Franchini, M.; Liumbruno, G. M.; Bonfanti, C.; Lippi, G. The Evolution of Anticoagulant Therapy. Blood Transfus. 2016, 14 (2), 175–184. https://doi.org/10.2450/2015.0096-15.
Pengo, V.; Denas, G. Optimizing Quality Care for the Oral Vitamin K Antagonists (VKAs). Hematol. Am. Soc. Hematol. Educ. Program 2018, 2018 (1), 332–338.
DOI: https://doi.org/10.1182/asheducation-2018.1.332
López-López, J. A.; Sterne, J. A. C.; Thom, H. H. Z.; Higgins, J. P. T.; Hingorani, A. D.; Okoli, G. N.; Davies, P. A.; Bodalia, P. N.; Bryden, P. A.; Welton, N. J.; Hollingworth, W.; Caldwell, D. M.; Savović, J.; Dias, S.; Salisbury, C.; Eaton, D.; Stephens-Boal, A.; Sofat, R. Oral Anticoagulants for Prevention of Stroke in Atrial Fibrillation: Systematic Review, Network Meta-Analysis, and Cost Effectiveness Analysis. The BMJ 2017, 359, j5058. https://doi.org/10.1136/bmj.j5058.
DOI: https://doi.org/10.1136/bmj.j5058
Wadsworth, D.; Sullivan, E.; Jacky, T.; Sprague, T.; Feinman, H.; Kim, J. A Review of Indications and Comorbidities in Which Warfarin May Be the Preferred Oral Anticoagulant. J. Clin. Pharm. Ther. 2021, 46 (3), 560–570. https://doi.org/10.1111/jcpt.13343.
DOI: https://doi.org/10.1111/jcpt.13343
Pyykönen, M.; Linna, M.; Tykkyläinen, M.; Delmelle, E.; Laatikainen, T. Patient-Specific and Healthcare Real-World Costs of Atrial Fibrillation in Individuals Treated with Direct Oral Anticoagulant Agents or Warfarin. BMC Health Serv. Res. 2021, 21 (1), 1299. https://doi.org/10.1186/s12913-021-07125-5
DOI: https://doi.org/10.1186/s12913-021-07125-5
Ababneh, M.; Nasser, S. A.; Rababa’h, A.; Ababneh, F. Warfarin Adherence and Anticoagulation Control in Atrial Fibrillation Patients: A Systematic Review. Eur. Rev. Med. Pharmacol. Sci. 2021, 25 (24), 7926–7933. https://doi.org/10.26355/eurrev_202112_27642.
Juurlink, D. N. Drug Interactions with Warfarin: What Clinicians Need to Know. CMAJ Can. Med. Assoc. J. 2007, 177 (4), 369–371. https://doi.org/10.1503/cmaj.070946.
DOI: https://doi.org/10.1503/cmaj.070946
Donaldson, C. J.; Harrington, D. J. Therapeutic Warfarin Use and the Extrahepatic Functions of Vitamin K-Dependent Proteins. Br. J. Biomed. Sci. 2017, 74 (4), 163–169. https://doi.org/10.1080/09674845.2017.1336854.
DOI: https://doi.org/10.1080/09674845.2017.1336854
Porter, W. R. Warfarin: History, Tautomerism and Activity. J. Comput. Aided Mol. Des. 2010, 24 (6–7), 553–573. https://doi.org/10.1007/s10822-010-9335-7.
DOI: https://doi.org/10.1007/s10822-010-9335-7
Ufer, M. Comparative Pharmacokinetics of Vitamin K Antagonists: Warfarin, Phenprocoumon and Acenocoumarol. Clin. Pharmacokinet. 2005, 44 (12), 1227–1246. https://doi.org/10.2165/00003088-200544120-00003.
DOI: https://doi.org/10.2165/00003088-200544120-00003
Tadros, R.; Shakib, S. Warfarin--Indications, Risks and Drug Interactions. Aust. Fam. Physician 2010, 39 (7), 476–479.
Jacobs, L. G. Warfarin Pharmacology, Clinical Management, and Evaluation of Hemorrhagic Risk for the Elderly. Cardiol. Clin. 2008, 26 (2), 157–167, v. https://doi.org/10.1016/j.ccl.2007.12.010.
