.org/10.1038/srep05587
Xiao, J.; Wang, F.; Liong, E. C.; So, K.-F.; Tipoe, G. L. Lycium barbarum polysaccharides improve hepatic injury through NFkappa-B and NLRP3/6 pathways in a methionine choline deficient diet steatohepatitis mouse model. Int. J. Biol. Macromol. 2018, 120, 1480-1489. DOI: 10.1016/j.ijbiomac.2018.09.151.
DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.151
Xiao, J.; Liong, E. C.; Ching, Y. P.; Chang, R. C. C.; Fung, M. L.; Xu, A. M.; So, K. F.; Tipoe, G. L. Lycium barbarum polysaccharides protect rat liver from non-alcoholic steatohepatitis-induced injury. Nutr. Diabetes 2013, 3(7), e81-e81. DOI: 10.1038/nutd.2013.22.
DOI: https://doi.org/10.1038/nutd.2013.22
Li, W.; Li, Y.; Wang, Q.; Yang, Y. Crude extracts from Lycium barbarum suppress SREBP-1c expression and prevent diet-induced fatty liver through AMPK activation. Biomed Res. Int. 2014, 2014, 196198. DOI: 10.1155/2014/196198.
DOI: https://doi.org/10.1155/2014/196198
Gündüz, E.; Dursun, R.; Zengin, Y.; İçer, M.; Durgun, H. M.; Kanıcı, A.; Kaplan, İ.; Alabalık, U.; Gürbüz, H.; Güloğlu, C. Lycium barbarum extract provides effective protection against paracetamol-induced acute hepatotoxicity in rats. Int. J. Clin. Exp. Med. 2015, 8(5), 7898-7905.
Gan, F.; Liu, Q.; Liu, Y.; Huang, D.; Pan, C.; Song, S.; Huang, K. Lycium barbarum polysaccharides improve CCl4-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in Wistar rats. Life Sci. 2018, 192, 205-212. DOI: 10.1016/j.lfs.2017.11.047.
DOI: https://doi.org/10.1016/j.lfs.2017.11.047
Allen, C. L.; Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 2009, 4(6), 461-470. DOI: 10.1111/j.1747-4949.2009.00387.x.
DOI: https://doi.org/10.1111/j.1747-4949.2009.00387.x
Hu, X.; Qu, Y.; Chu, Q.; Li, W.; He, J. Investigation of the neuroprotective effects of Lycium barbarum water extract in apoptotic cells and Alzheimer's disease mice. Mol. Med. Rep. 2018, 17(3), 3599-3606. DOI: 10.3892/mmr.2017.8310.
DOI: https://doi.org/10.3892/mmr.2017.8310
Zhou, L.; Liao, W.; Chen, X.; Yue, H.; Li, S.; Ding, K. An arabinogalactan from fruits of Lycium barbarum L. inhibits production and aggregation of Aβ42. Carbohydr. Polym. 2018, 195, 643-651. DOI: 10.1016/j.carbpol.2018.05.022.
DOI: https://doi.org/10.1016/j.carbpol.2018.05.022
Zhou, L.; Liao, W.; Zeng, H.; Yao, Y.; Chen, X.; Ding, K. A pectin from fruits of Lycium barbarum L. decreases β-amyloid peptide production through modulating APP processing. Carbohydr. Polym. 2018, 201, 65-74. DOI: 10.1016/j.carbpol.2018.08.050.
DOI: https://doi.org/10.1016/j.carbpol.2018.08.050
Zhao, P.; Zhou, R.; Zhu, X.-Y.; Liu, G.; Zhao, Y.-P.; Ma, P.-S.; Wu, W.; Niu, Y.; Sun, T.; Li, Y.-X.; Yu, J.-Q.; Qian, Z.-M. Neuroprotective effects of Lycium barbarum polysaccharide on focal cerebral ischemic injury in mice. Neurochem. Res. 2017, 42(10), 2798-2813. DOI: 10.1007/s11064-017-2293-x.
DOI: https://doi.org/10.1007/s11064-017-2293-x
Shi, Z.; Zhu, L.; Li, T.; Tang, X.; Xiang, Y.; Han, X.; Xia, L.; Zeng, L.; Nie, J.; Huang, Y.; Tsang, C. K.; Wang, Y.; Lei, Z.; Xu, Z.; So, K.-f.; Ruan, Y. Neuroprotective mechanisms of Lycium barbarum polysaccharides against Ischemic insults by regulating NR2B and NR2A containing NMDA receptor signaling pathways. Front. Cell. Neurosci. 2017, 11. DOI: 10.3389/fncel.2017.00288.
