1. Giovannucci, E. Nutritional epidemiology and cancer: A Tale of Two Cities. Cancer Causes Control 2018, 29 (11), 1007-1014. DOI: 10.1007/s10552-018-1088-y
DOI: https://doi.org/10.1007/s10552-018-1088-y
2. Blot, W. J.; Tarone, R. E. Doll and Peto's quantitative estimates of cancer risks: holding generally true for 35 years. J. Natl. Cancer Inst. 2015, 107(4), Art. No: djv044. DOI: 10.1093/jnci/djv044
DOI: https://doi.org/10.1093/jnci/djv044
3. Zhang, Y. J.; Gan, R. Y.; Li, S.; Zhou, Y.; Li, A. N.; Xu, D. P.; Li, H. B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20(12), 21138-21156. DOI: 10.3390/molecules201219753
DOI: https://doi.org/10.3390/molecules201219753
4. Galasko, D. R.; Peskind, E.; Clark, C. M.; Quinn, J. F.; Ringman, J. M.; Jicha, G. A.; Cotman, C.; Cottrell, B.; Montine, T. J.; Thomas, R. G.; Aisen, P. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch. Neurol. 2012, 69 (7), 836-841. DOI: 10.1001/archneurol.2012.85
DOI: https://doi.org/10.1001/archneurol.2012.85
5. Tanaka, S.; Haruma, K.; Yoshihara, M.; Kajiyama, G.; Kira, K.; Amagase, H.; Chayama, K. Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. J. Nutr. 2006, 136(3 Suppl), 821-826. DOI: 10.1093/jn/136.3.821S
DOI: https://doi.org/10.1093/jn/136.3.821S
6. El Oirdi, M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024, 17(6). DOI: 10.3390/ph17060692
DOI: https://doi.org/10.3390/ph17060692
7. Moreno, S.; Scheyer, T.; Romano, C. S.; Vojnov, A. A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2006, 40(2), 223-231. DOI: 10.1080/10715760500473834
DOI: https://doi.org/10.1080/10715760500473834
8. Moore, J.; Yousef, M.; Tsiani, E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients 2016, 8(11), Art. No: 731. DOI: 10.3390/nu8110731
DOI: https://doi.org/10.3390/nu8110731
9. Chen, X.; Wei, C.; Zhao, J.; Zhou, D.; Wang, Y.; Zhang, S.; Zuo, H.; Dong, J.; Zhao, Z.; Hao, M.; et al. Carnosic acid: an effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol. Res. 2024, 206, Art. No: 107288. DOI: 10.1016/j.phrs.2024.107288
DOI: https://doi.org/10.1016/j.phrs.2024.107288
10. Birtić, S.; Dussort, P.; Pierre, F. X.; Bily, A. C.; Roller, M. Carnosic acid. Phytochemistry 2015, 115, 9-19. DOI: 10.1016/j.phytochem.2014.12.026
DOI: https://doi.org/10.1016/j.phytochem.2014.12.026
11. Petiwala, S. M.; Johnson, J. J. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Lett. 2015, 367 (2), 93-102. DOI: 10.1016/j.canlet.2015.07.005
DOI: https://doi.org/10.1016/j.canlet.2015.07.005
12. Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M. J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Refined exposure assessment of extracts of rosemary (E 392) from its use as food additive. EFSA J. 2018, 16. Art. No: 5373. DOI: 10.2903/j.efsa.2018.5373
DOI: https://doi.org/10.2903/j.efsa.2018.5373
13. Sirajudeen, F.; Bou Malhab, L.J.; Bustanji, Y.; Shahwan, M.; Alzoubi, K. H.; Semreen, M. H.; Taneera, J.; El-Huneidi, W.; Abu-Gharbieh, E. Exploring the Potential of Rosemary Derived Compounds (Rosmarinic and Carnosic Acids) as Cancer Therapeutics: Current Knowledge and Future Perspectives. Biomol. Ther. (Seoul) 2024, 32 (1), 38-55. DOI: 10.4062/biomolther.2023.054
DOI: https://doi.org/10.4062/biomolther.2023.054
14. Zuo H.X. Studies on the Pharmacokinetics and Metabolism of Carnosic Acid in Rats, dissertation, Shenyang Pharmaceutical University, 2008.
