[1] D. M. Allevato, M. Groppo, E. Kiyota, P. Mazzafera, and K. C. Nixon, “Evolution of phytochemical diversity in Pilocarpus (Rutaceae),” Phytochemistry, vol. 163, pp. 132–146, Jul. 2019, doi: 10.1016/j.phytochem.2019.03.027.
[2] P. C. Palangasinghe et al., “Reviews on Asian citrus species: Exploring traditional uses, biochemistry, conservation, and disease resistance,” Ecol Genet Genom, vol. 32, p. 100269, Sep. 2024, doi: 10.1016/j.egg.2024.100269.
[3] V. S. Meena et al., “Underutilized Fruit Crops of Indian Arid and Semi-Arid Regions: Importance, Conservation and Utilization Strategies,” Horticulturae, vol. 8, no. 2, p. 171, Feb. 2022, doi: 10.3390/horticulturae8020171.
[4] R. K. Joshi, “Bioactive Usual and Unusual Triterpenoids Derived from Natural Sources Used in Traditional Medicine,” Chem Biodivers, vol. 20, no. 2, Feb. 2023, doi: 10.1002/cbdv.202200853.
[5] S. Joshi, K. Bhattarai, A. R. Subedi, J. Bhattarai, S. Amatya, and B. Baral, “Validation of ethnopharmacological findings of Aegle marmelos (L.) Correa through phytochemical screening and bioactivity assay,” Pharmacological Research - Natural Products, vol. 5, p. 100114, Dec. 2024, doi: 10.1016/j.prenap.2024.100114.
[6] R. Yohanes, D. Harneti, U. Supratman, S. Fajriah, and T. Rudiana, “Phytochemistry and Biological Activities of Murraya Species,” Molecules, vol. 28, no. 15, p. 5901, Aug. 2023, doi: 10.3390/molecules28155901.
[7] R. Balakrishnan, D. Vijayraja, S.-H. Jo, P. Ganesan, I. Su-Kim, and D.-K. Choi, “Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds,” Antioxidants, vol. 9, no. 2, p. 101, Jan. 2020, doi: 10.3390/antiox9020101.
[8] N. T. Son, “Notes on the genus Paramignya : Phytochemistry and biological activity,” Bulletin of Faculty of Pharmacy, Cairo University, vol. 56, no. 1, pp. 1–10, Jun. 2018, doi: 10.1016/j.bfopcu.2017.12.001.
[9] A. D. Reegan, A. Stalin, M. Rajiv Gandhi, S. S. Irudayaraj, R. Rajagopal, and A. Alfarhan, “Mosquitocidal efficacy of niloticin, isolated from Limonia acidissima L. (Rutaceae) against filarial vector Culex quinquefasciatus Say. (Diptera: Culicidae),” Toxin Rev, vol. 43, no. 2, pp. 201–210, Apr. 2024, doi: 10.1080/15569543.2024.2319213.
[10] J. Favela-Hernández, O. González-Santiago, M. Ramírez-Cabrera, P. Esquivel-Ferriño, and M. Camacho-Corona, “Chemistry and Pharmacology of Citrus sinensis,” Molecules, vol. 21, no. 2, p. 247, Feb. 2016, doi: 10.3390/molecules21020247.
[11] F. Alam, K. Mohammadin, Z. Shafique, S. T. Amjad, and M. H. H. bin Asad, “Citrus flavonoids as potential therapeutic agents: A review,” Phytotherapy Research, vol. 36, no. 4, pp. 1417–1441, Apr. 2022, doi: 10.1002/ptr.7261.
[12] S. Md Othman, M. Hassan, L. Nahar, N. Basar, S. Jamil, and S. Sarker, “Essential Oils from the Malaysian Citrus (Rutaceae) Medicinal Plants,” Medicines, vol. 3, no. 2, p. 13, Jun. 2016, doi: 10.3390/medicines3020013.
[13] U. M. Khan et al., “Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application,” Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 1–17, Oct. 2021, doi: 10.1155/2021/2488804.
[14] M. Navarra, C. Mannucci, M. Delbò, and G. Calapai, “Citrus bergamia essential oil: from basic research to clinical application,” Front Pharmacol, vol. 6, Mar. 2015, doi: 10.3389/fphar.2015.00036.
