1. Morikawa, T., Yasuno, R., and Wada, H. Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in mitochondria, FEBS Letters 2001, 498, 16-21, doi.org/10.1016/S0014-5793(01)02469-3.
DOI: https://doi.org/10.1016/S0014-5793(01)02469-3
2. Onder, N. T., Alcay, S., and Nur, Z. Effects of alpha‐lipoic acid on ram semen cryopreservation and post‐thaw life span, Andrologia 2022, 54, e14249, doi.org/10.1111/and.14249.
DOI: https://doi.org/10.1111/and.14249
3. Salehi, B., Yılmaz, B., Antika, G., Boyunegmez, T. T., Fawzi, M., and Sharifi-Rad, J. Insights on the use of α-lipoic acid for therapeutic purposes, Biomolecules 2019, 9, 356, doi.org/10.3390/biom9080356.
DOI: https://doi.org/10.3390/biom9080356
4. Tibullo, D., Li Volti, G., Giallongo, C., Grasso, S., Tomassoni, D., and Bramanti, V. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential, Inflammation Research 2017, 66, 947–959, doi.org/10.1007/s00011-017-1079-6.
DOI: https://doi.org/10.1007/s00011-017-1079-6
5. Nikolić, R. S., Krstić, N. S., Nikolić, G. M., Kocić, G. M., and Signelković, D. H. Molecular mechanisms of beneficial effects of lipoic acid in copper intoxicated rats assessment by FTIR and ESI-MS, Polyhedron 2014, 80, 223-227, doi.org/10.1016/j.poly.2014.04.033.
DOI: https://doi.org/10.1016/j.poly.2014.04.033
6. Baumgartner, M. R., Schmalle, H., and Dubler, E. The interaction of transition metals with the coenzyme α-lipoic acid: synthesis, structure and characterization of copper and zinc complexes, Inorganica Chim. Acta 1996, 252, 319-331, doi.org/10.1016/S0020-1693(96)05331-5.
DOI: https://doi.org/10.1016/S0020-1693(96)05331-5
7. Uchida, R., Okamoto, H., Ikuta, N., and Hirota, T. Enantioselective pharmacokinetics of α-lipoic acid in rats, Int. J. Mol. Sci. 2015, 16, 22781-22794, doi.org/10.3390/ijms160922781.
DOI: https://doi.org/10.3390/ijms160922781
8. Devasagayam, T. P. A., Subramanian, M., and Sies, H. Prevention of singlet oxygen-induced DNA damage by lipoate, Chem. Biol. Interact. 1993, 86, 79-92, doi.org/10.1016/0009-2797(93)90113-D.
DOI: https://doi.org/10.1016/0009-2797(93)90113-D
9. Tripathi, A. K., Ray, A. K., Mishra, S. K., Bishen, S. M., and Khurana, A. Molecular and therapeutic insights of alpha-lipoic acid as a potential molecule for disease prevention, Rev. Bras. Farmacogn. 2023, 33, 272–287, doi.org/10.1007/s43450-023-00370-1.
DOI: https://doi.org/10.1007/s43450-023-00370-1
10. Rezaei, Z. S., Hasani, M., Morvaridzadeh, M., Beatriz, P. A., Heydari, H., and Heshmati, J. Effect of alpha-lipoic acid on oxidative stress parameters: a systematic review and meta-analysis, J. Funct. Foods 2021, 87, 104774, doi.org/10.1016/j.jff.2021.104774.
DOI: https://doi.org/10.1016/j.jff.2021.104774
11. Monastra, G., De Grazia, S., and Unfer, V. Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage, Expert Opin. Drug Deliv. 2016, 13, 1695-1708, doi.org/10.1080/17425247.2016.1200556.
DOI: https://doi.org/10.1080/17425247.2016.1200556
12. Cremer, D. R., Rabeler, R., and Lynch, B. Safety evaluation of α-lipoic acid (ALA), Regul. Toxicol. Pharmacol. 2006, 46, 29-41, doi.org/10.1016/j.yrtph.2006.06.004.
DOI: https://doi.org/10.1016/j.yrtph.2006.06.004
13. Ou, P., Tritschler, H. J., and Wolff, S. P. Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem. Pharmacol. 1995, 50, 123-126, doi.org/10.1016/0006-2952(95)00116-H.
DOI: https://doi.org/10.1016/0006-2952(95)00116-H
14. Spector, A., Huang, R. R. C., and Wang, R. R. Thioredoxin fragment 31-36 is reduced by dihydrolipoamide and reduces oxidized protein, Biochem. Biophys. Res. Commun. 1988, 150, 156-162, doi.org/10.1016/0006-291X(88)90499-8.
DOI: https://doi.org/10.1016/0006-291X(88)90499-8
15. Guseva, E. A., Pavlova, J. A., and Sergiev, P. V. Synthetic activators of autophagy, Biochemistry (Moscow) 2024, 89, 27–52, doi.org/10.1134/S0006297924010024.
DOI: https://doi.org/10.1134/S0006297924010024
16. Pavlova, J. A., Guseva, E. A., and Sergiev, P. V. Natural activators of autophagy, Biochemistry (Moscow) 2024, 89, 1–26, doi.org/10.1134/S0006297924010012.
DOI: https://doi.org/10.1134/S0006297924010012
17. Bossio, S., Perri, A., Gallo, R., and Aversa, A. Alpha-lipoic acid reduces cell growth, inhibits autophagy, and counteracts prostate cancer cell migration and invasion: evidence from in vitro studies, Int. J. Mol. Sci. 2023, 24, 17111, doi.org/10.3390/ijms242317111.
DOI: https://doi.org/10.3390/ijms242317111
18. Peng, P., Zhang, X., Qi, T., Cheng, H., Kong, Q., and Ding, Z. Alpha‐lipoic acid inhibits lung cancer growth via mTOR‐mediated autophagy inhibition, FEBS Open Bio. 2020, 10, 607–618, doi.org/10.1002/2211-5463.12820.
19. Stoll, S., Hartmann, H., Cohen, S. A., and Müller, W. E. The potent free radical scavenger α-lipoic acid improves memory in aged mice: putative relationship to NMDA receptor deficits, Pharmacol. Biochem. Behav. 1993, 46, 799-805, doi.org/10.1016/0091-3057(93)90204-7.
DOI: https://doi.org/10.1016/0091-3057(93)90204-7
20. Stoll, S., Rostock, A., Bartsch, R., Korn, E., and Müller, W. E. The potent free radical scavenger α‐lipoic acid improves cognition in rodents, Ann. N. Y. Acad. Sci. 1994, 717, 122-128, doi.org/10.1111/j.1749-6632.1994.tb12079.x.
DOI: https://doi.org/10.1111/j.1749-6632.1994.tb12079.x
21. Xu, C., Li, E., Liu, S., Huang, Z., and Chen, L. Effects of α-lipoic acid on growth performance, body composition, antioxidant status and lipid catabolism of juvenile Chinese mitten crab Eriocheir sinensis fed different lipid percentage, Aquaculture 2018, 484, 286-292, doi.org/10.1016/j.aquaculture.2017.09.036.
DOI: https://doi.org/10.1016/j.aquaculture.2017.09.036
22. Lovell, M. A., Xie, C., Xiong, S., and Markesbery, W. R. Protection against amyloid beta peptide and iron/hydrogen peroxide toxicity by alpha lipoic acid, J. Alzheimer’s Dis. 2003, 5, 229-239, doi.org/10.3233/JAD-2003-5306.
DOI: https://doi.org/10.3233/JAD-2003-5306
23. Fiedler, S. E., Yadav, V., Kerns, A. R., Tsang, C., Markwardt, S., and Salinthone, S. Lipoic acid stimulates cAMP production in healthy control and secondary progressive MS subjects, Mol. Neurobiol. 2018, 55, 6037-6049, doi.org/10.1007/s12035-017-0813-y.
DOI: https://doi.org/10.1007/s12035-017-0813-y
24. Scumpia, P. O., and Stevens, B. R. Alpha-lipoic acid effects on brain glial functions accompanying double-stranded RNA antiviral and inflammatory signaling, Neurochem. Int. 2014, 64, 55-63, doi.org/10.1016/j.neuint.2013.11.006.
DOI: https://doi.org/10.1016/j.neuint.2013.11.006
25. Micili, S. C., Goker, A., Kuscu, K., and Fuso, A. α-lipoic acid vaginal administration contrasts inflammation and preterm delivery in rats, Reproductive Sci. 2019, 26, 128-138, doi.org/10.1177/1933719118766266.
DOI: https://doi.org/10.1177/1933719118766266
26. Suh, J. H., Shenvi, S. V., and Hagen, T. M. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 3381-3386, doi.org/10.1073/pnas.0400282101.
DOI: https://doi.org/10.1073/pnas.0400282101
27. Kozlov, A. V., Gille, L., Staniek, K., and Nohl, H. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone, Arch. Biochem. Biophys. 1999, 363, 148-154, doi.org/10.1006/abbi.1998.1064.
DOI: https://doi.org/10.1006/abbi.1998.1064
28. Chen, W. L., Kang, C. H., and Lee, H. M. α-lipoic acid regulates lipid metabolism through induction of Sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase, Diabetologia 2012, 55, 1824-1835, doi.org/10.1007/s00125-012-2530-4.
DOI: https://doi.org/10.1007/s00125-012-2530-4
29. Smith, A. R., Shenvi, S. V., Widlansky, M., and Hagen, T. M. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress, Curr. Med. Chem. 2012, 11, 1135-1146, doi.org/10.2174/0929867043365387.