15. de Oliveira, M. R. The Dietary Components Carnosic Acid and Carnosol as Neuroprotective Agents: a Mechanistic View. Mol. Neurobiol. 2016, 53 (9), 6155-6168. DOI: 10.1007/s12035-015-9519-1
DOI: https://doi.org/10.1007/s12035-015-9519-1
16. Rasoolijazi, H.; Azad, N.; Joghataei, M. T.; Kerdari, M.; Nikbakht, F.; Soleimani, M. The protective role of carnosic acid against beta-amyloid toxicity in rats. Sci. World J. 2013, Art. No: 917082. DOI: 10.1155/2013/917082
DOI: https://doi.org/10.1155/2013/917082
17. Doolaege, E. H.; Raes, K.; De Vos, F.; Verhé, R.; De Smet, S. Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats. Plant Food Hum. Nutr. 2011, 66 (2), 196-202. DOI: 10.1007/s11130-011-0233-5
DOI: https://doi.org/10.1007/s11130-011-0233-5
18. Yan, H.; Wang, L.; Li, X.; Yu, C.; Zhang, K.; Jiang, Y.; Wu, L.; Lu, W.; Tu, P. High-performance liquid chromatography method for determination of carnosic acid in rat plasma and its application to pharmacokinetic study. Biomed. Chromatogr. 2009, 23(7), 776-781. DOI: 10.1002/bmc.1184
DOI: https://doi.org/10.1002/bmc.1184
19. Schwarz, K.; Ternes, W. Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. II. Isolation of carnosic acid and formation of other phenolic diterpenes. Z. Lebensm. Unters. Forsch. 1992, 195 (2), 99-103. DOI: 10.1007/bf01201766
DOI: https://doi.org/10.1007/BF01201766
20. Buchin, Y.; Sakemi, Y.; Hamashima, R.; Morioka, Y.; Yamanaka, D.; Hakuno, F.; Takahashi, S.-i.; Shindo, K. Structures and biological activities of new carnosic acid- and carnosol-related compounds generated by heat treatment of rosemary. Phytochem. Lett. 2019, 30, 43-48. DOI: 10.1016/j.phytol.2019.01.005
DOI: https://doi.org/10.1016/j.phytol.2019.01.005
21. da Silva, S. B.; Amorim, M.; Fonte, P.; Madureira, R.; Ferreira, D.; Pintado, M.; Sarmento, B. Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharm. Biol. 2015, 53 (5), 642-652. DOI: 10.3109/13880209.2014.935949
DOI: https://doi.org/10.3109/13880209.2014.935949
22. Wang, J.; Li, G.; Rui, T.; Kang, A.; Li, G.-C.; Fu, T.; Li, J.; Di, L.; Cai, B. Pharmacokinetics of rosmarinic acid in rats by LC-MS/MS: absolute bioavailability and dose proportionality. RSC Adv. 2017, 7, 9057-9063. DOI: 10.1039/C6RA28237G.
DOI: https://doi.org/10.1039/C6RA28237G
23. Garti, N.; McClements, D. J. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, Woodhead Publishing: Oxford, 2012. 612, 2012; 450-470.
DOI: https://doi.org/10.1533/9780857095909
24. Zheng, H.; Wijaya, W.; Zhang, H.; Feng, K.; Liu, Q.; Zheng, T.; Yin, Z.; Cao, Y.; Huang, Q. Improving the bioaccessibility and bioavailability of carnosic acid using a lecithin-based nanoemulsion: complementary in vitro and in vivo studies. FOOD FUNCT. 2020, 11 (9), 8141-8149. DOI: 10.1039/d0fo01098g
DOI: https://doi.org/10.1039/D0FO01098G
25. Luis, J. C.; Johnson, C. B. Seasonal variations of rosmarinic and carnosic acids in rosemary extracts. Analysis of their in vitro antiradical activity. Span. J. Agric. Res. 2005, 3, Art. No: 106. DOI: 10.5424/sjar/2005031-130.
DOI: https://doi.org/10.5424/sjar/2005031-130
26. Habtemariam, S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023, 11 (2). Art. No: 545. DOI: 10.3390/biomedicines11020545
DOI: https://doi.org/10.3390/biomedicines11020545
27. Shrivastava, S.; Bahuguna, T.; Mondal, S.; Kumar, S.; Mathew, B.; Jeengar, M. K.; Naidu, V. G. M. Attenuation of adjuvant-induced arthritis with carnosic acid by inhibiting mPGES-1, COX-2, and bone loss in male SD rats. Immunopharmacol. Immunotoxicol. 2024, 46 (4), 538-549. DOI: 10.1080/08923973.2024.2377984
DOI: https://doi.org/10.1080/08923973.2024.2377984
28. Chen, Y.; Wang, Y.; Qin, Q.; Zhang, Y.; Xie, L.; Xiao, J.; Cao, Y.; Su, Z.; Chen, Y. Carnosic Acid Ameliorated Aβ-mediated (Amyloid-β Peptide) Toxicity, Cholinergic Dysfunction and Mitochondrial Defect in C. elegans of Alzheimer's Model. FOOD FUNCT. 2022, 13. Art. No: 4640. DOI: 10.1039/D1FO02965G.
