European Medicines Agency, ICH guideline M10 on bioanalytical method validation and study sample analysis, 2022.
European Medicines Agency (EMA), Committee for Medicinal Product for Human Use (CHMP), Guideline on Bioanalytical Method Validation, 2011.
U.S. Food and Drug Administration, Guidance for Industry: Bioanalytical Method Validation, 2018.
European Medicines Agency, ICH guideline M4 (R4) on common technical document, Amsterdam, 19 March 2021. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m4-r4-common-technical-document-ctd-registration-pharmaceuticals-human-use_en.pdf (data dostępu: 28.08.2023).
ANVISA, Ministry of Health, National Health Surveillance Agency, Resolution- RDC NO. 27 OF 17 MAY 2012, 2012.
Ministry of Health, Labour and Welfare (MHLW) of Japan. Guideline on Bioanalytical Method Validation in Pharmaceutical Development (25 July 2013, MHLW, Japan). http://www.nihs.go.jp/drug/BMV/250913_BMV-GL_E.pdf (data dostępu: 28.08.2023).
The Ministry of Health, Labour and Welfare (MHLW) of Japan. Guideline on Bioanalytical Method. (Ligand Binding Assay) Validation in Pharmaceutical Development. (1 April, 2014, MHLW, Japan), 2014.
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Final endorsed Concept Paper M10: Bioanalytical Method Validation. 7 October 2016. https://database.ich.org/sites/default/files/M10EWG_Concept_Paper.pdf (data dostępu: 28.08.2023).
Timmerman, P.; Lowes, S.; Fast, D.M.; Garofolo, F. Request for Global Harmonization of the Guidance for Bioanalytical Method Validation and Sample Analysis. Bioanalysis 2010, 2, 683-683, doi:10.4155/bio.10.34.
DOI: https://doi.org/10.4155/bio.10.34
Bansal, S.K.; Arnold, M.; Garofolo, F. International harmonization of bioanalytical guidance. Bioanalysis 2010, 2, 685-687, doi:10.4155/bio.10.39.
DOI: https://doi.org/10.4155/bio.10.39
The 3Rs. https://www.nc3rs.org.uk/who-we-are/3rs (data dostępu: 28.08.2023).
Overcoming of ongoing ICH Topics – ICH Public Meeting Amsterdam 042919. https://www.fda.go/media/124548/download (data dostępu: 28.08.2023).
ICH Guideline Implementation. https://www.ich.org/page/ich-guideline-implementation (data dostępu: 28.08.2023).
Ingelse, B.; Barroso, B.; Gray, N.; Jakob-Rodamer, V.; Kingsley, C.; Sykora, C.; Vinck, P.; Wein, M.; White, S. European Bioanalysis Forum: recommendation on dealing with hemolyzed and hyperlipidemic matrices. Bioanalysis 2014, 6, 3113-3120, doi:10.4155/bio.14.252.
DOI: https://doi.org/10.4155/bio.14.252
Briscoe, C.J.; Hage, D.S. Factors affecting the stability of drugs and drug metabolites in biological matrices. Bioanalysis 2009, 1, 205-220, doi:10.4155/bio.09.20.
DOI: https://doi.org/10.4155/bio.09.20
European Medicines Agency. ICH guideline M10 on bioanalytical method validation and study sample analysis - Questions and Answers. (EMA/CHMP/ICH/660315/2022), 2023.
Zwart, M.d.; Lausecker, B.; Globig, S.; Neddermann, D.; Bras, B.L.; Guenzi, A.; White, S.; Scheel-Fjording, M.; Timmerman, P. Co-medication and interference testing in bioanalysis: a European Bioanalysis Forum recommendation. Bioanalysis 2016, 8, 2065-2070, doi:10.4155/bio-2016-0179.
DOI: https://doi.org/10.4155/bio-2016-0179
Wagner-Golbs, A.; Neuber, S.; Kamlage, B.; Christiansen, N.; Bethan, B.; Rennefahrt, U.; Schatz, P.; Lind, L. Effects of Long-Term Storage at −80 °C on the Human Plasma Metabolome. Metabolites 2019, 9, 99, doi:10.3390%2Fmetabo9050099.