DOI: https://doi.org/10.2174/0929867043365387
30. Zhang, W. J., Bird, K. E., and Frei, B. Dietary α-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein e-deficient and apolipoprotein e/low-density lipoprotein receptor-deficient mice, Circulation 2008, 117, 421-428, doi.org/10.1161/CIRCULATIONAHA.107.725275.
DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.725275
31. Packer, L., Witt, E. H., and Tritschler, H. J. Alpha-lipoic acid as a biological antioxidant, Free Radic. Biol. Med. 1995, 19, 227-250, doi.org/10.1016/0891-5849(95)00017-R.
DOI: https://doi.org/10.1016/0891-5849(95)00017-R
32. Abdulghani, M., and Naser, A. Estimation of pharmacokinetic parameters of alpha-lipoic acid in the chicks model, Baghdad J. Biochem. Appl. Biol. Sci. 2022, 3, 122-132, doi.org/10.47419/bjbabs.v3i02.91.
DOI: https://doi.org/10.47419/bjbabs.v3i02.91
33. Hagen, T. M., Ingersoll, R. T., and Ames, B. N. (R)‐α‐Lipoic acid‐supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate, The FASEB Journal 1999, 13, 411-418, doi.org/10.1096/fasebj.13.2.411.
DOI: https://doi.org/10.1096/fasebj.13.2.411
34. Murali, P., George, S. K., and Dominic, G. Effect of dietary supplementation of l-carnitine on serum lipid profile and antioxidant status in broiler chicken fed with animal fat-rich diet, Appl. Biol. Res. 2020, 22, 118-122, doi.org/10.5958/0974-4510.2020.00018.9.
DOI: https://doi.org/10.5958/0974-4517.2020.00017.8
35. Banik, S., Halder, S., and Onoue, S. Self-emulsifying drug delivery system of (R)-α-lipoic acid to improve its stability and oral absorption, Biopharm. Drug Dispos. 2021, 42, 226-233, doi.org/10.1002/bdd.2277.
DOI: https://doi.org/10.1002/bdd.2277
36. Brufani, M. α-lipoic acid: drug or dietary supplement? An overview on the pharmacokinetics, available for-mulations and clinical evidence in the diabetes complications, Progress in Nutrition 2014, 16, 62-74, doi.org/10.23751/pn.v19i1.6325.
37. Hermann, R., Mungo, J., and Ziegler, D. Enantiomer-selective pharmacokinetics, oral bioavailability, and sex effects of various alpha-lipoic acid dosage forms, Clin. Pharmacol. 2014, 6, 195–204, doi.org/10.2147/CPAA.S71574.
DOI: https://doi.org/10.2147/CPAA.S71574
38. Bustamante, J., Lodge, J. K., Marcocci, L., Tritschler, H. J., and Rihn, B. H. α-lipoic acid in liver metabolism and disease, Free Radic. Biol. Med. 1998, 24, 1023-1039, doi.org/10.1016/S0891-5849(97)00371-7.
DOI: https://doi.org/10.1016/S0891-5849(97)00371-7
39. Wepierre, J., Corroller, M., and Dupuis, D. In vivo cutaneous distribution of linoleic acid following topical application in the hairless rat, J. Soc. Cosmet. Chem. Jpn. 1986, 37, 191-198, doi.org/10.1007/bf00455174.
40. Wepierre, J., Corroller, M., and Didry, J. R. Distribution and dissociation of benzoyl peroxide in cutaneous tissue after application on skin in the hairless rat, Int. J. Cosmet. Sci. 1986, 8, 97-104, doi.org/10.1111/j.1467-2494.1986.tb00437.x.
DOI: https://doi.org/10.1111/j.1467-2494.1986.tb00437.x
41. Podda, M., Rallis, M., Traber, M. G., and Maiboch, H. I. Kinetic study of cutaneous and subcutaneous distribution following topical application of [7,8-14C]rac-α-lipoic acid onto hairless mice, Biochem. Pharmacol. 1996, 52, 627-633, doi.org/10.1016/0006 2952(96)00337-1.
DOI: https://doi.org/10.1016/0006-2952(96)00337-1
42. Teichert, J., Hermann, R., and Preiss, R. Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers, J. Clin. Pharmacol. 2003, 43, 1257-1267, doi.org/10.1177/0091270003258654.
DOI: https://doi.org/10.1177/0091270003258654
43. Angelucci, L., and Mascitelli-Coriandoli, E. Anticholesterol activity of α-lipoic acid, Nature 1958, 182, 911-912, doi.org/10.1038/182396b0.
DOI: https://doi.org/10.1038/181911b0
44. Brufani, M., and Figliola, R. (R)-α-lipoic acid oral liquid formulation: pharmacokinetic parameters and therapeutic efficacy, Acta Biomedica 2014, 85, 108-115, PMID: 25245645.
45. Teichert, J., Tuemmers, T., Achenbach, H., Preiss, C., and Preiss, R. Pharmacokinetics of alpha-lipoic acid in subjects with severe kidney damage and end-stage renal disease, J. Clin. Pharmacol. 2005, 45, 313-328, doi.org/10.1177/0091270004270792.
DOI: https://doi.org/10.1177/0091270004270792
46. Akünal, T. C., and Yunusoğlu, O. Oleanolic acid suppresses pentylenetetrazole-induced seizure in vivo, Int. J. Environ. Health Res. 2023, 33, 529–540, doi.org/10.1080/09603123.2023.2167947.
DOI: https://doi.org/10.1080/09603123.2023.2167947
47. Berköz, M., Yunusoğlu, O., and Bozkurt, A. Investigation of antiepileptic potentials of usnic acid and some lichen species on the behavioral and biochemical levels in pentylenetetrazole-induced kindling model of epilepsy, J. Res. Pharm. 2024, 28, 1378–1390, doi.org/10.29228/jrp.816.
DOI: https://doi.org/10.29228/jrp.816
48. Yunusoğlu, O., Ayaz, İ., & Dovankaya, E. H. Pharmacological, medicinal and biological properties of flavonoids: A comprehensive review. Journal of Research in Pharmacy 2025, 29(2), 561-584. doi.org/10.12991/jrespharm.1661054
DOI: https://doi.org/10.12991/jrespharm.1661054
49. Sevindik, M., Krupodorova, T., Sevindik, E., Koçer, O., Uysal, I., & Ünal, O. Elaeagnus angustifolia L.: A Comprehensive Review of Its Biological Activities, Phenolic and Chemical Constituents, and Applications. Applied Fruit Science 2025, 67(2), 70, doi.org/10.1007/s10341-025-01294-x.
DOI: https://doi.org/10.1007/s10341-025-01294-x
50. Lasota, M., Jankowski, D., Wiśniewska, A., Szeleszczuk, Ł., Misterka-Kozaka, A., Kaczor-Kamińska, M., ... & Brzozowski, T. Interaction of avapritinib with congo red in pancreatic cancer cells: molecular modeling and biophysical studies. International Journal of Molecular Sciences 2025, 26(5), 1980. doi.org/10.3390/ijms26051980.
DOI: https://doi.org/10.3390/ijms26051980
51. Shay, K. P., Moreau, R. F., Smith, E. J., and Hagen, T. M. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential, Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1149–1160, doi.org/10.1016/j.bbagen.2009.07.026.
DOI: https://doi.org/10.1016/j.bbagen.2009.07.026
52. Peng, P., Zhang, X., Qi, T., Cheng, H., Kong, Q., and Ding, Z. Alpha‐lipoic acid inhibits lung cancer growth via mTOR‐mediated autophagy inhibition, FEBS Open Bio. 2020, 10, 607–618, doi.org/10.1002/2211-5463.12820.
DOI: https://doi.org/10.1002/2211-5463.12820
53. Hassan, A., Ibrahim, A., Mbodji, K., Coëffier, M., Ziegler, F., and Marion-Letellier, R. An α-linolenic acid-rich formula reduces oxidative stress and inflammation by regulating NF-κB in rats with TNBS-induced colitis, J. Nutr. 2010, 140, 1714-1721, doi.org/10.3945/jn.109.119768.
DOI: https://doi.org/10.3945/jn.109.119768
54. Kütter, M. T., Monserrat, J. M., Primel, E. G., and Tesser, M. B. Effects of dietary α-lipoic acid on growth, body composition and antioxidant status in the plata pompano Trachinotus Marginatus (Pisces, Carangidae), Aquaculture 2012, 368–369, 29–35, doi.org/10.1016/j.aquaculture.2012.09.010.
DOI: https://doi.org/10.1016/j.aquaculture.2012.09.010
55. Cruz, L. C., Josende, M. E., Tavares, P. B., Wasielesky, W., and Maciel, F. E. Lipoic acid modulates energetic metabolism and antioxidant defense systems in Litopenaeus Vannamei under hypoxia/reoxygenation conditions, Aquaculture 2018, 497, 396–404, doi.org/10.1016/j.aquaculture.2018.08.020.
DOI: https://doi.org/10.1016/j.aquaculture.2018.08.020
56. He, M., Wu, Y., Hong, M., Yun, Z., and Jiang, Y. α-Lipoic acid treatment alleviates postharvest pericarp browning of litchi fruit by regulating antioxidant ability and energy metabolism, Postharvest Biol. Technol. 2021, 180, 111629, doi.org/10.1016/j.postharvbio.2021.111629.