[15] I. Suntar, H. Khan, S. Patel, R. Celano, and L. Rastrelli, “An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent,” Oxid Med Cell Longev, vol. 2018, no. 1, Jan. 2018, doi: 10.1155/2018/7864269.
[16] C. M. Santos Junior et al., “Coumarins from Rutaceae: Chemical diversity and biological activities,” Fitoterapia, vol. 168, p. 105489, Jul. 2023, doi: 10.1016/j.fitote.2023.105489.
[17] A. Roy et al., “Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications,” Biomed Res Int, vol. 2022, pp. 1–9, Jun. 2022, doi: 10.1155/2022/5445291.
[18] M. Azeem, M. Hanif, K. Mahmood, N. Ameer, F. R. S. Chughtai, and U. Abid, “An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review,” Polymer Bulletin, vol. 80, no. 1, pp. 241–262, Jan. 2023, doi: 10.1007/s00289-022-04091-8.
[19] F. Aghababaei and M. Hadidi, “Recent Advances in Potential Health Benefits of Quercetin,” Pharmaceuticals, vol. 16, no. 7, p. 1020, Jul. 2023, doi: 10.3390/ph16071020.
[20] T. S. Leyane, S. W. Jere, and N. N. Houreld, “Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation,” Int J Mol Sci, vol. 23, no. 13, p. 7273, Jun. 2022, doi: 10.3390/ijms23137273.
[21] Deepika and P. K. Maurya, “Health Benefits of Quercetin in Age-Related Diseases,” Molecules, vol. 27, no. 8, p. 2498, Apr. 2022, doi: 10.3390/molecules27082498.
[22] G.-J. Shi et al., “In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature,” Biomedicine & Pharmacotherapy, vol. 109, pp. 1085–1099, Jan. 2019, doi: 10.1016/j.biopha.2018.10.130.
[23] L. N. Silva, K. R. Zimmer, A. J. Macedo, and D. S. Trentin, “Plant Natural Products Targeting Bacterial Virulence Factors,” Chem Rev, vol. 116, no. 16, pp. 9162–9236, Aug. 2016, doi: 10.1021/acs.chemrev.6b00184.
[24] C. K. Pathirana, T. Madhujith, and J. Eeswara, “Bael (Aegle marmelos L. Corrêa), a Medicinal Tree with Immense Economic Potentials,” Advances in Agriculture, vol. 2020, pp. 1–13, Dec. 2020, doi: 10.1155/2020/8814018.
[25] S. Monika, M. Thirumal, and P. Kumar, “Phytochemical and Biological Review of Aegle Marmelos Linn,” Future Sci OA, vol. 9, no. 3, Mar. 2023, doi: 10.2144/fsoa-2022-0068.
[26] N. Sharma et al., “Aegle marmelos (L.) Correa: An Underutilized Fruit with High Nutraceutical Values: A Review,” Int J Mol Sci, vol. 23, no. 18, p. 10889, Sep. 2022, doi: 10.3390/ijms231810889.
[27] S. Sonter, S. Mishra, M. K. Dwivedi, and P. K. Singh, “Chemical profiling, in vitro antioxidant, membrane stabilizing and antimicrobial properties of wild growing Murraya paniculata from Amarkantak (M.P.),” Sci Rep, vol. 11, no. 1, p. 9691, May 2021, doi: 10.1038/s41598-021-87404-7.
[28] D. Joshi and K. J. Gohil, “A Brief Review on Murraya paniculata (Orange Jasmine): pharmacognosy, phytochemistry and ethanomedicinal uses,” J Pharmacopuncture, vol. 26, no. 1, pp. 10–17, Mar. 2023, doi: 10.3831/KPI.2023.26.1.10.
[29] S. Singh, A. Ahuja, Y. Murti, and A. Khaliq, “Phyto‐Pharmacological Review on Murraya koenigii (L.) Spreng: As an Indigenous Plant of India with High Medicinal Potential,” Chem Biodivers, vol. 20, no. 7, Jul. 2023, doi: 10.1002/cbdv.202300483.