DOI: https://doi.org/10.1039/D1FO02965G
29. Yoshida, H.; Meng, P.; Matsumiya, T.; Tanji, K.; Hayakari, R.; Xing, F.; Wang, L.; Tsuruga, K.; Tanaka, H.; Mimura, J.; et al. Carnosic acid suppresses the production of amyloid-β 1-42 and 1-43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci. Res. 2014, 79, 83-93. DOI: 10.1016/j.neures.2013.11.004
DOI: https://doi.org/10.1016/j.neures.2013.11.004
30. Liu, J.; Su, H.; Qu, Q. M. Carnosic Acid Prevents Beta-Amyloid-Induced Injury in Human Neuroblastoma SH-SY5Y Cells via the Induction of Autophagy. Neurochem. Res. 2016, 41 (9), 2311-2323. DOI: 10.1007/s11064-016-1945-6
DOI: https://doi.org/10.1007/s11064-016-1945-6
31. Mirza, F. J.; Zahid, S.; Holsinger, R. M. D. Neuroprotective Effects of Carnosic Acid: Insight into Its Mechanisms of Action. Molecules 2023, 28 (5). Art. No: 2306. DOI: 10.3390/molecules28052306
DOI: https://doi.org/10.3390/molecules28052306
32. Wu, C. R.; Tsai, C. W.; Chang, S. W.; Lin, C. Y.; Huang, L. C.; Tsai, C. W. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease: involvement of antioxidative enzymes induction. Chem. Biol. Interact. 2015, 225, 40-46. DOI: 10.1016/j.cbi.2014.11.011
DOI: https://doi.org/10.1016/j.cbi.2014.11.011
33. Lipina, C.; Hundal, H. S. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell. Signal. 2014, 26 (11), 2343-2349. DOI: 10.1016/j.cellsig.2014.07.022
DOI: https://doi.org/10.1016/j.cellsig.2014.07.022
34. Gaya, M.; Repetto, V.; Toneatto, J.; Anesini, C.; Piwien-Pilipuk, G.; Moreno, S. Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. Biochim. Biophys. Acta. 2013, 1830 (6), 3796-3806. DOI: 10.1016/j.bbagen.2013.03.021
DOI: https://doi.org/10.1016/j.bbagen.2013.03.021
35. Ou, J.; Huang, J.; Zhao, D.; Du, B.; Wang, M. Protective effect of rosmarinic acid and carnosic acid against streptozotocin-induced oxidation, glycation, inflammation and microbiota imbalance in diabetic rats. FOOD FUNCT. 2018, 9 (2), 851-860. DOI: 10.1039/c7fo01508a
DOI: https://doi.org/10.1039/C7FO01508A
36. Quirarte-Báez, S. M.; Zamora-Perez, A. L.; Reyes-Estrada, C. A.; Gutiérrez-Hernández, R.; Sosa-Macías, M.; Galaviz-Hernández, C.; Manríquez, G. G. G.; Lazalde-Ramos, B. P. A shortened treatment with rosemary tea (Rosmarinus officinalis) instead of glucose in patients with diabetes mellitus type 2 (TSD). J. Popul. Ther. Clin. Pharmacol. 2019, 26 (4), 18-28. DOI: 10.15586/jptcp.v26i4.634
DOI: https://doi.org/10.15586/jptcp.v26i4.634
37. Wang, H.; Wang, J.; Liu, Y.; Ji, Y.; Guo, Y.; Zhao, J. Interaction mechanism of carnosic acid against glycosidase (α-amylase and α-glucosidase). Int. J. Biol. Macromol. 2019, 138, 846-853. DOI: 10.1016/j.ijbiomac.2019.07.179
DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.179
38. Ojeda-Sana, A. M.; Repetto, V.; Moreno, S. Carnosic acid is an efflux pumps modulator by dissipation of the membrane potential in Enterococcus faecalis and Staphylococcus aureus. World J. Microbiol. Biotechnol. 2013, 29 (1), 137-144. DOI: 10.1007/s11274-012-1166-3
DOI: https://doi.org/10.1007/s11274-012-1166-3
39. Souza, A. B.; de Souza, M. G.; Moreira, M. A.; Moreira, M. R.; Furtado, N. A.; Martins, C. H.; Bastos, J. K.; dos Santos, R. A.; Heleno, V. C.; Ambrosio, S. R.; Veneziani, R. C. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules 2011, 16 (11), 9611-9619. DOI: 10.3390/molecules16119611
DOI: https://doi.org/10.3390/molecules16119611
40. Islam, M. T. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother. Res. 2017, 31 (5), 691-712. DOI: 10.1002/ptr.5800
DOI: https://doi.org/10.1002/ptr.5800
41. Allegra, A.; Tonacci, A.; Pioggia, G.; Musolino, C.; Gangemi, S. Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials. Nutrients 2020, 12 (6). Art. No: 1739. DOI: 10.3390/nu12061739
DOI: https://doi.org/10.3390/nu12061739
42. Chan, E.; Wong, S.; Chan, H. An overview of the chemistry and anticancer properties of rosemary extract and its diterpenes. J. HerbMed Pharmacol. 2021, 11, 10-19. DOI: 10.34172/jhp.2022.02.