DOI: https://doi.org/10.1016/j.postharvbio.2021.111629
57. Turk, H., Erdal, S., Karayel, U., and Dumlupinar, R. Attenuation of lead toxicity by promotion of tolerance mechanism in wheat roots by lipoic acid, Cereal Res. Commun. 2018, 46, 424–435, doi.org/10.1556/0806.46.2018.020.
DOI: https://doi.org/10.1556/0806.46.2018.020
58. Monserrat, J. M., Garcia, M. L., Ventura-Lima, J., González, M., Ballesteros, M. L., and Wunderlin, D. A. Antioxidant, phase II and III responses induced by lipoic acid in the fish Jenynsia Multidentata (Anablapidae) and its influence on endolsulfan accumulation and toxicity, Pesticide Biochem. Physiol. 2014, 108, 8–15, doi.org/10.1016/j.pestbp.2013.10.009.
DOI: https://doi.org/10.1016/j.pestbp.2013.10.009
59. Zhao, G., Hu, C., and Xue, Y. In vitro evaluation of chitosan‐coated liposome containing both coenzyme Q10 and alpha‐lipoic acid: cytotoxicity, antioxidant activity, and antimicrobial activity, J. Cosmet. Dermatol. 2018, 17, 258–262, doi.org/10.1111/jocd.12369.
DOI: https://doi.org/10.1111/jocd.12369
60. Piechota-Polanczyk, A., Zielińska, M., and Fichna, J. The influence of lipoic acid on caveolin-1-regulated antioxidative enzymes in the mouse model of acute ulcerative colitis, Biomed. Pharmacother. 2016, 84, 470-475, doi.org/10.1016/j.biopha.2016.09.066.
DOI: https://doi.org/10.1016/j.biopha.2016.09.066
61. Bhattacharyya, A., Chattopadhyay, R., and Crowe, S. E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases, Physiol. Rev. 2014, 94, 329-354, doi.org/10.1152/physrev.00040.2012.
DOI: https://doi.org/10.1152/physrev.00040.2012
62. Packer, L., Kraemer, K., and Rimbach, G. Molecular aspects of lipoic acid in the prevention of diabetes complications, Nutrition 2001, 17, 888-895, doi.org/10.1016/S0899-9007(01)00658-X.
DOI: https://doi.org/10.1016/S0899-9007(01)00658-X
63. Sezgin, A., Altuntaş, C., Demiralay, M., and Terzi, R. Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought, J. Plant Physiol. 2019, 232, 65–73, doi.org/10.1016/j.jplph.2018.11.026.
DOI: https://doi.org/10.1016/j.jplph.2018.11.026
64. Biewenga, G. P., Dorstijn, M. A., Verhagen, J. V., and Bast, A. Reduction of lipoic acid by lipoamide dehydrogenase, Biochem. Pharmacol. 1996, 51, 233-238, doi.org/10.1016/0006-2952(95)02124-8.
DOI: https://doi.org/10.1016/0006-2952(95)02124-8
65. Tan, W., Zhang, J., Mi, Y., and Guo, Z. Synthesis and characterization of α-lipoic acid grafted chitosan derivatives with antioxidant activity, React. Funct. Polym. 2022, 172, 105205, doi.org/10.1016/j.reactfunctpolym.2022.105205.
DOI: https://doi.org/10.1016/j.reactfunctpolym.2022.105205
66. El Basuini, M. F., Shahin, S. A., Eldenary, M. E., Elshora, S. M., and Mourad, M. M. Growth variables, feed efficacy, survival rate, and antioxidant capacity of european seabass (Dicentrarchus Labrax l.) larvae treated with coenzyme Q10 or lipoic acid, Aquac. Rep. 2022, 27, 101373, doi.org/10.1016/j.aqrep.2022.101373.
DOI: https://doi.org/10.1016/j.aqrep.2022.101373
67. Huang, C., Sun, J., Ji, H., Oku, H., Chang, Z., and Xie, J. Influence of dietary alpha-lipoic acid and lipid level on the growth performance, food intake and gene expression of peripheral appetite regulating factors in juvenile grass carp (Ctenopharyngodon Idellus), Aquaculture 2019, 505, 412–422, doi.org/10.1016/j.aquaculture.2019.02.054.
DOI: https://doi.org/10.1016/j.aquaculture.2019.02.054
68. Biewenga, G. P., and Bast, A. The pharmacology of the antioxidant: lipoic acid, Gen. Pharmacol. 1997, 29, 315-331, doi.org/10.1016/S0306-3623(96)00474-0.
DOI: https://doi.org/10.1016/S0306-3623(96)00474-0
69. Lopez-Maldonado, A., Pastoriza, S., and Rufián-Henares, J. Á. Assessing the antioxidant and metabolic effect of an alpha-lipoic acid and acetyl-L-carnitine nutraceutical, Curr. Res. Food Sci. 2021, 4, 336-344, doi.org/10.1016/j.crfs.2021.05.002.
DOI: https://doi.org/10.1016/j.crfs.2021.05.002
70. Singer, A. J., and Clark, R. A. F. Cutaneous wound healing, N. Engl. J. Med. 1999, 341, 738–746, doi.org/10.1056/NEJM199909023411006.
DOI: https://doi.org/10.1056/NEJM199909023411006
71. Leu, J.G., Chen, S.A., Chen, H.M., Wu, W.M., Hung, C.F., and Liang, Y.J. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid, Nanomedicine 2012, 8, 767–775, doi.org/10.1016/j.nano.2011.08.013.
DOI: https://doi.org/10.1016/j.nano.2011.08.013
72. Alleva, R., Tomasetti, M., Sartini, D., Emanuelli, M., Nasole, E., and Neuzil, J. α-Lipoic acid modulates extracellular matrix and angiogenesis gene expression in non-healing wounds treated with hyperbaric oxygen therapy, Mol. Med. 2008, 14, 175-183, doi.org/10.2119/2007-00095.Alleva.
DOI: https://doi.org/10.2119/2007-00095.Alleva
73. Salinthone, S., Schillace, R. V., Marracci, G. H., and Carr, D. W. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells, J. Neuroimmunol. 2008, 199, 46-55, doi.org/10.1016/j.jneuroim.2008.05.003.
DOI: https://doi.org/10.1016/j.jneuroim.2008.05.003
74. Tanaka, Y., Kaibori, M., Miki, H., Nakatake, R., Tokuhara, K., and Kwon, A. H. Alpha-lipoic acid exerts a liver-protective effect in acute liver injury rats, J. Surg. Res. 2015, 193, 675-683, doi.org/10.1016/j.jss.2014.08.057.
DOI: https://doi.org/10.1016/j.jss.2014.08.057
75. Mor, G., Cardenas, I., Abrahams, V., and Guller, S. Inflammation and pregnancy: the role of the immune system at the implantation site, Ann. N. Y. Acad. Sci. 2011, 1221, 80-87, doi.org/10.1111/j.1749-6632.2010.05938.x.
DOI: https://doi.org/10.1111/j.1749-6632.2010.05938.x
76. Bao, P., Kodra, A., Tomic-Canic, M., Golinko, M. S., and Brem, H. The role of vascular endothelial growth factor in wound healing, J. Surg. Res. 2009, 153, 347-358, doi.org/10.1016/j.jss.2008.04.023.
DOI: https://doi.org/10.1016/j.jss.2008.04.023
77. Gora̧ca, A., Piechota, A., Kleniewska, P., and Skibska, B. Lipoic acid - biological activity and therapeutic potential, Pharmacol. Rep. 2011, 63, 849-858, doi.org/10.1016/S1734-1140(11)70600-4.
DOI: https://doi.org/10.1016/S1734-1140(11)70600-4
78. Collins, T., and Maniatis, T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers, FASEB J. 1995, 9, 899-909, doi.org/10.1096/fasebj.9.10.7542214.
DOI: https://doi.org/10.1096/fasebj.9.10.7542214
79. Zhang, W. J., and Frei, B. α‐lipoic acid inhibits TNF‐a‐induced NF‐κB activation and adhesion molecule expression in human aortic endothelial cells, FASEB J. 2001, 15, 2423-2432, doi.org/10.1096/fj.01-0260com.
DOI: https://doi.org/10.1096/fj.01-0260com
80. Weber, C., Erl, W., Pietsch, A., and Weber, P. C. Aspirin inhibits nuclear factor-κB mobilization and monocyte adhesion in stimulated human endothelial cells, Circulation 1995, 91, 1914-1917, doi.org/10.1161/01.CIR.91.7.1914.
DOI: https://doi.org/10.1161/01.CIR.91.7.1914
81. Albelda, S. M., Smith, C. W., and Ward, P. A. Adhesion molecules and inflammatory injury, FASEB J. 1994, 8, 504-512, doi.org/10.1096/fasebj.8.8.8181668.
DOI: https://doi.org/10.1096/fasebj.8.8.8181668
82. Yadav, V., Marracci, G., Lovera, J., Woodward, W., Bogardus, K., and Bourdette, D. N. Lipoic acid in multiple sclerosis: a pilot study, Multiple Sclerosis 2005, 11, 159-165, doi.org/10.1191/1352458505ms1143oa.
DOI: https://doi.org/10.1191/1352458505ms1143oa
83. Ziegler, Dan. Thioctic acid for patients with symptomatic diabetic polyneuropathy: a critical review, Treat. Endocrinol. 2004, 3, 173-189, doi.org/10.2165/00024677-200403030-00005.
