1. World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 January 2025).
2. Narodowy Fundusz Zdrowia. Otyłość i jej konsekwencje. Available online: https://ezdrowie.gov.pl/19636 (accessed on 7 January 2025).
3. Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. doi: 10.1016/S0140-6736(20)30752-2
4. Narodowy Fundusz Zdrowia. Europejski Dzień Walki z Otyłością. Nowy raport NFZ – Otyłość i jej konsekwencje. Available online: https://www.nfz.gov.pl/aktualnosci/aktualnosci-centrali/europejski-dzien-walki-z-otyloscia-nowy-raport-nfz-otylosc-i-jej-konsekwencje%2C8611.htm (accessed on 7 January 2025).
5. Barczyk, A.; Kutkowska-Kaźmierczak, A.; Castañeda, J.; Obersztyn, E. Childhood obesity—epidemiology, pathogenesis, complications and treatment. Dev. Period Med. 2017, 21, 186–202. doi: 10.34763/devperiodmed.20172103.186202
6. The European Medicines Agency. Available online: https://www.ema.europa.eu/en/search (accessed on 6 January 2025).
7. Torgerson, J.S.; Hauptman, J.; Boldrin, M.N.; Sjöström, L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: A randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 2004, 27, 155–161. doi: 10.2337/diacare.27.1.155
8. Liu, Y.; Han, F.; Xia, Z.; et al. The effects of bupropion alone and combined with naltrexone on weight loss: A systematic review and meta-regression analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2024, 16, Art. No: 93. doi: 10.1186/s13098-024-01319-7
9. Watanabe, J.H.; Kwon, J.; Nan, B.; Reikes, A. Trends in glucagon-like peptide 1 receptor agonist use, 2014 to 2022. J. Am. Pharm. Assoc. 2024, 64, 133–138. doi: 10.1016/j.japh.2023.10.002
10. Ranganath, L.R. The entero-insular axis: Implications for human metabolism. Clin. Chem. Lab. Med. 2008, 46, 43–56. doi: 10.1515/CCLM.2008.008
11. Wu, T.; Ma, J.; Bound, M.J.; et al. Effects of sitagliptin on glycemia, incretin hormones, and antropyloroduodenal motility in response to intraduodenal glucose infusion in healthy lean and obese humans and patients with type 2 diabetes treated with or without metformin. Diabetes 2014, 63, 2776–2787. doi: 10.2337/db13-1627
12. Ma, J.; Checklin, H.L.; Wishart, J.M.; et al. A randomised trial of enteric-coated nutrient pellets to stimulate gastrointestinal peptide release and lower glycaemia in type 2 diabetes. Diabetologia 2013, 56, 1236–1242. doi: 10.1007/s00125-013-2876-2
13. Perano, S.J.; Couper, J.J.; Horowitz, M.; et al. Pancreatic enzyme supplementation improves the incretin hormone response and attenuates postprandial glycemia in adolescents with cystic fibrosis: A randomized crossover trial. J. Clin. Endocrinol. Metab. 2014, 99, 2486–2493. doi: 10.1210/jc.2013-4417
14. Lu, W.J.; Yang, Q.; Sun, W.; Woods, S.C.; D'Alessio, D.; Tso, P. The regulation of the lymphatic secretion of glucagon-like peptide-1 (GLP-1) by intestinal absorption of fat and carbohydrate. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G963–G971. doi: 10.1152/ajpgi.00146.2007
15. Kuhre, R.E.; Gribble, F.M.; Hartmann, B.; et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G622–G630. doi: 10.1152/ajpgi.00372.2013
16. Kahles, F.; Meyer, C.; Möllmann, J.; et al. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 2014, 63, 3221–3229. doi: 10.2337/db14-0100