DOI: https://doi.org/10.34172/jhp.2022.02
43. Kakouri, E.; Nikola, O.; Kanakis, C.; Hatziagapiou, K.; Lambrou, G. I.; Trigas, P.; Kanaka-Gantenbein, C.; Tarantilis, P. A. Cytotoxic Effect of Rosmarinus officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines. Molecules 2022, 27 (19). Art. No: 6348. DOI: 10.3390/molecules27196348
DOI: https://doi.org/10.3390/molecules27196348
44. Yesil-Celiktas, O.; Sevimli, C.; Bedir, E.; Vardar-Sukan, F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum. Nutr. 2010, 65 (2), 158-163. DOI: 10.1007/s11130-010-0166-4
DOI: https://doi.org/10.1007/s11130-010-0166-4
45. El-Huneidi, W.; Bajbouj, K.; Muhammad, J. S.; Vinod, A.; Shafarin, J.; Khoder, G.; Saleh, M. A.; Taneera, J.; Abu-Gharbieh, E. Carnosic Acid Induces Apoptosis and Inhibits Akt/mTOR Signaling in Human Gastric Cancer Cell Lines. Pharmaceuticals (Basel) 2021, 14 (3). Art. No: 230. DOI: 10.3390/ph14030230
DOI: https://doi.org/10.3390/ph14030230
46. Lin, L.; Wu, Q.; Lu, F.; Lei, J.; Zhou, Y.; Liu, Y.; Zhu, N.; Yu, Y.; Ning, Z.; She, T.; Hu, M. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front. Oncol. 2023, 13, Art. No: 1184079. DOI: 10.3389/fonc.2023.1184079
DOI: https://doi.org/10.3389/fonc.2023.1184079
47. Telkoparan-Akillilar, P.; Panieri, E.; Cevik, D.; Suzen, S.; Saso, L. Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer. Molecules 2021, 26 (5). Art. No: 1417. DOI: 10.3390/molecules26051417
DOI: https://doi.org/10.3390/molecules26051417
48. Yan, M.; Li, G.; Petiwala, S.; Householter, E. Standardized rosemary (Rosmarinus officinalis) extract induces Nrf2/sestrin-2 pathway in colon cancer cells. J. Funct. Food. 2015, 13, 137-147. DOI: 10.1016/j.jff.2014.12.038
DOI: https://doi.org/10.1016/j.jff.2014.12.038
49. Cykowiak, M.; Krajka-Kuźniak, V. Nrf2 jako terapeutyczny punkt uchwytu w profilaktyce i terapii chorób cywilizacyjnych. Farmacja Współczesna. 2019, 12, 42-49.
50. Magnelli, L.; Schiavone, N.; Staderini, F.; Biagioni, A.; Papucci, L. MAP Kinases Pathways in Gastric Cancer. Int. J. Mol. Sci. 2020, 21 (8), Art. No: 2893. DOI: 10.3390/ijms21082893 From NLM.