[30] S. K. Samanta et al., “Phytochemical portfolio and anticancer activity of Murraya koenigii and its primary active component, mahanine,” Pharmacol Res, vol. 129, pp. 227–236, Mar. 2018, doi: 10.1016/j.phrs.2017.11.024.
[31] “Identification of Bioactive Compounds and Antibacterial Activity of Limeberry (Triphasia trifolia) Fruit Ethanol Extract against Staphylococcus aureus,” Tropical Journal of Natural Product Research, vol. 8, no. 1, Feb. 2024, doi: 10.26538/tjnpr/v8i1.16.
[32] V. Rastija, K. Vrandečić, J. Ćosić, G. Kanižai Šarić, I. Majić, and M. Karnaš, “Prospects of Computer-Aided Molecular Design of Coumarins as Ecotoxicologically Safe Plant Protection Agents,” Applied Sciences, vol. 13, no. 11, p. 6535, May 2023, doi: 10.3390/app13116535.
[33] Md. R. Islam et al., “Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint,” Molecules, vol. 27, no. 7, p. 2165, Mar. 2022, doi: 10.3390/molecules27072165.
[34] S. Khatun and S. Sen, “A Comprehensive Review on Ethnomedicinal Aspects, Phytochemical and Pharmacological Properties of Limonia acidissima Linn.,” Pharmacognosy Res, vol. 16, no. 4, pp. 688–697, Nov. 2024, doi: 10.5530/pres.16.4.80.
[35] K. V. Syamasundar, B. Sravan Kumar, S. Srikanth, K. V. N. S. Srinivas, and R. R. Rao, “Limonia acidissima, a rich source of β-pinene, from the Western Ghats of India,” Chem Nat Compd, vol. 46, no. 3, pp. 486–488, Jul. 2010, doi: 10.1007/s10600-010-9654-x.
[36] S. J. Stohs, M. Shara, and S. D. Ray, “p ‐Synephrine, ephedrine, p ‐octopamine and m ‐synephrine: Comparative mechanistic, physiological and pharmacological properties,” Phytotherapy Research, vol. 34, no. 8, pp. 1838–1846, Aug. 2020, doi: 10.1002/ptr.6649.
[37] M. Russo, F. Rigano, A. Arigò, P. Dugo, and L. Mondello, “Coumarins, Psoralens and Polymethoxyflavones in Cold-pressed Citrus Essential Oils: a Review,” Journal of Essential Oil Research, vol. 33, no. 3, pp. 221–239, May 2021, doi: 10.1080/10412905.2020.1857855.
[38] S. W. Haokip et al., “Unraveling physicochemical profiles and bioactivities of citrus peel essential oils: a comprehensive review,” European Food Research and Technology, vol. 249, no. 11, pp. 2821–2834, Nov. 2023, doi: 10.1007/s00217-023-04330-w.
[39] B. Singh, J. P. Singh, A. Kaur, and N. Singh, “Phenolic composition, antioxidant potential and health benefits of citrus peel,” Food Research International, vol. 132, p. 109114, Jun. 2020, doi: 10.1016/j.foodres.2020.109114.
[40] A. Seidavi, H. Zaker-Esteghamati, and A. Z. M. Salem, “A review on practical applications of Citrus sinensis by-products and waste in poultry feeding,” Agroforestry Systems, vol. 94, no. 4, pp. 1581–1589, Aug. 2020, doi: 10.1007/s10457-018-0319-2.
[41] S. Raghavan and J. Gurunathan, “Citrus species – a golden treasure box of metabolites that is beneficial against disorders,” J Herb Med, vol. 28, p. 100438, Aug. 2021, doi: 10.1016/j.hermed.2021.100438.
[42] R. J. Cannon et al., “Identification, Synthesis, and Characterization of Novel Sulfur-Containing Volatile Compounds from the In-Depth Analysis of Lisbon Lemon Peels ( Citrus limon L. Burm. f. cv. Lisbon),” J Agric Food Chem, vol. 63, no. 7, pp. 1915–1931, Feb. 2015, doi: 10.1021/jf505177r.
[43] S. Zahr, R. Zahr, R. El Hajj, and M. Khalil, “Phytochemistry and biological activities of Citrus sinensis and Citrus limon: an update,” J Herb Med, vol. 41, p. 100737, Sep. 2023, doi: 10.1016/j.hermed.2023.100737.