17. Lindgren, O.; Mari, A.; Deacon, C.F.; et al. Differential islet and incretin hormone responses in morning versus afternoon after standardized meal in healthy men. J. Clin. Endocrinol. Metab. 2009, 94, 2887–2892. doi: 10.1210/jc.2009-0366
18. Plamboeck, A.; Veedfald, S.; Deacon, C.F.; et al. Characterisation of oral and i.v. glucose handling in truncally vagotomised subjects with pyloroplasty. Eur. J. Endocrinol. 2013, 169, 187–201. doi: 10.1530/EJE-13-0264
19. Vilsbøll, T.; Agersø, H.; Lauritsen, T.; et al. The elimination rates of intact GIP as well as its primary metabolite, GIP 3-42, are similar in type 2 diabetic patients and healthy subjects. Regul. Pept. 2006, 137, 168–172. doi: 10.1016/j.regpep.2006.07.007
20. Nauck, M.; Stöckmann, F.; Ebert, R.; Creutzfeldt, W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986, 29, 46–52. doi: 10.1007/BF02427280
21. Secher, A.; Jelsing, J.; Baquero, A.F.; et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 2014, 124, 4473–4488. doi: 10.1172/JCI75276
22. van Bloemendaal, L.; IJzerman, R.G.; Ten Kulve, J.S.; et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes 2014, 63, 4186–4196. doi: 10.2337/db14-0849
23. Marso, S.P.; Bain, S.C.; Consoli, A.; et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. doi: 10.1056/NEJMoa1607141
24. Gerstein, H.C.; Abella, M.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. doi: 10.1016/S0140-6736(19)31149-3
25. Yaribeygi, H.; Farrokhi, F.R.; Abdalla, M.A.; et al. The effects of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors on blood pressure and cardiovascular complications in diabetes. J. Diabetes Res. 2021, 2021, 6518221. doi: 10.1155/2021/6518221
26. Mann, J.F.E.; Ørsted, D.D.; Brown-Frandsen, K.; et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 2017, 377, 839–848. doi: 10.1056/NEJMoa1616011
27. Yildirim Simsir, I.; Soyaltin, U.E.; Cetinkalp, S. Glucagon like peptide-1 (GLP-1) likes Alzheimer's disease. Diabetes Metab. Syndr. 2018, 12, 469–475. doi: 10.1016/j.dsx.2018.03.002
28. Nevola, R.; Epifani, R.; Imbriani, S.; et al. GLP-1 receptor agonists in non-alcoholic fatty liver disease: Current evidence and future perspectives. Int. J. Mol. Sci. 2023, 24, Art. No: 1703. doi: 10.3390/ijms24021703
29. Zhang, Q.; Delessa, C.T.; Augustin, R.; et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab. 2021, 33, 833–844.e5. doi: 10.1016/j.cmet.2021.01.015
30. Song, D.H.; Getty-Kaushik, L.; Tseng, E.; Simon, J.; Corkey, B.E.; Wolfe, M.M. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology 2007, 133, 1796–1805. doi: 10.1053/j.gastro.2007.09.005
31. Kim, S.J.; Nian, C.; McIntosh, C.H. GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene. J. Lipid Res. 2010, 51, 3145–3157. doi: 10.1194/jlr.M006841
32. Novikoff, A.; Müller, T.D. Pharmacological advances in incretin-based polyagonism: What we know and what we don't. Physiology (Bethesda) 2024, 39, 142–156. doi: 10.1152/physiol.00032.2023
33. Helsted, M.M.; Gasbjerg, L.S.; Lanng, A.R.; et al. The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone 2020, 140, Art. No: 115553. doi: 10.1016/j.bone.2020.115553
34. Bollag, R.J.; Zhong, Q.; Phillips, P.; et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 2000, 141, 1228–1235. doi: 10.1210/endo.141.3.7366
35. Helsted, M.M.; Gasbjerg, L.S.; Lanng, A.R.; et al. The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone 2020, 140, Art. No: 115553. doi: 10.1016/j.bone.2020.115553