DOI: https://doi.org/10.3389/fncel.2017.00288
Wang, X.; Pang, L.; Zhang, Y.; Xu, J.; Ding, D.; Yang, T.; Zhao, Q.; Wu, F.; Li, F.; Meng, H.; Yu, D. Lycium barbarum polysaccharide promotes nigrostriatal dopamine function by modulating PTEN/AKT/mTOR pathway in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson’s disease. Neurochem. Res. 2018, 43(4), 938-947. DOI: 10.1007/s11064-018-2499-6.
DOI: https://doi.org/10.1007/s11064-018-2499-6
Xie, Y.; Wang, X. Lycium barbarum polysaccharides attenuates the apoptosis of hippocampal neurons induced by sevoflurane. Exp. Ther. Med. 2018, 16(3), 1834-1840. DOI: 10.3892/etm.2018.6426.
DOI: https://doi.org/10.3892/etm.2018.6426
Yu, Y.; Wu, X.; Pu, J.; Luo, P.; Ma, W.; Wang, J.; Wei, J.; Wang, Y.; Fei, Z. Lycium barbarum polysaccharide protects against oxygen glucose deprivation/reoxygenation-induced apoptosis and autophagic cell death via the PI3K/Akt/mTOR signaling pathway in primary cultured hippocampal neurons. Biochem. Biophys. Res. Commun. 2018, 495(1), 1187-1194. DOI: 10.1016/j.bbrc.2017.11.165.
DOI: https://doi.org/10.1016/j.bbrc.2017.11.165
Lam, C.-S.; Tipoe, G. L.; So, K.-F.; Fung, M.-L. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLOS ONE 2015, 10(2), e0117990. DOI: 10.1371/journal.pone.0117990.
DOI: https://doi.org/10.1371/journal.pone.0117990
Chien, K. J.; Horng, C. T.; Huang, Y. S.; Hsieh, Y. H.; Wang, C. J.; Yang, J. S.; Lu, C. C.; Chen, F. A. Effects of Lycium barbarum (goji berry) on dry eye disease in rats. Mol. Med. Rep. 2018, 17(1), 809-818. DOI: 10.3892/mmr.2017.7947.
DOI: https://doi.org/10.3892/mmr.2017.7947
Pavan, B.; Capuzzo, A.; Forlani, G. High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels. Exp. Eye Res. 2014, 120, 50-54. DOI: 10.1016/j.exer.2013.12.006.
DOI: https://doi.org/10.1016/j.exer.2013.12.006
Wang, Y.; Ding, L.; Li, Y.; Guan, C.; Guo, J. Lycium barbarum polysaccharides can reduce the oxidative damage of the retinal nerve cells in diabetic rats. Int. J. Clin. Exp. Med. 2017, 10(3), 5168-5174.
Tang, L.; Bao, S.; Du, Y.; Jiang, Z.; Wuliji, A. O.; Ren, X.; Zhang, C.; Chu, H.; Kong, L.; Ma, H. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina. Biomed. Pharmacother. 2018, 103, 829-837. DOI: 10.1016/j.biopha.2018.04.104.
DOI: https://doi.org/10.1016/j.biopha.2018.04.104
Liu, F.; Zhang, J.; Xiang, Z.; Xu, D.; So, K.-F.; Vardi, N.; Xu, Y. Lycium barbarum polysaccharides protect retina in rd1 mice during photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 2018, 59(1), 597-611. DOI: 10.1167/iovs.17-22881.
DOI: https://doi.org/10.1167/iovs.17-22881
Li, H.-Y.; Ruan, Y.-W.; Kau, P. W.-F.; Chiu, K.; Chang, R. C.-C.; Chan, H. H. L.; So, K.-F. Effect of Lycium barbarum (wolfberry) on alleviating axonal degeneration after partial optic nerve transection. Cell. Transplant. 2015, 24(3), 403-417. DOI: 10.3727/096368915X686896.
DOI: https://doi.org/10.3727/096368915X686896
Bie, M.; Lv, Y.; Ren, C.; Xing, F.; Cui, Q.; Xiao, J.; So, K. F. Lycium barbarum polysaccharide improves bipolar pulse current-induced microglia cell injury through modulating autophagy. Cell Transplant. 2015, 24(3), 419-428. DOI: 10.3727/096368915x687453.
DOI: https://doi.org/10.3727/096368915X687453
Xia, G.; Xin, N.; Liu, W.; Yao, H.; Hou, Y.; Qi, J. Inhibitory effect of Lycium barbarum polysaccharides on cell apoptosis and senescence is potentially mediated by the p53 signaling pathway. Mol. Med. Rep. 2014, 9(4), 1237-1241. DOI: 10.3892/mmr.2014.1964.