[44] M. Zhang, C. Duan, Y. Zang, Z. Huang, and G. Liu, “The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China,” Food Chem, vol. 129, no. 4, pp. 1530–1536, Dec. 2011, doi: 10.1016/j.foodchem.2011.05.136.
[45] S. J. Stohs, M. Shara, and S. D. Ray, “p ‐Synephrine, ephedrine, p ‐octopamine and m ‐synephrine: Comparative mechanistic, physiological and pharmacological properties,” Phytotherapy Research, vol. 34, no. 8, pp. 1838–1846, Aug. 2020, doi: 10.1002/ptr.6649.
[46] S. Fiorito, F. Epifano, F. Preziuso, V. A. Taddeo, and S. Genovese, “Biomolecular Targets of Oxyprenylated Phenylpropanoids and Polyketides,” 2019, pp. 143–205. doi: 10.1007/978-3-030-01099-7_2.
[47] C. Li et al., “Variation in Compositions and Biological Activities of Essential Oils from Four Citrus Species: Citrus limon , Citrus sinensis , Citrus paradisi , and Citrus reticulata,” Chem Biodivers, vol. 19, no. 4, Apr. 2022, doi: 10.1002/cbdv.202100910.
[48] N. N. Indriyani, J. Al Anshori, N. Permadi, S. Nurjanah, and E. Julaeha, “Bioactive Components and Their Activities from Different Parts of Citrus aurantifolia (Christm.) Swingle for Food Development,” Foods, vol. 12, no. 10, p. 2036, May 2023, doi: 10.3390/foods12102036.
[49] S. Maksoud et al., “Citrus aurantium L. Active Constituents, Biological Effects and Extraction Methods. An Updated Review,” Molecules, vol. 26, no. 19, p. 5832, Sep. 2021, doi: 10.3390/molecules26195832.
[50] R. Bhowal, S. Kumari, C. Sarma, P. Suprasanna, and P. Roy, “Phytochemical Constituents and Bioactivity Profiles of Citrus Genus from India,” Analytical Chemistry Letters, vol. 12, no. 6, pp. 770–787, Nov. 2022, doi: 10.1080/22297928.2022.2157223.
[51] A. Patra, S. Abdullah, and R. C. Pradhan, “Review on the extraction of bioactive compounds and characterization of fruit industry by-products,” Bioresour Bioprocess, vol. 9, no. 1, p. 14, Dec. 2022, doi: 10.1186/s40643-022-00498-3.
[52] E. Janda et al., “Molecular mechanisms of lipid- and glucose-lowering activities of bergamot flavonoids,” PharmaNutrition, vol. 4, pp. S8–S18, Oct. 2016, doi: 10.1016/j.phanu.2016.05.001.
[53] V. M. Costa et al., “Natural Sympathomimetic Drugs: From Pharmacology to Toxicology,” Biomolecules, vol. 12, no. 12, p. 1793, Nov. 2022, doi: 10.3390/biom12121793.
[54] V. Sicari, M. R. Loizzo, V. Branca, and T. M. Pellicanò, “Bioactive and Antioxidant Activity from Citrus bergamia Risso (Bergamot) Juice Collected in Different Areas of Reggio Calabria Province, Italy,” Int J Food Prop, vol. 19, no. 9, pp. 1962–1971, Sep. 2016, doi: 10.1080/10942912.2015.1089893.
[55] R. Bruni et al., “Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest,” Molecules, vol. 24, no. 11, p. 2163, Jun. 2019, doi: 10.3390/molecules24112163.
[56] I. Suntar, H. Khan, S. Patel, R. Celano, and L. Rastrelli, “An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent,” Oxid Med Cell Longev, vol. 2018, no. 1, Jan. 2018, doi: 10.1155/2018/7864269.
[57] I. Jabri karoui and B. Marzouk, “Characterization of Bioactive Compounds in Tunisian Bitter Orange ( Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities,” Biomed Res Int, vol. 2013, pp. 1–12, 2013, doi: 10.1155/2013/345415.