36. Styrkarsdottir, U.; Tragante, V.; Stefansdottir, L.; et al. Obesity variants in the GIPR gene are not associated with risk of fracture or bone mineral density. J. Clin. Endocrinol. Metab. 2024, 109, e1608–e1615. doi: 10.1210/clinem/dgad734
37. Fujii, H.; Tamamori-Adachi, M.; Uchida, K.; et al. Marked cortisol production by intracrine ACTH in GIP-treated cultured adrenal cells in which the GIP receptor was exogenously introduced. PLoS One 2014, 9, Art. No: e110543. doi: 10.1371/journal.pone.0110543
38. Bergmann, N.C.; Lund, A.; Gasbjerg, L.S.; et al. Effects of combined GIP and GLP-1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: A randomised, crossover study. Diabetologia 2019, 62, 665–675. doi: 10.1007/s00125-018-4810-0
39. Krarup, T.; Saurbrey, N.; Moody, A.J.; Kühl, C.; Madsbad, S. Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 1987, 36, 677–682. doi: 10.1016/0026-0495(87)90153-3
40. Davies, M.J.; Bergenstal, R.; Bode, B.; et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: The SCALE Diabetes randomized clinical trial. JAMA 2015, 314, 687–699. doi: 10.1001/jama.2015.9676
41. Davies, M.; Færch, L.; Jeppesen, O.K.; et al. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): A randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021, 397, 971–984. doi: 10.1016/S0140-6736(21)00213-0
42. Watanabe, J.H.; Kwon, J.; Nan, B.; Reikes, A. Trends in glucagon-like peptide 1 receptor agonist use, 2014 to 2022. J. Am. Pharm. Assoc. 2024, 64, 133–138. doi: 10.1016/j.japh.2023.10.002
43. Aroda, V.R.; Bauer, R.; Christiansen, E.; et al. Efficacy and safety of oral semaglutide by subgroups of patient characteristics in the PIONEER phase 3 programme. Diabetes Obes. Metab. 2022, 24, 1338–1350. doi: 10.1111/dom.14710
44. Dutta, D.; Surana, V.; Singla, R.; Aggarwal, S.; Sharma, M. Efficacy and safety of novel twincretin tirzepatide, a dual GIP and GLP-1 receptor agonist in the management of type-2 diabetes: A Cochrane meta-analysis. Indian J. Endocrinol. Metab. 2021, 25, 475–489. doi: 10.4103/ijem.ijem_423_21
45. Dutta, D.; Nagendra, L.; Anne, B.; Kumar, M.; Sharma, M.; Kamrul-Hasan, A.B.M. Orforglipron, a novel non-peptide oral daily GLP-1 receptor agonist as an anti-obesity medicine: A systematic review and meta-analysis. Obes. Sci. Pract. 2024, 10, e743. doi: 10.1002/osp4.743.
46. Lingvay, I.; Cheng, A.Y.; Levine, J.A.; et al. Achievement of glycaemic targets with weight loss and without hypoglycaemia in type 2 diabetes with the once-weekly GIP and GLP-1 receptor agonist tirzepatide: A post hoc analysis of the SURPASS-1 to -5 studies. Diabetes Obes. Metab. 2023, 25, 965–974. doi: 10.1111/dom.14943
47. Miyawaki, K.; Yamada, Y.; Ban, N.; et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 2002, 8, 738–742. doi: 10.1038/nm727
48. Flatt, P.R.; Bailey, C.J.; Kwasowski, P.; Swanston-Flatt, S.K.; Marks, V. Abnormalities of GIP in spontaneous syndromes of obesity and diabetes in mice. Diabetes 1983, 32, 433–435. doi: 10.2337/diab.32.5.433
49. Bailey, C.J.; Flatt, P.R.; Kwasowski, P.; Powell, C.J.; Marks, V. Immunoreactive gastric inhibitory polypeptide and K cell hyperplasia in obese hyperglycaemic (ob/ob) mice fed high fat and high carbohydrate cafeteria diets. Acta Endocrinol. 1986, 112, 224–229. doi: 10.1530/acta.0.1120224