DOI: https://doi.org/10.1016/j.ccl.2007.12.010
Saleem, M. H.; Ali, S.; Hussain, S.; Kamran, M.; Chattha, M. S.; Ahmad, S.; Aqeel, M.; Rizwan, M.; Aljarba, N. H.; Alkahtani, S.; Abdel-Daim, M. M. Flax (Linum Usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants 2020, 9 (4), 496. https://doi.org/10.3390/plants9040496.
DOI: https://doi.org/10.3390/plants9040496
Gebauer, S. K.; Psota, T. L.; Harris, W. S.; Kris-Etherton, P. M. N−3 Fatty Acid Dietary Recommendations and Food Sources to Achieve Essentiality and Cardiovascular Benefits. Am. J. Clin. Nutr. 2006, 83 (6), 1526S-1535S. https://doi.org/10.1093/ajcn/83.6.1526S.
DOI: https://doi.org/10.1093/ajcn/83.6.1526S
Imran, M.; Ahmad, N.; Anjum, F. M.; Khan, M. K.; Mushtaq, Z.; Nadeem, M.; Hussain, S. Potential Protective Properties of Flax Lignan Secoisolariciresinol Diglucoside. Nutr. J. 2015, 14, 71. https://doi.org/10.1186/s12937-015-0059-3.
DOI: https://doi.org/10.1186/s12937-015-0059-3
Parikh, M.; Netticadan, T.; Pierce, G. N. Flaxseed: Its Bioactive Components and Their Cardiovascular Benefits. Am. J. Physiol.-Heart Circ. Physiol. 2018, 314 (2), H146–H159. https://doi.org/10.1152/ajpheart.00400.2017.
DOI: https://doi.org/10.1152/ajpheart.00400.2017
Parikh, M.; Maddaford, T. G.; Austria, J. A.; Aliani, M.; Netticadan, T.; Pierce, G. N. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients 2019, 11 (5), 1171. https://doi.org/10.3390/nu1105117
DOI: https://doi.org/10.3390/nu11051171
Nandish, S. K. M.; Kengaiah, J.; Ramachandraiah, C.; Shivaiah, A.; Chandramma; Girish, K. S.; Kemparaju, K.; Sannaningaiah, D. Anticoagulant, Antiplatelet and Fibrin Clot Hydrolyzing Activities of Flax Seed Buffer extract. Pharmacogn. Mag. 2018, 14 (55), 175. https://doi.org/10.4103/pm.pm_320_17
DOI: https://doi.org/10.4103/pm.pm_320_17
Nandish, S. K. M.; Kengaiah, J.; Ramachandraiah, Ch.; Chandramma; Shivaiah, A.; Santhosh, S. M.; Thirunavukkarasu; Sannaningaiah, D. Flaxseed Cysteine Protease Exhibits Strong Anticoagulant, Antiplatelet, and Clot-Dissolving Properties. Biochem. Mosc. 2020, 85 (9), 1113–1126. https://doi.org/10.1134/S0006297920090102.
DOI: https://doi.org/10.1134/S0006297920090102
Nandish, S. K. M.; Kengaiah, J.; Ramachandraiah, C.; Chandramma; Shivaiah, A.; Thirunavukkarasu; Shankar, R. L.; Sannaningaiah, D. Purification and Characterization of Non-Enzymatic Glycoprotein (NEGp) from Flax Seed Buffer Extract That Exhibits Anticoagulant and Antiplatelet Activity. Int. J. Biol. Macromol. 2020, 163, 317–326. https://doi.org/10.1016/j.ijbiomac.2020.06.270.
DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.270
Holy, E. W.; Forestier, M.; Richter, E. K.; Akhmedov, A.; Leiber, F.; Camici, G. G.; Mocharla, P.; Lüscher, T. F.; Beer, J. H.; Tanner, F. C. Dietary α-Linolenic Acid Inhibits Arterial Thrombus Formation, Tissue Factor Expression, and Platelet Activation. Arterioscler. Thromb. Vasc. Biol. 2011, 31 (8), 1772–1780. https://doi.org/10.1161/ATVBAHA.111.226118.