DOI: https://doi.org/10.2165/00024677-200403030-00005
84. Melhem, A., Stern, M., Shibolet, O., Israeli, E., Ackerman, Z., and Ilan, Y. Treatment of chronic hepatitis C virus infection via antioxidants, J. Clin. Gastroenterol. 2005, 39, 737–742, doi.org/10.1097/01.mcg.0000174023.73472.29.
DOI: https://doi.org/10.1097/01.mcg.0000174023.73472.29
85. Jesudason, E. P., Masilamoni, J. G., and Jayakumar, R. The protective role of DL- α -lipoic acid in the oxidative vulnerability triggered by A β -amyloid vaccination in mice, Mol. Cell. Biochem. 2005, 270, 29–37, doi.org/10.1007/s11010-005-3301-z.
DOI: https://doi.org/10.1007/s11010-005-3301-z
86. Guha, M., and Mackman, N. The phosphatidylinositol 3-kinase-akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells, J. Biol. Chem. 2002, 277, 32124–32132, doi.org/10.1074/jbc.M203298200.
DOI: https://doi.org/10.1074/jbc.M203298200
87. Fukao, T., and Koyasu, S. PI3K and negative regulation of TLR signaling, Trends Immunol. 2003, 24, 358–363, doi.org/10.1016/S1471-4906(03)00139-X.
DOI: https://doi.org/10.1016/S1471-4906(03)00139-X
88. Alhakamy, N. A., Al-Rabia, M. W., Asfour, H. Z., Alshehri, S., Alharbi, W. S., and Kotta, S. 2-Methoxy-estradiol loaded alpha lipoic acid nanoparticles augment cytotoxicity in MCF-7 breast cancer cells, Dose-Response 2021, 19, 15593258211055023, doi.org/10.1177/15593258211055023.
DOI: https://doi.org/10.1177/15593258211055023
89. Campoccia, D., Montanaro, L., and Arciola, C. R. The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials 2006, 27, 2331-2339¸ doi.org/10.1016/j.biomaterials.2005.11.044.
DOI: https://doi.org/10.1016/j.biomaterials.2005.11.044
90. Choi, M. J., Kim, S. A., and Rhee, M. S. New decontamination method based on caprylic acid in combination with citric acid or vanillin for eliminating Cronobacter Sakazakii and Salmonella Enterica serovar typhimurium in reconstituted infant formula, Int. J. Food Microbiol. 2013, 166, 499-507, doi.org/10.1016/j.ijfoodmicro.2013.08.016.
DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.08.016
91. Abdelmoneim, D., Porter, G., Duncan, W., Lim, K., Easingwood, R., and Coates, D. Three-dimensional evaluation of the cytotoxicity and antibacterial properties of alpha lipoic acid-capped silver nanoparticle constructs for oral applications, Nanomaterials 2023, 13, 705, doi.org/10.3390/nano13040705.
DOI: https://doi.org/10.3390/nano13040705
92. Iversen, C., Waddington, M., and Forsythe, S. Identification and phylogeny of Enterobacter Sakazakii relative to Enterobacter and Citrobacter species, J. Clin. Microbiol. 2004, 42, 5368-5370, doi.org/10.1128/JCM.42.11.5368-5370.2004.
DOI: https://doi.org/10.1128/JCM.42.11.5368-5370.2004
93. Hajtuch, J., Wojcik, M., Tomczyk, E., Jaskiewicz, M., and Inkielewicz-Stepniak, I. Lipoic acid-coated silver nanoparticles: biosafety potential on the vascular microenvironment and antibacterial properties, Front. Pharmacol. 2022, 12, 733743, doi.org/10.3389/fphar.2021.733743.
DOI: https://doi.org/10.3389/fphar.2021.733743
94. Martínez, G. K. D., Zertuche, A. T., Iñiguez, E., and Kretzchmar, T. Radical scavenging, hemocompatibility, and antibacterial activity against MDR acinetobacter baumannii in alginate-based aerogels containing lipoic acid-capped silver nanoparticles, ACS Omega 2024, 9, 2350-2361, doi.org/10.1021/acsomega.3c06114.
DOI: https://doi.org/10.1021/acsomega.3c06114
95. Wright, E. J., Brew, B. J., and Wesselingh, S. L. Pathogenesis and diagnosis of viral infections of the nervous system, Neurol. Clin. 2008, 26, 617-633, doi.org/10.1016/j.ncl.2008.03.006.
DOI: https://doi.org/10.1016/j.ncl.2008.03.006
96. Cure, E., and Cumhur Cure, M. Alpha-lipoic acid may protect patients with diabetes against COVID-19 infection, Med. Hypotheses 2020, 143, 110185, doi.org/10.1016/j.mehy.2020.110185.
DOI: https://doi.org/10.1016/j.mehy.2020.110185
97. Koufaki, M., Detsi, A., and Kiziridi, C. Multifunctional lipoic acid conjugates, Curr. Med. Chem. 2009, 16, 4728-4742, doi.org/10.2174/092986709789878274.
DOI: https://doi.org/10.2174/092986709789878274
98. Spisakova, M., Cizek, Z., and Melkova, Z. Ethacrynic and α-lipoic acids inhibit vaccinia virus late gene expression, Antiviral Res. 2009, 81, 156–165, doi.org/10.1016/j.antiviral.2008.11.001.
DOI: https://doi.org/10.1016/j.antiviral.2008.11.001
99. Zhang, W., Chen, X., Yu, F., Li, F., Li, W., and Jia, K. α-lipoic acid exerts its antiviral effect against viral hemorrhagic septicemia virus (VHSV) by promoting upregulation of antiviral genes and suppressing VHSV-induced oxidative stress, Virol. Sin. 2021, 36, 1520–1531, doi.org/10.1007/s12250-021-00440-5.
DOI: https://doi.org/10.1007/s12250-021-00440-5
100. Baur, A., Harrer, T., Peukert, M., Jahn, G., and Fleckenstein, B. Alpha-lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1) replication, Klin. Wochenschrift 1991, 69, 722-724, doi.org/10.1007/BF01649442.
DOI: https://doi.org/10.1007/BF01649442
101. Ray, P. D., Huang, B.W., and Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal. 2012, 24, 981–990, doi.org/10.1016/j.cellsig.2012.01.008.
DOI: https://doi.org/10.1016/j.cellsig.2012.01.008
102. Huang, W.J., Zhang, X., and Chen, W.W. Role of oxidative stress in Alzheimer’s disease, Biomed. Rep. 2016, 4, 519–522, doi.org/10.3892/br.2016.630.
DOI: https://doi.org/10.3892/br.2016.630
103. Iqbal, K., and Grundke-Iqbal, I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention: Alzheimer review series, J. Cell. Mol. Med. 2008, 12, 38-55, doi.org/10.1111/j.1582-4934.2008.00225.x.
DOI: https://doi.org/10.1111/j.1582-4934.2008.00225.x
104. Rubio-Perez, J. M., and Morillas-Ruiz, J. M. (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines, Sci. World J. 2012, 756357, doi.org/10.1100/2012/756357.
DOI: https://doi.org/10.1100/2012/756357
105. Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., and Thal, L. J. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease, N. Engl. J. Med. 1997, 336, 1216-1222, doi.org/10.1056/nejm199704243361704.
DOI: https://doi.org/10.1056/NEJM199704243361704
106. Dinicola, S., Proietti, S., Cucina, A., Bizzarri, M., and Fuso, A. Alpha-lipoic acid downregulates IL-1β and IL-6 by DNA hypermethylation in SK-N-BE neuroblastoma cells, Antioxidants 2017, 6, 74, doi.org/10.3390/antiox6040074.
DOI: https://doi.org/10.3390/antiox6040074
107. Jia, Z., Hallur, S., Zhu, H., Li, Y., and Misra, H. P. Potent upregulation of glutathione and NAD(P)H: quinone oxidoreductase 1 by alpha-lipoic acid in human neuroblastoma SH-SY5Y cells: protection against neurotoxicant-elicited cytotoxicity, Neurochem. Res. 2008, 33, 790-800, doi.org/10.1007/s11064-007-9496-5.
DOI: https://doi.org/10.1007/s11064-007-9496-5
108. Cacciatore, I., Marinelli, L., Fornasari, E., Cerasa, L. S., and Eusepi, P. Novel NSAID-derived drugs for the potential treatment of Alzheimer’s disease, Int. J. Mol. Sci. 2016, 17, 1035, doi.org/10.3390/ijms17071035.
DOI: https://doi.org/10.3390/ijms17071035
109. Allahverdiyev, O., Dzhafar, S., Berköz, M., and Yıldırım, M. Advances in current medication and new therapeutic approaches in epilepsy, Eastern J. Med. 2018, 23, 48–59, doi.org/10.5505/ejm.2018.62534.
DOI: https://doi.org/10.5505/ejm.2018.62534
110. Büget, B., Türkmen, A. Z., Allahverdiyev, O., and Enginar, N. Antimuscarinic-induced convulsions in fasted animals after food intake: evaluation of the effects of levetiracetam, topiramate and different doses of atropine, Naunyn-Schmiedebergs Arch. Pharmacol. 2016, 389, 57–62, doi.org/10.1007/s00210-015-1175-5.
DOI: https://doi.org/10.1007/s00210-015-1175-5
111. Martinc, B., Grabnar, I., and Vovk, T. The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress, Curr. Neuropharmacol. 2012, 10, 328-343, doi.org/10.2174/157015912804143504.