DOI: https://doi.org/10.3390/ijms21082893
51. Boueroy, P.; Saensa‑Ard, S.; Siripong, P.; Kanthawong, S.; Hahnvajanawong, C. Rhinacanthin-C Extracted from Rhinacanthus nasutus (L.) Inhibits Cholangiocarcinoma Cell Migration and Invasion by Decreasing MMP-2, uPA, FAK and MAPK Pathways. Asian Pac. J. Cancer Prev. 2018, 19 (12), 3605-3613. DOI: 10.31557/apjcp.2018.19.12.3605
DOI: https://doi.org/10.31557/APJCP.2018.19.12.3605
52. Jiang, S.; Qiu, Y.; Wang, Z.; Ji, Y.; Zhang, X.; Yan, X.; Zhan, Z. Carnosic Acid Induces Antiproliferation and Anti-Metastatic Property of Esophageal Cancer Cells via MAPK Signaling Pathways. J. Oncol. 2021, 2021, Art. No: 4451533. DOI: 10.1155/2021/4451533
DOI: https://doi.org/10.1155/2021/4451533
53. Einbond, L. S.; Wu, H. A.; Kashiwazaki, R.; He, K.; Roller, M.; Su, T.; Wang, X.; Goldsberry, S. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin. Fitoterapia 2012, 83 (7), 1160-1168. DOI: 10.1016/j.fitote.2012.07.006
DOI: https://doi.org/10.1016/j.fitote.2012.07.006
54. Dang, C. T.; Shapiro, C. L.; Hudis, C. A. Potential role of selective COX-2 inhibitors in cancer management. Oncology (Williston Park) 2002, 16 (5 Suppl 4), 30-36.
55. Cao, Y.; Prescott, S. M. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J. Cell. Physiol. 2002, 190 (3), 279-286. DOI: 10.1002/jcp.10068
DOI: https://doi.org/10.1002/jcp.10068
56. Tsujii, M.; Kawano, S.; DuBois, R. N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl. Acad. Sci. U. S. A. 1997, 94 (7), 3336-3340. DOI: 10.1073/pnas.94.7.3336
DOI: https://doi.org/10.1073/pnas.94.7.3336
57. Barni, M. V.; Carlini, M. J.; Cafferata, E. G.; Puricelli, L.; Moreno, S. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncol. Rep. 2012, 27 (4), 1041-1048. DOI: 10.3892/or.2012.1630
DOI: https://doi.org/10.3892/or.2012.1630
58. Leeman, M. F.; Curran, S.; Murray, G. I. New insights into the roles of matrix metalloproteinases in colorectal cancer development and progression. J. Pathol. 2003, 201 (4), 528-534. DOI: 10.1002/path.1466
DOI: https://doi.org/10.1002/path.1466
59. Cheung, K. J.; Ewald, A. J. A collective route to metastasis: Seeding by tumor cell clusters. Science 2016, 352 (6282), 167-169. DOI: 10.1126/science.aaf6546
DOI: https://doi.org/10.1126/science.aaf6546
60. Fares, J.; Fares, M.; Khachfe, H.; Salhab, H.; Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal. Transduct. Target. Ther. 2020, 5(1), Art. No: 28. DOI: 10.1038/s41392-020-0134-x
DOI: https://doi.org/10.1038/s41392-020-0134-x
61. Kalluri, R.; Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009, 119 (6), 1420-1428. DOI: 10.1172/jci39104
DOI: https://doi.org/10.1172/JCI39104
62. Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 2014, 15 (3), 178-196. DOI: 10.1038/nrm3758
DOI: https://doi.org/10.1038/nrm3758
63. Park, S. Y.; Song, H.; Sung, M. K.; Kang, Y. H.; Lee, K. W.; Park, J. H. Carnosic acid inhibits the epithelial-mesenchymal transition in B16F10 melanoma cells: a possible mechanism for the inhibition of cell migration. Int. J. Mol. Sci. 2014, 15 (7), 12698-12713. DOI: 10.3390/ijms150712698
DOI: https://doi.org/10.3390/ijms150712698
64. Wong, R. S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30 (1), Art. No: 87. DOI: 10.1186/1756-9966-30-87
DOI: https://doi.org/10.1186/1756-9966-30-87
65. Su, K.; Wang, C. F.; Zhang, Y.; Cai, Y. J.; Zhang, Y. Y.; Zhao, Q. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway. Biomed. Pharmacother. 2016, 82, 180-191. DOI: 10.1016/j.biopha.2016.04.056