[58] I. Shabir et al., “Promising bioactive properties of quercetin for potential food applications and health benefits: A review,” Front Nutr, vol. 9, Nov. 2022, doi: 10.3389/fnut.2022.999752.
[59] M. G. L. Hertog, P. C. H. Hollman, and M. B. Katan, “Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands,” J Agric Food Chem, vol. 40, no. 12, pp. 2379–2383, Dec. 1992, doi: 10.1021/jf00024a011.
[60] S. A. Aherne and N. M. O’Brien, “Dietary flavonols: chemistry, food content, and metabolism,” Nutrition, vol. 18, no. 1, pp. 75–81, Jan. 2002, doi: 10.1016/S0899-9007(01)00695-5.
[61] P. Knekt et al., “Flavonoid intake and risk of chronic diseases,” Am J Clin Nutr, vol. 76, no. 3, pp. 560–568, Sep. 2002, doi: 10.1093/ajcn/76.3.560.
[62] S. F. Price, P. J. Breen, M. Valladao, and B. T. Watson, “Cluster Sun Exposure and Quercetin in Pinot noir Grapes and Wine,” Am J Enol Vitic, vol. 46, no. 2, pp. 187–194, 1995, doi: 10.5344/ajev.1995.46.2.187.
[63] M. Eftekhari, M. Alizadeh, and P. Ebrahimi, “Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield,” Ind Crops Prod, vol. 38, pp. 160–165, Jul. 2012, doi: 10.1016/j.indcrop.2012.01.022.
[64] P. C. Hollman and I. C. Arts, “Flavonols, flavones and flavanols - nature, occurrence and dietary burden,” J Sci Food Agric, vol. 80, no. 7, pp. 1081–1093, May 2000, doi: 10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G.
[65] C. Kaur and H. C. Kapoor, “Antioxidants in fruits and vegetables – the millennium’s health,” Int J Food Sci Technol, vol. 36, no. 7, pp. 703–725, Oct. 2001, doi: 10.1111/j.1365-2621.2001.00513.x.
[66] C. Kaur and H. C. Kapoor, “Anti-oxidant activity and total phenolic content of some Asian vegetables,” Int J Food Sci Technol, vol. 37, no. 2, pp. 153–161, Mar. 2002, doi: 10.1046/j.1365-2621.2002.00552.x.
[67] E. Tripoli, M. La Guardia, S. Giammanco, D. Di Majo, and M. Giammanco, “Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review,” Food Chem, vol. 104, no. 2, pp. 466–479, Jan. 2007, doi: 10.1016/j.foodchem.2006.11.054.
[68] M. Roy et al., “Assessment of antioxidant and antibacterial efficacy of some indigenous vegetables consumed by the Manipuri community in Sylhet, Bangladesh,” Heliyon, vol. 10, no. 18, p. e37750, Sep. 2024, doi: 10.1016/j.heliyon.2024.e37750.
[69] X. Song, Y. Wang, and L. Gao, “Mechanism of antioxidant properties of quercetin and quercetin-DNA complex,” J Mol Model, vol. 26, no. 6, p. 133, Jun. 2020, doi: 10.1007/s00894-020-04356-x.
[70] V. Unsal, T. Dalkiran, M. Çiçek, and E. Kölükçü, “The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review,” Adv Pharm Bull, vol. 10, no. 2, pp. 184–202, Feb. 2020, doi: 10.34172/apb.2020.023.
[71] S. Heydarzadeh, S. K. Kia, M. Zarkesh, S. Pakizehkar, S. Hosseinzadeh, and M. Hedayati, “The Cross-Talk between Polyphenols and the Target Enzymes Related to Oxidative Stress-Induced Thyroid Cancer,” Oxid Med Cell Longev, vol. 2022, pp. 1–20, May 2022, doi: 10.1155/2022/2724324.
[72] S. Fakhri et al., “Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases,” Crit Rev Food Sci Nutr, pp. 1–25, Sep. 2022, doi: 10.1080/10408398.2022.2118226.
[73] S. Ashari et al., “Quercetin ameliorates Di (2-ethylhexyl) phthalate-induced nephrotoxicity by inhibiting NF-κB signaling pathway,” Toxicol Res (Camb), vol. 11, no. 2, pp. 272–285, Apr. 2022, doi: 10.1093/toxres/tfac006.