DOI: https://doi.org/10.1161/ATVBAHA.111.226118
Yang, Q.; Cao, W.; Zhou, X.; Cao, W.; Xie, Y.; Wang, S. Anti-Thrombotic Effects of α-Linolenic Acid Isolated from Zanthoxylum Bungeanum Maxim Seeds. BMC Complement. Altern. Med. 2014, 14, 348. https://doi.org/10.1186/1472-6882-14-348.
DOI: https://doi.org/10.1186/1472-6882-14-348
Stivala, S.; Gobbato, S.; Bonetti, N.; Camici, G. G.; Lüscher, T. F.; Beer, J. H. Dietary Alpha-Linolenic Acid Reduces Platelet Activation and Collagen-Mediated Cell Adhesion in Sickle Cell Disease Mice. J. Thromb. Haemost. JTH 2022, 20 (2), 375–386. https://doi.org/10.1111/jth.15581.
DOI: https://doi.org/10.1111/jth.15581
Defries, D.; Shariati, S.; Blewett, H.; Aliani, M. Expression of Cytochrome P450 Enzymes Is Induced by Flaxseed Enterolignans. Curr. Dev. Nutr. 2021, 5 (Suppl 2), 312. https://doi.org/10.1093/cdn/nzab037_022.
DOI: https://doi.org/10.1093/cdn/nzab037_022
Aqeel, T.; Chikkalakshmipura Gurumallu, S.; Hashimi, S. M.; AlQurashi, N.; Javaraiah, R. Evaluation of Protective Efficacy of Flaxseed Lignan-Secoisolariciresinol Diglucoside against Mercuric Chloride-Induced Nephrotoxicity in Rats. Mol. Biol. Rep. 2019, 46 (6), 6171–6179. https://doi.org/10.1007/s11033-019-05052-7.
DOI: https://doi.org/10.1007/s11033-019-05052-7
Fender, A. C.; Dobrev, D. Bound to Bleed: How Altered Albumin Binding May Dictate Warfarin Treatment Outcome. Int. J. Cardiol. Heart Vasc. 2019, 22, 214–215. https://doi.org/10.1016/j.ijcha.2019.02.007
DOI: https://doi.org/10.1016/j.ijcha.2019.02.007
Rode, S. B.; Dadmal, A.; Salankar, H. V. Nature’s Gold (Moringa Oleifera): Miracle Properties. Cureus 2022, 14 (7), e26640. https://doi.org/10.7759/cureus.26640.
DOI: https://doi.org/10.7759/cureus.26640
Saini, R. K.; Sivanesan, I.; Keum, Y.-S. Phytochemicals of Moringa Oleifera: A Review of Their Nutritional, Therapeutic and Industrial Significance. 3 Biotech 2016, 6 (2), 203. https://doi.org/10.1007/s13205-016-0526-3.
DOI: https://doi.org/10.1007/s13205-016-0526-3
Nova, E.; Redondo-Useros, N.; Martínez-García, R. M.; Gómez-Martínez, S.; Díaz-Prieto, L. E.; Marcos, A. Potential of Moringa Oleifera to Improve Glucose Control for the Prevention of Diabetes and Related Metabolic Alterations: A Systematic Review of Animal and Human Studies. Nutrients 2020, 12 (7), 2050. https://doi.org/10.3390/nu12072050.
DOI: https://doi.org/10.3390/nu12072050
Kou, X.; Li, B.; Olayanju, J. B.; Drake, J. M.; Chen, N. Nutraceutical or Pharmacological Potential of Moringa Oleifera Lam. Nutrients 2018, 10 (3), 343. https://doi.org/10.3390/nu10030343.
DOI: https://doi.org/10.3390/nu10030343
Monera, T. G.; Wolfe, A. R.; Maponga, C. C.; Benet, L. Z.; Guglielmo, J. Moringa Oleifera Leaf Extracts Inhibit 6β-Hydroxylation of Testosterone by CYP3A4. J. Infect. Dev. Ctries. 2008, 2 (5), 379–383.
DOI: https://doi.org/10.3855/jidc.201
Fantoukh, O. I.; Albadry, M. A.; Parveen, A.; Hawwal, M. F.; Majrashi, T.; Ali, Z.; Khan, S. I.; Chittiboyina, A. G.; Khan, I. A. Isolation, Synthesis, and Drug Interaction Potential of Secondary Metabolites Derived from the Leaves of Miracle Tree (Moringa Oleifera) against CYP3A4 and CYP2D6 Isozymes. Phytomedicine Int. J. Phytother. Phytopharm. 2019, 60, 153010. https://doi.org/10.1016/j.phymed.2019.153010.