DOI: https://doi.org/10.2174/1570159X11209040328
112. Javaid, M. S., Antonic-Baker, A., Pitsillou, E., Liang, J., French, C., and Anderson, A. Alpha-lipoic acid analogues in the regulation of redox balance in epilepsy: a molecular docking and simulation study, J. Mol. Graph. Model. 2022, 112, 108116, doi.org/10.1016/j.jmgm.2021.108116.
DOI: https://doi.org/10.1016/j.jmgm.2021.108116
113. Sagmanligil, H., Yunusoglu, O., and Catalkaya, E. Investigation of the pharmacological, behavioral and biochemical effects of boron on rats with rotenone-induced Parkinson’s disease, Cell. Mol. Biol. 2022, 68, 13–21, doi.org/10.14715/cmb/2022.68.8.3.
DOI: https://doi.org/10.14715/cmb/2022.68.8.3
114. Kaygısız, M., & Gürer, E. S. Determination of the antimicrobial, antioxidant activities and effects on oxidative DNA damage of extracts from three different Salvia species grown in Turkey. Prospects in Pharmaceutical Sciences 2025, 23(1), 1-8. doi.org/10.56782/pps.300
DOI: https://doi.org/10.56782/pps.300
115. Xicoy, H., Wieringa, B., and Martens, G. J. M. The role of lipids in Parkinson’s disease, Cells 2019, 8, 1–58, doi.org/10.3390/cells8010027.
DOI: https://doi.org/10.3390/cells8010027
116. Zheng, Q., Ma, P., Yang, P., Zhai, S., He, M., and Zhang, C. Alpha lipoic acid ameliorates motor deficits by inhibiting ferroptosis in Parkinson’s disease, Neurosci. Lett. 2023, 810, 137346, doi.org/10.1016/j.neulet.2023.137346.
DOI: https://doi.org/10.1016/j.neulet.2023.137346
117. Piersimoni, M. E., Teng, X., and Ying, L. Antioxidant lipoic acid ligand-shell gold nanoconjugates against oxidative stress caused by α-synuclein aggregates, Nanoscale Adv. 2020, 2, 5666–5681, doi.org/10.1039/D0NA00688B.
DOI: https://doi.org/10.1039/D0NA00688B
118. Tai, S., Zheng, Q., Zhai, S., Cai, T., Xu, L., and Zhang, C. Alpha-lipoic acid mediates clearance of iron accumulation by regulating iron metabolism in a Parkinson’s disease model induced by 6-OHDA, Front. Neurosci. 2020, 14, 612, doi.org/10.3389/fnins.2020.00612.
DOI: https://doi.org/10.3389/fnins.2020.00612
119. Li, X., Zou, Y., Xing, J., Wang, K. Y., and Zhai, X. Y. A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis, Front. Physiol. 2021, 12, 680544, doi.org/10.3389/fphys.2021.680544.
DOI: https://doi.org/10.3389/fphys.2021.680544
120. Abdin, A. A., and Sarhan, N. I. Intervention of mitochondrial dysfunction-oxidative stress-dependent apoptosis as a possible neuroprotective mechanism of α-lipoic acid against rotenone-induced parkinsonism and l-dopa toxicity, Neurosci. Res. 2011, 71, 387–39, doi.org/10.1016/j.neures.2011.08.008.
DOI: https://doi.org/10.1016/j.neures.2011.08.008
121. Pei, X., Hu, F., Hu, Z., Luo, F., Li, X., and Long, D. Neuroprotective effect of α-lipoic acid against Aβ25–35-induced damage in BV2 cells, Molecules 2023, 28, 1–13, doi.org/10.3390/molecules28031168.
DOI: https://doi.org/10.3390/molecules28031168
122. Sahin, M., Sagdıc, G., Elmas, O., Akpınar, D., Derin, N., and Yargıcoğlu, P. Effect of chronic restraint stress and alpha-lipoic acid on lipid peroxidation and antioxidant enzyme activities in rat peripheral organs, Pharmacol. Res. 2006, 54, 247–252, doi.org/10.1016/j.phrs.2006.05.007.
DOI: https://doi.org/10.1016/j.phrs.2006.05.007
123. Liu, J., Wang, X., and Mori, A. Immobilization stress-induced antioxidant defense changes in rat plasma: effect of treatment with reduced glutathione, Int. J. Biochem. 1994, 26, 511-517, doi.org/10.1016/0020-711X(94)90008-6.
DOI: https://doi.org/10.1016/0020-711X(94)90008-6
124. Akotkar, L., Aswar, U., Patil, R., Kumar, D., Aswar, M., and Gurav, S. Antidepressant effect of alpha lipoic acid in rats exposed to chronic unpredictable mild stress: putative role of neurotransmitters and 5HT3 receptor, Future Pharmacol. 2023, 3, 407–425, doi.org/10.3390/futurepharmacol3020025.
DOI: https://doi.org/10.3390/futurepharmacol3020025
125. Sampaio, L. R. L., Cysne Filho, F. M. S., and Vasconcelos, S. M. M. Advantages of the alpha-lipoic acid association with chlorpromazine in a model of schizophrenia induced by ketamine in rats: behavioral and oxidative stress evidences, Neuroscience 2018, 373, 72–81, doi.org/10.1016/j.neuroscience.2018.01.008.
DOI: https://doi.org/10.1016/j.neuroscience.2018.01.008
126. Mansur, R. B., Cha, D. S., Asevedo, E., and Brietzke, E. Selfish brain and neuroprogression in bipolar disorder, Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 43, 66-71, doi.org/10.1016/j.pnpbp.2012.12.004.
DOI: https://doi.org/10.1016/j.pnpbp.2012.12.004
127. Kim, M. S., Park, J. Y., Namkoong, C., Jang, P. G., Ryu, J. W., and Lee, K. U. Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase, Nat. Med. 2004, 10, 727-733, doi.org/10.1038/nm1061.
DOI: https://doi.org/10.1038/nm1061
128. Kim, E., Park, D. W., Choi, S. H., and Cho, H. S. A preliminary investigation of α-lipoic acid treatment of antipsychotic drug-induced weight gain in patients with schizophrenia, J. Clin. Psychopharmacol. 2008, 28, 138-146, doi.org/10.1097/JCP.0b013e31816777f7.
DOI: https://doi.org/10.1097/JCP.0b013e31816777f7
129. Sampaio, L. R. L., Borges, L. T. N., Barbosa, T. M., Matos, N. C. B., Lima, R. de F., and Vasconcelos, S. M. M. de. Electroencephalographic study of chlorpromazine alone or combined with alpha-lipoic acid in a model of schizophrenia induced by ketamine in rats, J. Psychiatr. Res. 2017, 86, 73–82, doi.org/10.1016/j.jpsychires.2016.12.003.
DOI: https://doi.org/10.1016/j.jpsychires.2016.12.003
130. Farr, S. A., Poon, H. F., Drake, J., Banks, W. A., and Morley, J. E. The antioxidants α‐lipoic acid and N ‐acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice, J. Neurochemi. 2003, 84, 1173–1183, doi.org/10.1046/j.1471-4159.2003.01580.x.
DOI: https://doi.org/10.1046/j.1471-4159.2003.01580.x
131. Memudu, A. E., and Adanike, R. P. Alpha lipoic acid reverses scopolamine-induced spatial memory loss and pyramidal cell neurodegeneration in the prefrontal cortex of wistar rats, IBRO Neurosci. Rep. 2022, 13, 1–8, doi.org/10.1016/j.ibneur.2022.05.005.
DOI: https://doi.org/10.1016/j.ibneur.2022.05.005
132. Liu, B., Ma, X., Guo, D., Guo, Y., and Bi, H. Neuroprotective effect of alpha-lipoic acid on hydrostatic pressure-induced damage of retinal ganglion cells in vitro, Neurosci. Lett. 2012, 526, 24–28, doi.org/10.1016/j.neulet.2012.08.016.
DOI: https://doi.org/10.1016/j.neulet.2012.08.016
133. Han, D., Sen, C. K., Roy, S., Kobayashi, M. S., and Packer, L. Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants, Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997, 273, 1771–1778, doi.org/10.1152/ajpregu.1997.273.5.R1771.
DOI: https://doi.org/10.1152/ajpregu.1997.273.5.R1771
134. Sun, H., Yao, W., Tang, Y., Zhuang, W., Wu, D., and Sheng, H. Urinary exosomes as a novel biomarker for evaluation of α-lipoic acid’s protective effect in early diabetic nephropathy, J. Clin. Lab. Anal. 2017, 31, e22129, doi.org/10.1002/jcla.22129.
DOI: https://doi.org/10.1002/jcla.22129
135. Lin, H., Ye, S., Xu, J., and Wang, W. The alpha-lipoic acid decreases urinary podocalyxin excretion in type 2 diabetics by inhibiting oxidative stress in vivo, J. Diabetes Complications 2015, 29, 64–67, doi.org/10.1016/j.jdiacomp.2014.09.011.
DOI: https://doi.org/10.1016/j.jdiacomp.2014.09.011
136. Wang, L., Tang, Y., Eisner, W., Sparks, M. A., and Spurney, R. F. Augmenting podocyte injury promotes advanced diabetic kidney disease in Akita mice, Biochem. Bioph Res. Commun. 2014, 444, 622-627, doi.org/10.1016/j.bbrc.2014.01.115.