[74] P. Shen et al., “Potential Implications of Quercetin in Autoimmune Diseases,” Front Immunol, vol. 12, Jun. 2021, doi: 10.3389/fimmu.2021.689044.
[75] Y. Yang et al., “Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses,” Mediators Inflamm, vol. 2014, pp. 1–13, 2014, doi: 10.1155/2014/352371.
[76] J. Mlcek, T. Jurikova, S. Skrovankova, and J. Sochor, “Quercetin and Its Anti-Allergic Immune Response,” Molecules, vol. 21, no. 5, p. 623, May 2016, doi: 10.3390/molecules21050623.
[77] M. Jafarinia et al., “Quercetin with the potential effect on allergic diseases,” Allergy, Asthma & Clinical Immunology, vol. 16, no. 1, p. 36, Dec. 2020, doi: 10.1186/s13223-020-00434-0.
[78] O. G. Famutimi, V. G. Adebiyi, B. G. Akinmolu, O. V. Dada, and I. O. Adewale, “Trypsin, chymotrypsin and elastase in health and disease,” Futur J Pharm Sci, vol. 10, no. 1, p. 126, Sep. 2024, doi: 10.1186/s43094-024-00709-y.
[79] X. Jian, C. Shi, W. Luo, L. Zhou, L. Jiang, and K. Liu, “Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders,” Biomedicine & Pharmacotherapy, vol. 173, p. 116418, Apr. 2024, doi: 10.1016/j.biopha.2024.116418.
[80] P. Ansari et al., “Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus,” Life, vol. 12, no. 8, p. 1146, Jul. 2022, doi: 10.3390/life12081146.
[81] D. Günal‐Köroğlu et al., “Quercetin: Potential antidiabetic effects through enzyme inhibition and starch digestibility,” Food Safety and Health, Oct. 2024, doi: 10.1002/fsh3.12066.
[82] M. Zhou, W. H. Konigsberg, C. Hao, Y. Pan, J. Sun, and X. Wang, “Bioactivity and mechanisms of flavonoids in decreasing insulin resistance,” J Enzyme Inhib Med Chem, vol. 38, no. 1, Dec. 2023, doi: 10.1080/14756366.2023.2199168.
[83] C. Proença et al., “α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study,” J Enzyme Inhib Med Chem, vol. 32, no. 1, pp. 1216–1228, Jan. 2017, doi: 10.1080/14756366.2017.1368503.
[84] O. Kwon et al., “Inhibition of the intestinal glucose transporter GLUT2 by flavonoids,” The FASEB Journal, vol. 21, no. 2, pp. 366–377, Feb. 2007, doi: 10.1096/fj.06-6620com.
[85] N. Nooron, A. Athipornchai, A. Suksamrarn, and A. Chiabchalard, “Mahanine enhances the glucose-lowering mechanisms in skeletal muscle and adipocyte cells,” Biochem Biophys Res Commun, vol. 494, no. 1–2, pp. 101–106, Dec. 2017, doi: 10.1016/j.bbrc.2017.10.075.
[86] R. Dhanya, “Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy,” Biomedicine & Pharmacotherapy, vol. 146, p. 112560, Feb. 2022, doi: 10.1016/j.biopha.2021.112560.
[87] G. Sethi et al., “Apoptotic Mechanisms of Quercetin in Liver Cancer: Recent Trends and Advancements,” Pharmaceutics, vol. 15, no. 2, p. 712, Feb. 2023, doi: 10.3390/pharmaceutics15020712.
[88] P. Asgharian et al., “Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets,” Cancer Cell Int, vol. 22, no. 1, p. 257, Aug. 2022, doi: 10.1186/s12935-022-02677-w.
[89] F. Khan et al., “Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update,” Nutrients, vol. 8, no. 9, p. 529, Aug. 2016, doi: 10.3390/nu8090529.
[90] S.-M. Tang, X.-T. Deng, J. Zhou, Q.-P. Li, X.-X. Ge, and L. Miao, “Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects,” Biomedicine & Pharmacotherapy, vol. 121, p. 109604, Jan. 2020, doi: 10.1016/j.biopha.2019.109604.