DOI: https://doi.org/10.3390/metabo9050099
Ayre, A.; Chaudhari, P.; Shaikh, J.; Jagdale, S.; Agrawal, O. Dried matrix spoting-an innovative sample preparation tool in bioanalysis. Int J Pharm Sci Rev Res 2018, 9, 3597-3607. doi:10.13040/IJPSR.0975-8232.9(9).3597-07.
DOI: https://doi.org/10.13040/IJPSR.0975-8232.9(9).3597-07
Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019-3030, doi:10.1021/ac020361s.
DOI: https://doi.org/10.1021/ac020361s
Rudzki, P.J.; Gniazdowska, E.; Buś-Kwaśnik, K. Quantitative evaluation of the matrix effect in bioanalytical methods based on LC-MS: A comparison of two approaches. J Pharm Biomed Anal 2018, 155, 314-319, doi:10.1016/j.jpba.2018.03.052.
DOI: https://doi.org/10.1016/j.jpba.2018.03.052
Cortese, M.; Gigliobianco, M.R.; Magnoni, F.; Censi, R.; Di Martino, P. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules 2020, 25, 3047, doi:10.3390/molecules25133047.
DOI: https://doi.org/10.3390/molecules25133047
Xia, Y.Q.; Jemal, M. Phospholipids in liquid chromatography/mass spectrometry bioanalysis: comparison of three tandem mass spectrometric techniques for monitoring plasma phospholipids, the effect of mobile phase composition on phospholipids elution and the association of phospholipids with matrix effects. Rapid Commun Mass Spectrom 2009, 23, 2125-2138, doi:10.1002/rcm.4121.
DOI: https://doi.org/10.1002/rcm.4121
Gniazdowska E.M., Giebułtowicz J.,Rudzki P.J. How does the order of sample analysis influence matrix effect during LC-MS bioanalysis? J. Chromatogr. B 2023, 1227, 123800, doi: 10.1016/j.jchromb.2023.123800.
DOI: https://doi.org/10.1016/j.jchromb.2023.123800
Amsterdam, P.v.; Companjen, A.; Brudny-Kloeppel, M.; Golob, M.; Luedtke, S.; Timmerman, P. The European Bioanalysis Forum community’s evaluation, interpretation and implementation of the European Medicines Agency guideline on Bioanalytical Method Validation. Bioanalysis 2013, 5, 645-659, doi:10.4155/bio.13.19.
DOI: https://doi.org/10.4155/bio.13.19
Ledvina, A.R.; Ewles, M.; Pang, Y.; Cape, S. Whole blood stability in quantitative bioanalysis. Bioanalysis 2019, 11, 1885-1897, doi:10.4155/bio-2019-0155.
DOI: https://doi.org/10.4155/bio-2019-0155
Gniazdowska, E.; Goch, W.; Giebułtowicz, J.; Rudzki, P.J. Replicates Number for Drug Stability Testing during Bioanalytical Method Validation—An Experimental and Retrospective Approach. Molecules 2022, 27, 457, doi:10.3390/molecules27020457.
DOI: https://doi.org/10.3390/molecules27020457
DeChenne, S.; Yahvah, K.; Zimmer, J. Validating stability and selectivity in the presence of co-administered compounds. Bioanalysis 2019, 11, 1819-1821, doi:10.4155/bio-2019-0150.
DOI: https://doi.org/10.4155/bio-2019-0150
Pu, F.; Zhang, W.; Bateman, K.P.; Liu, Y.; Helmy, R.; Ouyang, Z. Using miniature MS system with automatic blood sampler for preclinical pharmacokinetics study. Bioanalysis 2017, 9,1633-1641, doi:10.4155/bio-2017-0160.
DOI: https://doi.org/10.4155/bio-2017-0160
Dillen, L.; Loomans, T.; Perre, G.V.d.; Versweyveld, D.; Wuyts, K.; Zwart, L.d. Blood microsampling using capillaries for drug-exposure determination in early preclinical studies: a beneficial strategy to reduce blood sample volumes. Bioanalysis 2014, 6, 293-306, doi:10.4155/bio.13.286.
DOI: https://doi.org/10.4155/bio.13.286
Ingle, R.G.; Zeng, S.; Jiang, H.; Fang, W.-J. Current developments of bioanalytical sample preparation techniques in pharmaceuticals. J Pharm Anal 2022, 12, 517-529, doi:10.1016/j.jpha.2022.03.001.
DOI: https://doi.org/10.1016/j.jpha.2022.03.001