DOI: https://doi.org/10.3892/mmr.2014.1964
Liu, L.; Wang, X. N.; Liu, Z.; Wang, L. N.; Wu, J.; Wang, W.; Feng, J. X. Abstrakt: Effect of Lycium barbarum polysaccharides on angiotensin II-induced senescence of human umbilical vein endothelial cells and expressions of P53 and P16. Nan Fang Yi Ke Da Xue Xue Bao 2011, 31(7), 1212-1215.
Tang, T.; He, B. Treatment of D-galactose induced mouse aging with Lycium barbarum polysaccharides and its mechanism study. Afr. J. Tradit. Complement. Altern. Med. 2013, 10(4), 12-17. DOI: 10.4314/ajtcam.v10i4.3.
DOI: https://doi.org/10.4314/ajtcam.v10i4.3
Yi, R.; Liu, X. M.; Dong, Q. A study of Lycium barbarum polysaccharides (LBP) extraction technology and its anti-aging effect. Afr. J. Tradit. Complement. Altern. Med. 2013, 10(4), 171-174. DOI: 10.4314/ajtcam.v10i4.27.
DOI: https://doi.org/10.4314/ajtcam.v10i4.27
Yao, L.-Q.; Li, F.-L. Lycium barbarum polysaccharides ameliorates physical fatigue. Afr. J. Agric. Res. 2010, 5(16), 2153-2157. DOI: 10.5897/AJAR10.485.
Amagase, H.; Nance, D. M. A randomized, double-blind, placebo-controlled, clinical study of the general effects of a standardized Lycium barbarum (goji) juice, GoChi™. J. Altern. Complement. Med. 2008, 14(4), 403-412. DOI: 10.1089/acm.2008.0004.
DOI: https://doi.org/10.1089/acm.2008.0004
Hsu, C.-H.; Nance, D. M.; Amagase, H. A meta-analysis of clinical improvements of general well-being by a standardized Lycium barbarum. J. Med. Food 2012, 15(11), 1006-1014. DOI: 10.1089/jmf.2012.0013.
DOI: https://doi.org/10.1089/jmf.2012.0013
Guo, X. F.; Li, Z. H.; Cai, H.; Li, D. The effects of Lycium barbarum L. (L. barbarum) on cardiometabolic risk factors: a meta-analysis of randomized controlled trials. Food Funct. 2017, 8(5), 1741-1748. DOI: 10.1039/c7fo00183e.
DOI: https://doi.org/10.1039/C7FO00183E
Zeng, X.; Zhao, W.; Wang, S.; Xiong, H.; Wu, J.; Ren, J. L. barbarum (Lycium barbarum L.) supplementation for lipid profiles in adults: a systematic review and meta-analysis of RCTs. Medicine (Baltimore) 2023, 102(39), e34952. DOI: 10.1097/md.0000000000034952.
DOI: https://doi.org/10.1097/MD.0000000000034952
Toh, D. W. K.; Low, J. H. M.; Kim, J. E. Cardiovascular disease risk reduction with wolfberry consumption: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Nutr. 2022, 61(3), 1177-1186. DOI: 10.1007/s00394-021-02750-6.
DOI: https://doi.org/10.1007/s00394-021-02750-6
Toh, D. W. K.; Xia, X.; Sutanto, C. N.; Low, J. H. M.; Poh, K. K.; Wang, J. W.; Foo, R. S.; Kim, J. E. Enhancing the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): a randomized controlled trial. Am. J. Clin. Nutr. 2021, 114(1), 80-89. DOI: 10.1093/ajcn/nqab062.
DOI: https://doi.org/10.1093/ajcn/nqab062
Amagase, H.; Nance, D. M. Lycium barbarum increases caloric expenditure and decreases waist circumference in healthy overweight men and women: pilot study. J. Am. Coll. Nutr. 2011, 30(5), 304-309. DOI: 10.1080/07315724.2011.10719973.
DOI: https://doi.org/10.1080/07315724.2011.10719973
Chan, H. H.; Lam, H. I.; Choi, K. Y.; Li, S. Z.; Lakshmanan, Y.; Yu, W. Y.; Chang, R. C.; Lai, J. S.; So, K. F. Delay of cone degeneration in retinitis pigmentosa using a 12-month treatment with Lycium barbarum supplement. J Ethnopharmacol. 2019, 236, 336-344. DOI: 10.1016/j.jep.2019.03.023.
DOI: https://doi.org/10.1016/j.jep.2019.03.023
Li, X.; Holt, R. R.; Keen, C. L.; Morse, L. S.; Yiu, G.; Hackman, R. M. Goji berry intake increases macular pigment optical density in healthy adults: a randomized pilot trial. Nutrients 2021, 13(12). DOI: 10.3390/nu13124409.
DOI: https://doi.org/10.3390/nu13124409
Zhang, Y.; Hao, J.; Cao, K.; Qi, Y.; Wang, N.; Han, S. Macular pigment optical density responses to different levels of zeaxanthin in patients with high myopia. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260(7), 2329-2337. DOI: 10.1007/s00417-021-05532-2.
