Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 1997, 23, 3-25. doi:10.1016/s0169-409x(96)00423-1.
Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615-2623. doi:10.1021/jm020017n.
Amidon, G.L.; Lennernas, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification - the correlation of in-vitro drug product dissolution and in-vivo bioavailability. Pharm. Res. 1995, 12, 413-420. doi:10.1023/a:1016212804288.
Rajput, K.N.; Patel, K.C.; Trivedi, U.B. β-Cyclodextrin Production by Cyclodextrin Glucanotransferase from an Alkaliphile Microbacterium terrae KNR 9 Using Different Starch Substrates. Biotechnol. Res. Int. 2016, 2016, Art. No: 2034359. doi:10.1155/2016/2034359.
Vyas, A.; Saraf, S.; Saraf, S. Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 2008, 62, 23-42. doi:10.1007/s10847-008-9456-y.
Chilajwar, S.V.; Pednekar, P.P.; Jadhav, K.R.; Gupta, G.J.C.; Kadam, V.J. Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin. Drug. Deliv. 2014, 11, 111-120. doi:10.1517/17425247.2014.865013.
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607-1621. doi:10.1111/j.2042-7158.2010.01030.x.
Pawar, S.; Shende, P.; Trotta, F. Diversity of beta-cyclodextrin-based nanosponges for transformation of actives. Int. J. Pharm. 2019, 565, 333-350. doi:10.1016/j.ijpharm.2019.05.015.
Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov. Today 2016, 21, 356-362. doi:10.1016/j.drudis.2015.11.017.
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins .1. Drug solubilization and stabilization. J. Pharm. Sci. 1996, 85, 1017-1025. doi:10.1021/js950534b.
Li, D.; Ma, M. Nanoporous polymers: New nanosponge absorbent media. Filtr. Sep. 1999, 36, 26-28. doi:10.1016/S0015-1882(00)80050-6.
Ma, M.; Li, D.Q. New organic nanoporous polymers and their inclusion complexes. Chem. Mater. 1999, 11, 872-874. doi:10.1021/cm981090y.
Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem. 2012, 8, 2091-2099. doi:10.3762/bjoc.8.235.
Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaccutical solubilizers. Adv. Drug Del. Rev. 2007, 59, 645-666. doi:10.1016/j.addr.2007.05.012.
Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert Opin. Drug. Deliv. 2005, 2, 335-351. doi:10.1517/17425247.2.1.335.
Pyrak, B.; Rogacka-Pyrak, K.; Gubica, T.; Szeleszczuk, L. Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics. Int. J. Mol. Sci. 2024, 25(6), Art. No: 3527. doi:10.3390/ijms25063527.
Shoaib, Q.U.A.; Latif, S.; Ijaz, Q.A.; Afzal, H.; Siddique, M.I.; Hussain, A.; Arshad, M.S.; Bukhari, N.I.; Abbas, N. Solubility and dissolution rate enhancement of ibuprofen by cyclodextrin based carbonate nanosponges. Pak. J. Pharm. Sci. 2021, 34, 1045-1055. doi:10.36721/pjps.2021.34.3.sup.1045-1055.1.
Gaber, D.A.; Radwan, M.A.; Alzughaibi, D.A.; Alail, J.A.; Aljumah, R.S.; Aloqla, R.M.; Alkhalifah, S.A.; Abdoun, S.A. Formulation and evaluation of Piroxicam nanosponge for improved internal solubility and analgesic activity. Drug Deliv. 2023, 30(1), Art. No: 2174208. doi:10.1080/10717544.2023.2174208.
Mendes, C.; Meirelles, G.C.; Barp, C.G.; Assreuy, J.; Silva, M.A.S.; Ponchel, G. Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity. Carbohydr. Polym. 2018, 195, 586-592. doi:10.1016/j.carbpol.2018.05.011.
Rao, M.R.P.; Chaudhari, J.; Trotta, F.; Caldera, F. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine. AAPS PharmSciTech 2018, 19, 2358-2369. doi:10.1208/s12249-018-1064-6.