DOI: https://doi.org/10.1016/j.phymed.2019.153010
Showande, S. J.; Fakeye, T. O.; Kajula, M.; Hokkanen, J.; Tolonen, A. Potential Inhibition of Major Human Cytochrome P450 Isoenzymes by Selected Tropical Medicinal Herbs — Implication for Herb–Drug Interactions. Food Sci. Nutr. 2018, 7 (1), 44–55. https://doi.org/10.1002/fsn3.789.
DOI: https://doi.org/10.1002/fsn3.789
Amaeze, O.; Eng, H.; Horlbogen, L.; Varma, M. V. S.; Slitt, A. Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. Eur. J. Drug Metab. Pharmacokinet. 2021, 46 (3), 437–450. https://doi.org/10.1007/s13318-021-00685-1
DOI: https://doi.org/10.1007/s13318-021-00685-1
Asare, G. A.; Gyan, B.; Bugyei, K.; Adjei, S.; Mahama, R.; Addo, P.; Otu-Nyarko, L.; Wiredu, E. K.; Nyarko, A. Toxicity Potentials of the Nutraceutical Moringa Oleifera at Supra-Supplementation Levels. J. Ethnopharmacol. 2012, 139 (1), 265–272. https://doi.org/10.1016/j.jep.2011.11.009.
DOI: https://doi.org/10.1016/j.jep.2011.11.009
Cotabarren, J.; Claver, S.; Payrol, J. A.; Garcia-Pardo, J.; Obregón, W. D. Purification and Characterization of a Novel Thermostable Papain Inhibitor from Moringa Oleifera with Antimicrobial and Anticoagulant Properties. Pharmaceutics 2021, 13 (4), 512. https://doi.org/10.3390/pharmaceutics13040512.
DOI: https://doi.org/10.3390/pharmaceutics13040512
Hellinger, R.; Gruber, C. W. Peptide-Based Protease Inhibitors from Plants. Drug Discov. Today 2019, 24 (9), 1877–1889. https://doi.org/10.1016/j.drudis.2019.05.026.
DOI: https://doi.org/10.1016/j.drudis.2019.05.026
Lv, Y.; Zou, Y.; Zhang, X.; Liu, B.; Peng, X.; Chu, C. A Review on the Chemical Constituents and Pharmacological Efficacies of Lindera Aggregata (Sims) Kosterm. Front. Nutr. 2023, 9, 1071276. https://doi.org/10.3389/fnut.2022.1071276.
DOI: https://doi.org/10.3389/fnut.2022.1071276
Cao, Y.; Xuan, B.; Peng, B.; Li, C.; Chai, X.; Tu, P. The Genus Lindera: A Source of Structurally Diverse Molecules Having Pharmacological Significance. Phytochem. Rev. 2016, 15 (5), 869–906. https://doi.org/10.1007/s11101-015-9432-2.
DOI: https://doi.org/10.1007/s11101-015-9432-2
Wen, S.-S.; Wang, Y.; Xu, J.-P.; Liu, Q.; Zhang, L.; Zheng, J.; Li, L.; Zhang, N.; Liu, X.; Xu, Y.-W.; Sun, Z.-L. Two New Sesquiterpenoid Lactone Derivatives from Lindera Aggregata. Nat. Prod. Res. 2022, 36(21), 5407–5415. https://doi.org/10.1080/14786419.2021.1939332.
DOI: https://doi.org/10.1080/14786419.2021.1939332
Ho, H.K.; Chan, C.Y.; Hardy, K.D.; Chan, E.C.Y. Mechanism-Based Inactivation of CYP450 Enzymes: A Case Study of Lapatinib. Drug Metab. Rev. 2015, 47(1), 21–28. https://doi.org/10.3109/03602532.2014.1003648.
DOI: https://doi.org/10.3109/03602532.2014.1003648
Wang, H.; Wang, K.; Mao, X.; Zhang, Q.; Yao, T.; Peng, Y.; Zheng, J. Mechanism-Based Inactivation of CYP2C9 by Linderane. Xenobiotica 2015, 45 (12), 1037–1046. https://doi.org/10.3109/00498254.2015.1041002.