DOI: https://doi.org/10.1016/j.bbrc.2014.01.115
137. Gui, D., Guo, Y., Wang, F., Liu, W., Chen, J., and Wang, N. Astragaloside IV, a novel antioxidant, prevents glucose-induced podocyte apoptosis in vitro and in vivo, PLoS One 2012, 7, e39824, doi.org/10.1371/journal.pone.0039824.
DOI: https://doi.org/10.1371/journal.pone.0039824
138. Jacob, S., Streeper, R. S., Fogt, D. L., Hokama, J. Y., Tritschler, H. J., and Henriksen, E. J. The antioxidant α-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle, Diabetes 1996, 45, 1024-1029, doi.org/10.2337/diabetes.45.8.1024.
DOI: https://doi.org/10.2337/diabetes.45.8.1024
139. Khamaisi, M., Potashnik, R., Tirosh, A., Demshchak, E., Rudich, A., and Bashan, N. Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats, Metabolism 1997, 46, 763-768, doi.org/10.1016/S0026-0495(97)90120-7.
DOI: https://doi.org/10.1016/S0026-0495(97)90120-7
140. Nagamatsu, M., Nickander, K. K., Schmelzer, J. D., Raya, A., Wittrock, D. A., and Low, P. A. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy, Diabetes Care 1995, 18, 1160-1167, doi.org/10.2337/diacare.18.8.1160.
DOI: https://doi.org/10.2337/diacare.18.8.1160
141. Papanas, N., and Ziegler, D. Efficacy of α-lipoic acid in diabetic neuropathy, Expert Opin. Pharmacother. 2014, 15, 2721–2731, doi.org/10.1517/14656566.2014.972935.
DOI: https://doi.org/10.1517/14656566.2014.972935
142. Jain, S. K., and Lim, G. Lipoic acid decreases lipid peroxidation and protein glycosylation and increases (Na+ + K+) and Ca++ATPase activities in high glucose-treated human erythrocytes, Free Radic. Biol. Med. 2000, 29, 1122-1128, doi.org/10.1016/S0891-5849(00)00410-X.
DOI: https://doi.org/10.1016/S0891-5849(00)00410-X
143. Ziegler, D., Hanefeld, M., Ruhnau, K. J., Hasche, H., Lobisch, M., and Malessa, R. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III study), Diabetes Care 1999, 22, 1296-1301, doi.org/10.2337/diacare.22.8.1296.
DOI: https://doi.org/10.2337/diacare.22.8.1296
144. Mervaala, E., Finckenberg, P., Lapatto, R., Müller, D. N., Park, J. K., and Luft, F. C. Lipoic acid supplementation prevents angiotensin II-induced renal injury, Kidney Int. 2003, 64, 501-508, doi.org/10.1046/j.1523-1755.2003.00108.x.
DOI: https://doi.org/10.1046/j.1523-1755.2003.00108.x
145. Melhem, M. F., Craven, P. A., and DeRubertis, F. R. Effects of dietary supplementation of α-lipoic acid on early glomerular injury in diabetes mellitus, J. Am. Soc. Nephrol. 2001, 12, 124-133, doi.org/10.1681/asn.v121124.
DOI: https://doi.org/10.1681/ASN.V121124
146. Dinçer, Y., Telci, A., Kayali, R., Yilmaz, I. A., and Akçay, T. Effect of α-lipoic acid on lipid peroxidation and anti-oxidant enzyme activities in diabetic rats, Clin. Exp. Pharmacol. Physiol. 2002, 29, 281-284, doi.org/10.1046/j.1440-1681.2002.03642.x.
DOI: https://doi.org/10.1046/j.1440-1681.2002.03642.x
147.Maritim, A. C., Sanders, R. A., and Watkins, J. B. Effects of α-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats, J. Nutr. Biochem. 2003, 14, 288-294, doi.org/10.1016/S0955-2863(03)00036-6.
DOI: https://doi.org/10.1016/S0955-2863(03)00036-6
148. Bhatti, F., Mankhey, R. W., Asico, L., Quinn, M. T., and Maric, C. Mechanisms of antioxidant and pro-oxidant effects of α-lipoic acid in the diabetic and nondiabetic kidney, Kidney Int. 2005, 67, 1371-1380, doi.org/10.1111/j.1523-1755.2005.00214.x.
DOI: https://doi.org/10.1111/j.1523-1755.2005.00214.x
149. Manaviat M., Rashidi M., and Shoja RM. Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients, BMC Ophthalmol. 2008, 8, 1-5, doi.org/10.1186/1471-2415-8-10.
DOI: https://doi.org/10.1186/1471-2415-8-10
150. Alvarez-Rivera F., Fernández-Villanueva D., and Concheiro A. α-Lipoic acid in Soluplus(®) polymeric nanomicelles for ocular treatment of diabetes-associated corneal diseases, J. Pharm. Sci. 2016, 105, 2855–2863, doi.org/10.1016/j.xphs.2016.03.006.
DOI: https://doi.org/10.1016/j.xphs.2016.03.006
151. Pawankar, R. Allergic diseases and asthma: a global public health concern and a call to action, World Allergy Organization 2014, 7, 1-3, doi.org/10.1186/1939-4551-7-12.
DOI: https://doi.org/10.1186/1939-4551-7-12
152. Druce, H. M. Allergic Rhinitis, JAMA 1988, 259, 260, doi.org/10.1001/jama.1988.03720020062038.
DOI: https://doi.org/10.1001/jama.1988.03720020062038
153. Choi, Y. H., Chai, O. H., Han, E.H., Choi, S.Y., and Song, C. H. Lipoic acid suppresses compound 48/80-induced anaphylaxis-like reaction, Anat. Cell Biol. 2010, 43, 317, doi.org/10.5115/acb.2010.43.4.317.
DOI: https://doi.org/10.5115/acb.2010.43.4.317
154. Small, P., and Kim, H. Allergic rhinitis, Allergy, Asthma Clin. Immunol. 2011, 7, 1-8, doi.org/10.1186/1710-1492-7-S1-S3.
DOI: https://doi.org/10.1186/1710-1492-7-S1-S3
155. Van Nguyen, T., Piao, C. H., Fan, Y. J., Shin, D. U., Kim, S. Y., and Chai, O. H. Anti-allergic rhinitis activity of α-lipoic acid via balancing Th17/Treg expression and enhancing Nrf2/HO-1 pathway signaling, Sci. Rep. 2020, 10, 12528, doi.org/10.1038/s41598-020-69234-1.
DOI: https://doi.org/10.1038/s41598-020-69234-1
156. Zhao, H., Zhao, X., Liu, L., Zhang, H., Xuan, M., and Liu, C. Neurochemical effects of the R form of α-lipoic acid and its neuroprotective mechanism in cellular models of Parkinson’s disease, Int. J. Biochem. Cell Biol. 2017, 87, 86–94, doi.org/10.1016/j.biocel.2017.04.002.
DOI: https://doi.org/10.1016/j.biocel.2017.04.002
157. Sen, C. K., Roy, S., and Packer, L. Fas mediated apoptosis of human jurkat T-cells: intracellular events and potentiation by redox-active α-lipoic acid, Cell Death Differ. 1999, 6, 481-491, doi.org/10.1038/sj.cdd.4400514.
DOI: https://doi.org/10.1038/sj.cdd.4400514
158. Wenzel, U., Nickel, A., and Daniel, H. α-lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2−generation, Apoptosis 2005, 10, 359–368, doi.org/10.1007/s10495-005-0810-x.
DOI: https://doi.org/10.1007/s10495-005-0810-x
159. Schwartz, L., Abolhassani, M., Guais, A., Sanders, E., and Campion, F. A combination of alpha lipoic acid and calcium hydroxycitrate is efficient against mouse cancer models: preliminary results, Oncol. Rep. 2010, 23, 1407-1416, doi.org/10.3892/or_00000778.
DOI: https://doi.org/10.3892/or_00000778
160. Ahmadi, A., Hosseini, F., and Soukhtanloo, M. Anticancer effects of alpha-lipoic acid, a potent organosulfur compound by modulating matrix metalloproteinases and apoptotic markers in osteosarcoma MG-63 cells, J. Steroid Biochem. Mol. Biol. 2025, 247, 106664, doi.org/10.1016/j.jsbmb.2024.106664.
DOI: https://doi.org/10.1016/j.jsbmb.2024.106664
161. Jeon, M. J., Kim, W. G., Lim, S., Choi, H.J., Sim, S., and Kim, W. B. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells, Mol. Cell. Endocrinol. 2016, 419, 113–123, doi.org/10.1016/j.mce.2015.10.005.
DOI: https://doi.org/10.1016/j.mce.2015.10.005
162.Na, M. H., Seo, E. Y., and Kim, W. K.Effects of α-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells, Nutr. Res. Pract. 2009, 3, 265, doi.org/10.4162/nrp.2009.3.4.265.
DOI: https://doi.org/10.4162/nrp.2009.3.4.265
163. Kuban-Jankowska, A., Gorska-Ponikowska, M., and Wozniak, M. Lipoic acid decreases the viability of breast cancer cells and activity of PTP1B and SHP2, Anticancer Res. 2017, 37, 2893-2898, doi.org/10.21873/anticanres.11642.
DOI: https://doi.org/10.21873/anticanres.11642
164. Zhang, W. J., Wei, H., and Frei, B. α-Lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway, Proc. Natl. Acad. Sci. 2007, 104, 4077–4082, doi.org/10.1073/pnas.0700305104.