Mashaqbeh, H.; Obaidat, R.; Al-Shar'i, N.; El-Elimat, T.; Alnabulsi, S. Weak complexation of 5-fluorouracil with beta-cyclodextrin, carbonate, and dianhydride crosslinked beta-cyclodextrin: in vitro and in silico studies. Res. Pharm. Sci. 2022, 17, 334-349. doi:10.4103/1735-5362.350235.
Argenziano, M.; Gigliotti, C.L.; Clemente, N.; Boggio, E.; Ferrara, B.; Trotta, F.; Pizzimenti, S.; Barrera, G.; Boldorini, R.; Bessone, F.; et al. Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers 2020, 12, Art. No: 162. doi:10.3390/cancers12010162.
Suvarna, V.; Singh, V.; Sharma, D.; Murahari, M. Experimental and computational insight of the supramolecular complexes of Irbesartan with beta-cyclodextrin based nanosponges. J. Drug Deliv. Sci. Technol. 2021, 63, Art. No: 102494. doi:10.1016/j.jddst.2021.102494.
Vij, M.; Dand, N.; Kumar, L.; Wadhwa, P.; Wani, S.U.D.; Mahdi, W.A.; Alshehri, S.; Alam, P.; Shakeel, F. Optimisation of a Greener-Approach for the Synthesis of Cyclodextrin-Based Nanosponges for the Solubility Enhancement of Domperidone, a BCS Class II Drug. Pharmaceuticals 2023, 16, Art. No: 567. doi:10.3390/ph16040567.
Sherje, A.P.; Surve, A.; Shende, P. CDI cross-linked -cyclodextrin nanosponges of paliperidone: synthesis and physicochemical characterization. J. Mater. Sci. Mater. Med. 2019, 30, Art. No: 74. doi:10.1007/s10856-019-6268-0.
Bertelli, A.; Biagi, M.; Corsini, M.; Baini, G.; Cappellucci, G.; Miraldi, E. Polyphenols: From Theory to Practice. Foods 2021, 10(11), Art. No: 2595. doi:10.3390/foods10112595.
Panahi, Y.; Fazlolahzadeh, O.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Johnston, T.P.; Sahebkar, A. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J. Cell. Physiol. 2019, 234, 1165-1178. doi:10.1002/jcp.27096.
Qureshi, S.; Shah, A.H.; Ageel, A.M. Toxicity studies on Alpinia galanga and Curcuma longa. Planta Med. 1992, 58, 124-127. doi:10.1055/s-2006-961412.
Lao, C.D.; Demierre, M.F.; Sondak, V.K. Targeting events in melanoma carcinogenesis for the prevention of melanoma. Expert Rev. Anticancer Ther. 2006, 6, 1559-1568. doi:10.1586/14737140.6.11.1559.
Chelimela, N.; Alavala, R.; Satla, S. Curcumin - Bioavailability Enhancement by Prodrug Approach and Novel Formulations. Chem. Biodivers. 2024, 21(5), Art. No: e202302030. doi:10.1002/cbdv.202302030.
Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med. 2015, 5, 57-70. doi:10.1016/j.hermed.2015.03.001.
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 2018, 45, 45-53. doi:10.1016/j.jddst.2018.03.004.
Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. J. Agric. Food. Chem. 2017, 65, 1525-1532. doi:10.1021/acs.jafc.6b04815.
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm. 2007, 4, 807-818. doi:10.1021/mp700113r.
Wu, C.-F.; Yang, J.-Y.; Wang, F.; Wang, X.-X. Resveratrol: botanical origin, pharmacological activity and applications. Chinese Journal of Natural Medicines 2013, 11, 1-15. doi:10.1016/S1875-5364(13)60001-1.
Amri, A.; Chaumeil, J.C.; Sfar, S.; Charrueau, C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release 2012, 158, 182-193. doi:10.1016/j.jconrel.2011.09.083.
NCBI. PubChem Compound Summary for CID 445154, Resveratrol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Resveratrol (accessed on September 7, 2024).