DOI: https://doi.org/10.3109/00498254.2015.1041002
Wang, K.; Zhang, T.; Rao, J.; Peng, T.; Gao, Q.; Feng, X.; Qiu, F. Drug-Drug Interactions Induced by Linderane Based on Mechanism-Based Inactivation of CYP2C9 and the Molecular Mechanisms. Bioorganic Chem. 2022, 118, 105478. https://doi.org/10.1016/j.bioorg.2021.105478.
DOI: https://doi.org/10.1016/j.bioorg.2021.105478
Dalli, M.; Bekkouch, O.; Azizi, S.; Azghar, A.; Gseyra, N.; Kim, B. Nigella Sativa L. Phytochemistry and Pharmacological Activities: A Review (2019–2021). Biomolecules 2021, 12 (1), 20. https://doi.org/10.3390/biom12010020.
DOI: https://doi.org/10.3390/biom12010020
Malik, S.; Singh, A.; Negi, P.; Kapoor, V. K. Thymoquinone: A Small Molecule from Nature with High Therapeutic Potential. Drug Discov. Today 2021, 26 (11), 2716–2725. https://doi.org/10.1016/j.drudis.2021.07.013
DOI: https://doi.org/10.1016/j.drudis.2021.07.013
Muralidharan-Chari, V.; Kim, J.; Abuawad, A.; Naeem, M.; Cui, H.; Mousa, S. A. Thymoquinone Modulates Blood Coagulation in Vitro via Its Effects on Inflammatory and Coagulation Pathways. Int. J. Mol. Sci. 2016, 17 (4), 474. https://doi.org/10.3390/ijms17040474.
DOI: https://doi.org/10.3390/ijms17040474
Rukoyatkina, N.; Butt, E.; Subramanian, H.; Nikolaev, V. O.; Mindukshev, I.; Walter, U.; Gambaryan, S.; Benz, P. M. Protein Kinase A Activation by the Anti-Cancer Drugs ABT-737 and Thymoquinone Is Caspase-3-Dependent and Correlates with Platelet Inhibition and Apoptosis. Cell Death Dis. 2017, 8 (6), e2898. https://doi.org/10.1038/cddis.2017.290.
DOI: https://doi.org/10.1038/cddis.2017.290
Towhid, S. T.; Schmidt, E.-M.; Schmid, E.; Münzer, P.; Qadri, S. M.; Borst, O.; Lang, F. Thymoquinone-Induced Platelet Apoptosis. J. Cell. Biochem. 2011, 112 (11), 3112–3121. https://doi.org/10.1002/jcb.23237.
DOI: https://doi.org/10.1002/jcb.23237
Wang, Z.; Wang, X.; Wang, Z.; Lv, X.; Yin, H.; Li, W.; Li, W.; Jiang, L.; Liu, Y. Potential Herb-Drug Interaction Risk of Thymoquinone and Phenytoin. Chem. Biol. Interact. 2022, 353, 109801. https://doi.org/10.1016/j.cbi.2022.109801.
DOI: https://doi.org/10.1016/j.cbi.2022.109801
Elbarbry, F.; Ung, A.; Abdelkawy, K. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities. Pharmacogn. Mag. 2018, 13 (Suppl 4), S895–S899. https://doi.org/10.4103/0973-1296.224342
Albassam, A. A.; Ahad, A.; Alsultan, A.; Al-Jenoobi, F. I. Inhibition of Cytochrome P450 Enzymes by Thymoquinone in Human Liver Microsomes. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2018, 26 (5), 673–677. https://doi.org/10.1016/j.jsps.2018.02.024.
DOI: https://doi.org/10.1016/j.jsps.2018.02.024
Al-Jenoobi, F. I.; Al-Thukair, A. A.; Abbas, F. A.; Ansari, M. J.; Alkharfy, K. M.; Al-Mohizea, A. M.; Al-Suwayeh, S. A.; Jamil, S. Effect of Black Seed on Dextromethorphan O- and N-Demethylation in Human Liver Microsomes and Healthy Human Subjects. Drug Metab. Lett. 2010, 4 (1), 51–55. https://doi.org/10.2174/187231210790980435.
DOI: https://doi.org/10.2174/187231210790980435