DOI: https://doi.org/10.1073/pnas.0700305104
165. Faverani, L. P., Polo, T. O. B., Ramalho-Ferreira, G., Momesso, G. A. C., Hassumi, J. S., Rossi, A. C., ... & Okamoto, R. Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats. Clinical oral investigations 2018, 22, 255-265.
DOI: https://doi.org/10.1007/s00784-017-2106-2
166. Koh, J. M., Lee, Y. S., Byun, C. H., Chang, E. J., Kim, H., and Kim, G. S. α-Lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor κB ligand/osteoprotegerin ratio in human bone marrow stromal cells, J. Endocrinol. 2005, 185, 401-413, doi.org/10.1677/joe.1.05995.
DOI: https://doi.org/10.1677/joe.1.05995
167. Lin, Z., Guichun, Z., Lifeng, L., Chen, C., and Jinfang, C. Protective effect of α-lipoic acid against antimycin a cytotoxicity in MC3T3-E1 osteoblastic cells, Cell Stress Chaperones 2017, 22, 5–13, doi.org/10.1007/s12192-016-0735-z.
DOI: https://doi.org/10.1007/s12192-016-0735-z
168. Cheng, M., Wang, Q., Fan, Y., Liu, X., Wang, L., and Sun, W. A traditional Chinese herbal preparation, er-zhi-wan, prevent ovariectomy-induced osteoporosis in rats, J. Ethnopharmacol. 2011, 138, 279–285, doi.org/10.1016/j.jep.2011.09.030.
DOI: https://doi.org/10.1016/j.jep.2011.09.030
169. Vivanco, I., and Sawyers, C. L. The phosphatidylinositol 3-kinase–AKT pathway in human cancer, Nat. Rev. Cancer 2002, 2, 489–501, doi.org/10.1038/nrc839.
DOI: https://doi.org/10.1038/nrc839
170. Fu, C., Xu, D., Wang, C. Y., Jin, Y., Liu, Q., and Liu, M. Z. Alpha-lipoic acid promotes osteoblastic formation in H2O2-treated MC3T3-E1 cells and prevents bone loss in ovariectomized rats, J. Cell. Physiol. 2015, 230, 2184-2201, doi.org/10.1002/jcp.24947.
DOI: https://doi.org/10.1002/jcp.24947
171. Xiao, Y., Cui, J., and Le, G. Lipoic acid increases the expression of genes involved in bone formation in mice fed a high-fat diet, Nutrition Research 2011, 31, 309–317, doi.org/10.1016/j.nutres.2011.03.013.
DOI: https://doi.org/10.1016/j.nutres.2011.03.013
172. Abdelhalim, M. A. K., Qaid, H. A. Y., and Ghannam, M. M. The protective roles of vitamin E and α-lipoic acid against nephrotoxicity, lipid peroxidation, and inflammatory damage induced by gold nanoparticles, Int. J. Nanomedicine 2020, 15, 729–734, doi.org/10.2147/IJN.S192740.
DOI: https://doi.org/10.2147/IJN.S192740
173. Ossipov, D. A. Bisphosphonate-modified biomaterials for drug delivery and bone tissue engineering, Expert Opin. Drug Deliv. 2015, 12, 1443–1458, doi.org/10.1517/17425247.2015.1021679.
DOI: https://doi.org/10.1517/17425247.2015.1021679
174. Gao, W., Li, J. J., Shi, J., Lan, H., and Fu, D. Ångstrom-scale gold particles loaded with alendronate via alpha-lipoic acid alleviate bone loss in osteoporotic mice, J. Nanobiotechnology 2024, 22, 212, doi.org/10.1186/s12951-024-02466-9.
DOI: https://doi.org/10.1186/s12951-024-02466-9
175. Lu, S.Y., Wang, C.Y., Jin, Y., Meng, Q., Liu, Q., and Liu, M.Z. The osteogenesis-promoting effects of alpha-lipoic acid against glucocorticoid-induced osteoporosis through the NOX4, NF-kappaB, JNK and PI3K/AKT pathways, Sci. Rep. 2017, 7, 3331, doi.org/10.1038/s41598-017-03187-w.
DOI: https://doi.org/10.1038/s41598-017-03187-w
176. Wollin, S. D., Wang, Y., and Jones, P. J. H. Effects of a medium chain triglyceride oil mixture and α-lipoic acid diet on body composition, antioxidant status, and plasma lipid levels in the golden syrian hamster, J. Nutr. Biochem. 2004, 15, 402–410, doi.org/10.1016/j.jnutbio.2003.12.001.
DOI: https://doi.org/10.1016/j.jnutbio.2003.12.001
177. Bai, J., Chen, C., Sun, Y., Li, S., He, R., and Han, Z. α-LA attenuates microcystin-LR-induced hepatocellular oxidative stress in mice through Nrf2-mediated antioxidant and detoxifying enzymes, Toxicon 2023, 235, 107313, doi.org/10.1016/j.toxicon.2023.107313.
DOI: https://doi.org/10.1016/j.toxicon.2023.107313
178. Zhang, L., Zou, J., Chai, E., and Zhang, Y. Alpha-lipoic acid attenuates cardiac hypertrophy via downregulation of PARP-2 and subsequent activation of SIRT-1, Eur. J. Pharmacol. 2014, 744, 203–210, doi.org/10.1016/j.ejphar.2014.09.037.
DOI: https://doi.org/10.1016/j.ejphar.2014.09.037
179. Quinn, M. T., Parthasarathy, S., and Steinberg, D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis, Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 2995-2998, doi.org/10.1073/pnas.84.9.2995.
DOI: https://doi.org/10.1073/pnas.84.9.2995
180. Meneses, L. N., Vasconcelos, G. S., Da Silva Medeiros, I., Silva, M. C. C., and Vasconcelos, S. M. M. Neuroprotective evidence of alpha-lipoic acid and desvenlafaxine on memory deficit in a neuroendocrine model of depression, Naunyn Schmiedebergs Arch. Pharmacol. 2018, 391, 803-817, doi.org/10.1007/s00210-018-1509-1.
DOI: https://doi.org/10.1007/s00210-018-1509-1
181. Berköz, M., Aslan, A., Yunusoğlu, O., and Francik, R. Hepatoprotective potentials of Usnea Longissima Ach. and Xanthoparmelia Somloensis (gyelnik) hale extracts in ethanol-induced liver injury, Drug Chem. Toxicol. 2025, 48, 136–149, doi.org/10.1080/01480545.2024.2407867.
DOI: https://doi.org/10.1080/01480545.2024.2407867
182. Ceylanlı, D., Şehirli, A. Ö., Gençosman, S., Teralı, K., Şah, H., and Sayıner, S. Protective effects of alpha-lipoic acid against 5-fluorouracil-induced gastrointestinal mucositis in rats, Antioxidants 2022, 11, 1930, doi.org/10.3390/antiox11101930.
DOI: https://doi.org/10.3390/antiox11101930
183. Babu, S., Manoharan, S., and Perumal, E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis, Chem. Biol. Interact. 2022, 365, 110106, doi.org/10.1016/j.cbi.2022.110106.
DOI: https://doi.org/10.1016/j.cbi.2022.110106
184. Elshazly, S. M., El-Moselhy, M. A., and Barakat, W. Insights in the mechanism underlying the protective effect of α-lipoic acid against acetaminophen-hepatotoxicity, Eur. J. Pharmacol. 2014, 726, 116–123, doi.org/10.1016/j.ejphar.2014.01.042.
DOI: https://doi.org/10.1016/j.ejphar.2014.01.042
185. Keith, D. J., Butler, J. A., Bemer, B., Dixon, B., Johnson, S., and Hagen, T. M. Age and gender dependent bioavailability of R- and S-α-lipoic acid: a pilot study, Pharmacol. Res. 2012, 66, 199-206, doi.org/10.1016/j.phrs.2012.05.002.
DOI: https://doi.org/10.1016/j.phrs.2012.05.002
186. Guzel, E. E., Kaya, N., Ozan, G., Tektemur, A., and Ozan, I. E. The investigation of effect of alpha lipoic acid against damage on neonatal rat lung to maternal tobacco smoke exposure, Toxicol. Rep. 2018, 5, 714–722, doi.org/10.1016/j.toxrep.2018.05.014.
DOI: https://doi.org/10.1016/j.toxrep.2018.05.014
187. Yunusoglu, O., Türkmen, Ö., Berkoz, M., and Yalın, S. In vitro anti-obesity effect of aloe vera extract through transcription factors and lipolysis-associated genes, Eastern J. Med. 2022, 27, 519–528, doi.org/10.5505/ejm.2022.13285.
DOI: https://doi.org/10.5505/ejm.2022.13285
188. Romo-Hualde, A., Huerta, A. E., González-Navarro, C. J., Ramos-López, O., and Martínez, J. A. Untargeted metabolomic on urine samples after α-lipoic acid and/or eicosapentaenoic acid supplementation in healthy overweight/obese women, Lipids Health Dis. 2018, 17, 1-13, doi.org/10.1186/s12944-018-0750-4.
DOI: https://doi.org/10.1186/s12944-018-0750-4
189. Namazi, N., Larijani, B., and Azadbakht, L. Alpha-lipoic acid supplement in obesity treatment: a systematic review and meta-analysis of clinical trials, Clinical Nutrition 2018, 37, 419–428, doi.org/10.1016/j.clnu.2017.06.002.