50. Irwin, N.; McClean, P.L.; Patterson, S.; Hunter, K.; Flatt, P.R. Active immunisation against gastric inhibitory polypeptide (GIP) improves blood glucose control in an animal model of obesity-diabetes. Biol. Chem. 2009, 390, 75–80. doi: 10.1515/BC.2009.002
51. Killion, E.A.; Wang, J.; Yie, J.; et al. Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Sci. Transl. Med. 2018, 10, Art. No: eaat3392. doi: 10.1126/scitranslmed.aat3392
52. Jensen, M.H.; Sanni, S.J.; Riber, D.; Holst, J.J.; Rosenkilde, M.M.; Sparre-Ulrich, A.H. AT-7687, a novel GIPR peptide antagonist, combined with a GLP-1 agonist, leads to enhanced weight loss and metabolic improvements in cynomolgus monkeys. Mol. Metab. 2024, 88, Art. No: 102006. doi: 10.1016/j.molmet.2024.102006
53. Campbell, J.E. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol. Metab. 2021, 46, Art. No: 101139. doi: 10.1016/j.molmet.2020.101139
54. Wang, Y.Z.; Yang, D.H.; Wang, M.W. Signaling profiles in HEK 293T cells co-expressing GLP-1 and GIP receptors. Acta Pharmacol. Sin. 2022, 43, 1453–1460. doi: 10.1038/s41401-021-00758-6
55. Teff, K.L.; Engelman, K. Oral sensory stimulation improves glucose tolerance in humans: Effects on insulin, C-peptide, and glucagon. Am. J. Physiol. 1996, 270, R1371–R1379. doi: 10.1152/ajpregu.1996.270.6.R1371
56. Ambery, P.; Parker, V.E.; Stumvoll, M.; et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: A randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 2018, 391, 2607–2618. doi: 10.1016/S0140-6736(18)30726-8
57. Pocai, A.; Carrington, P.E.; Adams, J.R.; et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009, 58, 2258–2266. doi: 10.2337/db09-0278
58. Vajda, E.G.; Logan, D.; Lasseter, K.; et al. Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus. Diabetes Obes. Metab. 2017, 19, 24–32. doi: 10.1111/dom.12752
59. Guan, H.P.; Yang, X.; Lu, K.; et al. Glucagon receptor antagonism induces increased cholesterol absorption. J. Lipid Res. 2015, 56, 2183–2195. doi: 10.1194/jlr.M060897
60. Kazierad, D.J.; Chidsey, K.; Somayaji, V.R.; Bergman, A.J.; Calle, R.A. Efficacy and safety of the glucagon receptor antagonist PF-06291874: A 12-week, randomized, dose-response study in patients with type 2 diabetes mellitus on background metformin therapy. Diabetes Obes. Metab. 2018, 20, 2608–2616. doi: 10.1111/dom.13440
61. Okamoto, H.; Kim, J.; Aglione, J.; et al. Glucagon receptor blockade with a human antibody normalizes blood glucose in diabetic mice and monkeys. Endocrinology 2015, 156, 2781–2794. doi: 10.1210/en.2015-1011
62. Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; et al. Triple-hormone-receptor agonist retatrutide for obesity—A phase 2 trial. N. Engl. J. Med. 2023, 389, 514–526. doi: 10.1056/NEJMoa2301972
63. Nahra, R.; Wang, T.; Gadde, K.M.; et al. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: A 54-week randomized phase 2b study. Diabetes Care 2021, 44, 1433–1442. doi: 10.2337/dc20-2151
64. Pharmaceutical Technology. AZ to terminate once-daily cotadutide program to focus on weekly GLP-1RA co-agonist. Available online: www.pharmaceutical-technology.com/analyst-comment/az-terminate-cotadutide-coagonist (accessed on 9 January 2025).
65. Lutz, T.A. Creating the amylin story. Appetite 2022, 172, Art. No: 105965. doi: 10.1016/j.appet.2022.105965