DOI: https://doi.org/10.1007/s00417-021-05532-2
Cheng, C. Y.; Chung, W. Y.; Szeto, Y. T.; Benzie, I. F. Fasting plasma zeaxanthin response to Fructus barbarum L. (wolfberry; Kei Tze) in a food-based human supplementation trial. Br. J. Nutr. 2005, 93(1), 123-130. DOI: 10.1079/bjn20041284.
DOI: https://doi.org/10.1079/BJN20041284
Bucheli, P.; Vidal, K.; Shen, L.; Gu, Z.; Zhang, C.; Miller, L. E.; Wang, J. Goji berry effects on macular characteristics and plasma antioxidant levels. Optom. Vis. Sci. 2011, 88(2), 257-262. DOI: 10.1097/OPX.0b013e318205a18f.
DOI: https://doi.org/10.1097/OPX.0b013e318205a18f
Benzie, I. F.; Chung, W. Y.; Wang, J.; Richelle, M.; Bucheli, P. Enhanced bioavailability of zeaxanthin in a milk-based formulation of wolfberry (Gou Qi Zi; Fructus barbarum L.). Br J Nutr 2006, 96(1), 154-160. DOI: 10.1079/bjn20061796.
DOI: https://doi.org/10.1079/BJN20061796
Ni, Y.; Mu, C.; He, X.; Zheng, K.; Guo, H.; Zhu, W. Characteristics of gut microbiota and its response to a Chinese Herbal Formula in elder patients with metabolic syndrome. Drug Discov. Ther. 2018, 12(3), 161-169. DOI: 10.5582/ddt.2018.01036.
DOI: https://doi.org/10.5582/ddt.2018.01036
Lu, J.; Gao, Y.; Gong, Y.; Yue, Y.; Yang, Y.; Xiong, Y.; Zhang, Y.; Xiao, Y.; Wang, H.; Fan, H.; Shi, X. Lycium barbarum L. balanced intestinal flora with YAP1/FXR activation in drug-induced liver injury. Int. Immunopharmacol. 2024, 130, 111762. DOI: 10.1016/j.intimp.2024.111762.
DOI: https://doi.org/10.1016/j.intimp.2024.111762
142. Zhuang, J.; Chen, Q.; Xu, L.; Qiao, D.; Chen, X. Lycium barbarum polysaccharide mitigated methamphetamine addiction and altered methamphetamine-induced gut microbiota dysbiosis. Electrophoresis 2024. DOI: 10.1002/elps.202300190.
DOI: https://doi.org/10.1002/elps.202300190
Liu, Y.; Liu, L.; Luo, J.; Peng, X. Metabolites from specific intestinal bacteria in vivo fermenting Lycium barbarum polysaccharide improve collagenous arthritis in rats. Int. J. Biol. Macromol. 2023, 226, 1455-1467. DOI: 10.1016/j.ijbiomac.2022.11.257.
DOI: https://doi.org/10.1016/j.ijbiomac.2022.11.257
Yan, A.; Ding, H.; Liu, J.; Bi, C.; Han, Z.; Wang, Z.; Nawaz, S.; Shen, Y.; Liu, S. Black Lycium barbarum polysaccharide attenuates LPS-induced intestine damage via regulation gut microbiota. Front. Microbiol. 2022, 13, 1080922. DOI: 10.3389/fmicb.2022.1080922.
DOI: https://doi.org/10.3389/fmicb.2022.1080922
Li, Z. Y.; Lin, L. H.; Liang, H. J.; Li, Y. Q.; Zhao, F. Q.; Sun, T. Y.; Liu, Z. Y.; Zhu, J. Y.; Gu, F.; Xu, J. N.; Hao, Q. Y.; Zhou, D. S.; Zhai, H. H. Lycium barbarum polysaccharide alleviates DSS-induced chronic ulcerative colitis by restoring intestinal barrier function and modulating gut microbiota. Ann. Med. 2023, 55(2), 2290213. DOI: 10.1080/07853890.2023.2290213.
DOI: https://doi.org/10.1080/07853890.2023.2290213
Zhou, W.; Kan, X.; Chen, G.; Sun, Y.; Ran, L.; Yan, Y.; Mi, J.; Lu, L.; Zeng, X.; Cao, Y. The polysaccharides from the fruits of Lycium barbarum L. modify the gut community profile and alleviate dextran sulfate sodium-induced colitis in mice. Int. J. Biol. Macromol. 2022, 222, 2244-2257. DOI: 10.1016/j.ijbiomac.2022.10.015.
DOI: https://doi.org/10.1016/j.ijbiomac.2022.10.015