Dhakar, N.K.; Matencio, A.; Caldera, F.; Argenziano, M.; Cavalli, R.; Dianzani, C.; Zanetti, M.; Lopez-Nicolas, J.M.; Trotta, F. Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics 2019, 11, Art. No: 545. doi:10.3390/pharmaceutics11100545.
Jagtap, S.; Meganathan, K.; Wagh, V.; Winkler, J.; Hescheler, J.; Sachinidis, A. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr. Med. Chem. 2009, 16, 1451-1462. doi:10.2174/092986709787909578.
Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release 2009, 133, 238-244. doi:10.1016/j.jconrel.2008.10.002.
Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19-34. doi:10.1146/annurev.nutr.22.111401.144957.
NCBI. PubChem Compound Summary for CID 5280343, Quercetin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Quercetin (accessed on September 7, 2024).
Singireddy, A.; Subramanian, S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Particul. Sci. Technol. 2016, 34, 341-346. doi:10.1080/02726351.2015.1081658.
NCBI. PubChem Compound Summary for CID 969516, Curcumin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Curcumin (accessed on September 7, 2024).
NCBI. PubChem Compound Summary for CID 5281717, Oxyresveratrol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Oxyresveratrol (accessed on September 7, 2024).
Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140-2148. doi:10.1021/ci700257y.
Darandale, S.S.; Vavia, P.R. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J. Incl. Phenom. Macrocycl. Chem. 2013, 75, 315-322. doi:10.1007/s10847-012-0186-9.
Gholibegloo, E.; Mortezazadeh, T.; Salehian, F.; Ramazani, A.; Amanlou, M.; Khoobi, M. Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to beta-cyclodextrin. Carbohydr. Polym. 2019, 213, 70-78. doi:10.1016/j.carbpol.2019.02.075.
Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech 2011, 12, 279-286. doi:10.1208/s12249-011-9584-3.
Mashaqbeh, H.; Obaidat, R.; Al-Shar'i, N. Evaluation and Characterization of Curcumin-beta-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers 2021, 13, Art. No: 4073. doi:10.3390/polym13234073.
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Carbonyl and carboxylate crosslinked cyclodextrin as a nanocarrier for resveratrol: in silico, in vitro and in vivo evaluation. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 261-272. doi:10.1007/s10847-018-0843-8.
Anandam, S.; Selvamuthukumar, S. Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci. 2014, 49, 8140-8153. doi:10.1007/s10853-014-8523-6.
Mashaqbeh, H.; Obaidat, R.; Al-shar'i, N.A. Evaluation of EDTA Dianhydride Versus Diphenyl Carbonate Nanosponges for Curcumin. AAPS PharmSciTech 2022, 23, Art. No: 229. doi:10.1208/s12249-022-02372-z.
Rafati, N.; Zarrabi, A.; Caldera, F.; Trotta, F.; Ghias, N. Pyromellitic dianhydride crosslinked cyclodextrin nanosponges for curcumin controlled release; formulation, physicochemical characterization and cytotoxicity investigations. J. Microencapsul. 2019, 36, 715-727. doi:10.1080/02652048.2019.1669728.
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation. J. Drug Deliv. Sci. Technol. 2019, 52, 55-64. doi:10.1016/j.jddst.2019.04.025.
Matencio, A.; Dhakar, N.K.; Bessone, F.; Musso, G.; Cavalli, R.; Dianzani, C.; Garcia-Carmona, F.; Lopez-Nicolas, J.M.; Trotta, F. Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: Developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohydr. Polym. 2020, 231, Art. No: 115763. doi:10.1016/j.carbpol.2019.115763.
Gharakhloo, M.; Sadjadi, S.; Rezaeetabar, M.; Askari, F.; Rahimi, A. Cyclodextrin‐Based Nanosponges for Improving Solubility and Sustainable Release of Curcumin. ChemistrySelect 2020, 5, 1734-1738. doi:10.1002/slct.201904007.