DOI: https://doi.org/10.1016/j.biopha.2016.04.056
66. Gao, Q.; Liu, H.; Yao, Y.; Geng, L.; Zhang, X.; Jiang, L.; Shi, B.; Yang, F. Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J. Appl. Toxicol. 2015, 35 (5), 485-492. DOI: 10.1002/jat.3049
DOI: https://doi.org/10.1002/jat.3049
67. Dereń-Wagemann, I.; Kiełbiński, M.; Kuliczkowski, K. Autofagia – proces o dwóch obliczach. Acta Haematol. Pol. 2013, 44 (4), 383-391. DOI: 10.1016/j.achaem.2013.05.003
DOI: https://doi.org/10.1016/j.achaem.2013.05.003
68. O'Neill, E. J.; Sze, N. S. K.; MacPherson, R. E. K.; Tsiani, E. Carnosic Acid against Lung Cancer: Induction of Autophagy and Activation of Sestrin-2/LKB1/AMPK Signalling. Int. J. Mol. Sci. 2024, 25 (4). Art. No: 1950. DOI: 10.3390/ijms25041950
DOI: https://doi.org/10.3390/ijms25041950
69. Nabekura, T.; Yamaki, T.; Hiroi, T.; Ueno, K.; Kitagawa, S. Inhibition of anticancer drug efflux transporter P-glycoprotein by rosemary phytochemicals. Pharmacol. Res. 2010, 61 (3), 259-263. DOI: 10.1016/j.phrs.2009.11.010
DOI: https://doi.org/10.1016/j.phrs.2009.11.010
70. ÖZenver, N.; Efferth, T. Cancer combination therapy with carnosic acid. Biocell 2022, 46 (10), 2151-2157. DOI: 10.32604/biocell.2022.019937
DOI: https://doi.org/10.32604/biocell.2022.019937
71. Shao, N.; Mao, J.; Xue, L.; Wang, R.; Zhi, F.; Lan, Q. Carnosic acid potentiates the anticancer effect of temozolomide by inducing apoptosis and autophagy in glioma. J. Neurooncol. 2019, 141 (2), 277-288. DOI: 10.1007/s11060-018-03043-5
DOI: https://doi.org/10.1007/s11060-018-03043-5
72. González-Vallinas, M.; Molina, S.; Vicente, G.; de la Cueva, A.; Vargas, T.; Santoyo, S.; García-Risco, M. R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol. Res. 2013, 72, 61-68. DOI: 10.1016/j.phrs.2013.03.010
DOI: https://doi.org/10.1016/j.phrs.2013.03.010
73. Gocek, E.; Studzinski, G. P. Vitamin D and differentiation in cancer. Crit. Rev. Clin. Lab. Sci. 2009, 46 (4), 190-209. DOI: 10.1080/10408360902982128
DOI: https://doi.org/10.1080/10408360902982128
74. Sharabani, H.; Izumchenko, E.; Wang, Q.; Kreinin, R.; Steiner, M.; Barvish, Z.; Kafka, M.; Sharoni, Y.; Levy, J.; Uskokovic, M.; et al. Cooperative antitumor effects of vitamin D3 derivatives and rosemary preparations in a mouse model of myeloid leukemia. Int. J. Cancer 2006, 118 (12), 3012-3021. DOI: 10.1002/ijc.21736
DOI: https://doi.org/10.1002/ijc.21736
75. Fotio, Y.; Aboufares El Alaoui, A.; Borruto, A. M.; Acciarini, S.; Giordano, A.; Ciccocioppo, R. Efficacy of a Combination of N-Palmitoylethanolamide, Beta-Caryophyllene, Carnosic Acid, and Myrrh Extract on Chronic Neuropathic Pain: A Preclinical Study. Front. Pharmacol. 2019, 10, Art. No: 711. DOI: 10.3389/fphar.2019.00711
DOI: https://doi.org/10.3389/fphar.2019.00711
76. Gianni, W.; Carlo, M.; Colangelo, L.; Grotta, G.; Sonato, C.; Cilli, M.; Toto, A.; Minisola, S. Short-term efficacy of a fixed association of Palmitoylethanolamide and other phytochemicals as add-on therapy in the management of chronic pain in elderly patients: a real-world retrospective study. Geriatric Care 2018, 4. Art. No: 7177. DOI: 10.4081/gc.2018.7177
DOI: https://doi.org/10.4081/gc.2018.7177
77. Newman, D. J.; Cragg, G. M. Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75 (3), 311-335. DOI: 10.1021/np200906s
DOI: https://doi.org/10.1021/np200906s
78. Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79(3), 629-661. DOI: 10.1021/acs.jnatprod.5b01055
DOI: https://doi.org/10.1021/acs.jnatprod.5b01055