DOI: https://doi.org/10.1016/j.clnu.2017.06.002
190. Dajnowicz-Brzezik, P., Żebrowska, E., Maciejczyk, M., and Chabowski, A. The effect of α-lipoic acid on oxidative stress in adipose tissue of rats with obesity-induced insulin resistance, Cell. Physiol. Biochem. 2022, 56, 239–253, doi.org/10.33594/000000528.
DOI: https://doi.org/10.33594/000000528
191. McNeilly, A. M., Davison, G. W., Murphy, M. H., Nadeem, N., Trinick, T., and McEneny, J. Effect of α-lipoic acid and exercise training on cardiovascular disease risk in obesity with impaired glucose tolerance, Lipids Health Dis. 2011, 10, 1-9, doi.org/10.1186/1476-511X-10-217.
DOI: https://doi.org/10.1186/1476-511X-10-217
192. Arivazhagan, P., Ramanathan, K., and Panneerselvam, C. Effect of DL-α-lipoic acid on the status of lipid peroxidation and antioxidants in mitochondria of aged rats, J. Nutr. Biochem. 2001, 12, 2–6, doi.org/10.1016/S0955-2863(00)00138-8.
DOI: https://doi.org/10.1016/S0955-2863(00)00138-8
193. Yawalkar, N. Drug hypersensitivity, Acta Clin. Belg. 2009, 64, 529–533, doi.org/10.1179/acb.2009.090.
DOI: https://doi.org/10.1179/acb.2009.090
194. Gomaa, A. M. S., Abd El-Mottaleb, N. A., and Aamer, H. A. Antioxidant and anti-inflammatory activities of alpha lipoic acid protect against indomethacin-induced gastric ulcer in rats, Biomed. Pharmacother. 2018, 101, 188–194, doi.org/10.1016/j.biopha.2018.02.070.
DOI: https://doi.org/10.1016/j.biopha.2018.02.070
195. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications, Nature 2001, 414, 813-820, doi.org/10.1038/414813a.
DOI: https://doi.org/10.1038/414813a
196. Azevedo, Í. M., Lima, M. L., and Moreira, M. D. Effects of simvastatin on 5-fluorouracil-induced gastrointestinal mucositis in rats, Rev. Col. Bras. Cir. 2018, 45, e1968, doi.org/10.1590/0100-6991e-20181968.
197. Kleniewska, P., and Pawliczak, R. The influence of apocynin, lipoic acid and probiotics on antioxidant enzyme levels in the pulmonary tissues of obese asthmatic mice, Life Sci. 2019, 234, 116780, doi.org/10.1016/j.lfs.2019.116780.
DOI: https://doi.org/10.1016/j.lfs.2019.116780
198. Mims, J. W. Asthma: definitions and pathophysiology, Int. Forum Allergy Rhinol. 2015, 5, 2-6, doi.org/10.1002/alr.21609.
DOI: https://doi.org/10.1002/alr.21609
199. Sook Cho, Y., Lee, J., Lee, T.H., Young Lee, E., Lee, K.U., and Moon, H.B. α-Lipoic acid inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma, J. Allergy Clin. Immunol. 2004, 114, 429–435, doi.org/10.1016/j.jaci.2004.04.004.
DOI: https://doi.org/10.1016/j.jaci.2004.04.004
200. Dhar, D., Baglieri, J., Kisseleva, T., and Brenner, D. A. Mechanisms of liver fibrosis and its role in liver cancer, Exp. Biol. Med. 2020, 245, 96-108, doi.org/10.1177/1535370219898141.
DOI: https://doi.org/10.1177/1535370219898141
201. El-Senousey, H. K., Chen, B., Wang, J. Y., Atta, A. M., and Nie, Q. H. Effects of dietary vitamin C, vitamin E, and alpha-lipoic acid supplementation on the antioxidant defense system and immune-related gene expression in broilers exposed to oxidative stress by dexamethasone, Poultry Sci. 2018, 97, 30–38, doi.org/10.3382/ps/pex298.
DOI: https://doi.org/10.3382/ps/pex298
202. Morini, M., Roccatagliata, L., Dell’Eva, R., Pedemonte, E., Furlan, R., and Uccelli, A. α-Lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis, J. Neuroimmunol. 2004, 148, 146–153, doi.org/10.1016/j.jneuroim.2003.11.021.
DOI: https://doi.org/10.1016/j.jneuroim.2003.11.021
203. Li, Y., Ma, Q.G., Zhao, L.H., Wei, H., Duan, G.X., and Ji, C. Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets, Int. J. Mol. Sci. 2014, 15, 5649–5662, doi.org/10.3390/ijms15045649.
DOI: https://doi.org/10.3390/ijms15045649
204. Prathima, P., Venkaiah, K., Reddy, M. H., and Sainath, S. B. Antioxidant effects of α-lipoic acid against epididymal oxidative damage in adult offspring rats exposed to maternal hypothyroidism stress, Reprod. Toxicol. 2024, 125, 108555, doi.org/10.1016/j.reprotox.2024.108555.
DOI: https://doi.org/10.1016/j.reprotox.2024.108555
205. Sastre, J., Pallardó, F. V., Plá, R., Pellín, A., Juan, G., and Viña, J. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes, Hepatology 1996, 24, 1199-1205, doi.org/10.1002/hep.510240536.
DOI: https://doi.org/10.1002/hep.510240536
206. Jungwirth, A., Giwercman, A., Tournaye, H., Diemer, T., Kopa, Z., and Krausz, C. European association of urology guidelines on male infertility: the 2012 update, Eur. Urol. 2012, 62, 324–332, doi.org/10.1016/j.eururo.2012.04.048.
DOI: https://doi.org/10.1016/j.eururo.2012.04.048
207. Gharagozloo, P., and Aitken, R. J. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy, Hum. Reprod. 2011, 26, 1628–1640, doi.org/10.1093/humrep/der132.
DOI: https://doi.org/10.1093/humrep/der132
208. Ibrahim, S. F., Osman, K., Das, S., Othman, A. M., and Rahman, M. P. A. A Study of the antioxidant effect of alpha lipoic acids on sperm quality, Clinics 2008, 63, 545–550, doi.org/10.1590/S1807-59322008000400022.
DOI: https://doi.org/10.1590/S1807-59322008000400022
209. Di Tucci, C., Galati, G., Mattei, G., Bonanni, V., Capri, O., and Benedetti Panici, P. The role of alpha lipoic acid in female and male infertility: a systematic review, Gynecol. Endocrinol. 2021, 37, 497–505, doi.org/10.1080/09513590.2020.1843619.
DOI: https://doi.org/10.1080/09513590.2020.1843619
210. Asci, H., Erol, O., Ellidag, H. Y., Tola, E. N., and Ozmen, O. Pathology of cigarettes on the reproductive system and ameliorative effects of alpha lipoic acid: a rat model study, Toxicol. Ind. Health 2018, 34, 385–395, doi.org/10.1177/0748233718755160.
DOI: https://doi.org/10.1177/0748233718755160
211. Genazzani, A. D., Prati, A., Marchini, F., Petrillo, T., and Simoncini, T. Differential insulin response to oral glucose tolerance test (OGTT) in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol (MYO), alpha lipoic acid (ALA), or combination of both, Gynecol. Endocrinol. 2019, 35, 1088–1093, doi.org/10.1080/09513590.2019.1640200.
DOI: https://doi.org/10.1080/09513590.2019.1640200
212. Fruzzetti, F., Benelli, E., Fidecicchi, T., and Tonacchera, M. Clinical and metabolic effects of alpha-lipoic acid associated with two different doses of myo-inositol in women with polycystic ovary syndrome, Int. J. Endocrinol. 2020, 1–8, doi.org/10.1155/2020/2901393.
DOI: https://doi.org/10.1155/2020/2901393
213. Fruzzetti, F., Capozzi, A., and Lello, S. Treatment with d-chiro-inositol and alpha lipoic acid in the management of polycystic ovary syndrome, Gynecol. Endocrinol. 2019, 35, 506–510, doi.org/10.1080/09513590.2018.1540573.
DOI: https://doi.org/10.1080/09513590.2018.1540573
214. Emir, D. F., Ozturan, I. U., and Yilmaz, S. Alpha lipoic acid intoxicatıon: an adult, Am. J. Emerg. Med. 2018, 36, 1125-e3, doi.org/10.1016/j.ajem.2018.03.022.
DOI: https://doi.org/10.1016/j.ajem.2018.03.022
215. Vidović, B., Milovanović, S., Stefanović, A., Takić, M., and Dordević, B. Effects of alpha-lipoic acid supplementation on plasma adiponectin levels and some metabolic risk factors in patients with schizophrenia, J. Med. Food 2017, 20, 79-85, doi.org/10.1089/jmf.2016.0070.
DOI: https://doi.org/10.1089/jmf.2016.0070
216. Schuff-Werner, P., Pönisch, W., and Kaiser, T. Transient Howell-Jolly-body-like cytoplasmic inclusions in neutrophils after severe intoxication with alpha-lipoic acid, Scand. J. Clin. Lab. Invest. 2021, 81, 8–11, doi.org/10.1080/00365513.2020.1855468.
DOI: https://doi.org/10.1080/00365513.2020.1855468
217. Gatti, M., Ippoliti, I., Poluzzi, E., Antonazzo, I. C., Moro, P. A., and Raschi, Assessment of adverse reactions to α-lipoic acid containing dietary supplements through spontaneous reporting systems, Clin. Nutr. 2021, 40, 1176–1185, doi.org/10.1016/j.clnu.2020.07.028.
DOI: https://doi.org/10.1016/j.clnu.2020.07.028