[91] A. B. Granado-Serrano, M. A. Martín, L. Bravo, L. Goya, and S. Ramos, “Quercetin Modulates NF-κ B and AP-1/JNK Pathways to Induce Cell Death in Human Hepatoma Cells,” Nutr Cancer, vol. 62, no. 3, pp. 390–401, Apr. 2010, doi: 10.1080/01635580903441196.
[92] D. Kumar and P. K. Sharma, “Quercetin: A Comprehensive Review,” Curr Nutr Food Sci, vol. 20, no. 2, pp. 143–166, Feb. 2024, doi: 10.2174/1573401319666230428152045.
[93] S. Srivastava et al., “Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis,” Sci Rep, vol. 6, no. 1, p. 24049, Apr. 2016, doi: 10.1038/srep24049.
[94] S. A. Almatroodi et al., “Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways,” Molecules, vol. 26, no. 5, p. 1315, Mar. 2021, doi: 10.3390/molecules26051315.
[95] P. Pratheeshkumar et al., “Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways,” PLoS One, vol. 7, no. 10, p. e47516, Oct. 2012, doi: 10.1371/journal.pone.0047516.
[96] L. Mirossay, L. Varinská, and J. Mojžiš, “Antiangiogenic Effect of Flavonoids and Chalcones: An Update,” Int J Mol Sci, vol. 19, no. 1, p. 27, Dec. 2017, doi: 10.3390/ijms19010027.
[97] N. Lotfi et al., “The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update,” Front Immunol, vol. 14, Feb. 2023, doi: 10.3389/fimmu.2023.1077531.
[98] D. Yang, T. Wang, M. Long, and P. Li, “Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine,” Oxid Med Cell Longev, vol. 2020, pp. 1–13, Dec. 2020, doi: 10.1155/2020/8825387.
[99] L. Zhang et al., “Three flavonoids targeting the β‐hydroxyacyl‐acyl carrier protein dehydratase from Helicobacter pylori : Crystal structure characterization with enzymatic inhibition assay,” Protein Science, vol. 17, no. 11, pp. 1971–1978, Nov. 2008, doi: 10.1110/ps.036186.108.
[100] Y. Mu, H. Zeng, and W. Chen, “Quercetin Inhibits Biofilm Formation by Decreasing the Production of EPS and Altering the Composition of EPS in Staphylococcus epidermidis,” Front Microbiol, vol. 12, Mar. 2021, doi: 10.3389/fmicb.2021.631058.
[101] A. V. Roy et al., “Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells co-expressing the viral spike protein and human ACE2,” Virol J, vol. 21, no. 1, p. 29, Jan. 2024, doi: 10.1186/s12985-024-02299-w.
[102] D. Xu, M.-J. Hu, Y.-Q. Wang, and Y.-L. Cui, “Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application,” Molecules, vol. 24, no. 6, p. 1123, Mar. 2019, doi: 10.3390/molecules24061123.
[103] J. Odenthal et al., “The Influence of Curcumin, Quercetin, and Eicosapentaenoic Acid on the Expression of Phase II Detoxification Enzymes in the Intestinal Cell Lines HT-29, Caco-2, HuTu 80, and LT97,” Nutr Cancer, vol. 64, no. 6, pp. 856–863, Aug. 2012, doi: 10.1080/01635581.2012.700994.
[104] L. Chen et al., “Quercetin and non-alcoholic fatty liver disease: A review based on experimental data and bioinformatic analysis,” Food and Chemical Toxicology, vol. 154, p. 112314, Aug. 2021, doi: 10.1016/j.fct.2021.112314.
[105] J. Zhang et al., “Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism,” J Zhejiang Univ Sci B, vol. 15, no. 12, pp. 1039–1047, Dec. 2014, doi: 10.1631/jzus.B1400104.
[106] O. Dagher, P. Mury, N. Thorin-Trescases, P. E. Noly, E. Thorin, and M. Carrier, “Therapeutic Potential of Quercetin to Alleviate Endothelial Dysfunction in Age-Related Cardiovascular Diseases,” Front Cardiovasc Med, vol. 8, Mar. 2021, doi: 10.3389/fcvm.2021.658400.
[107] Y.-F. Chen et al., “Coenzyme Q10 Alleviates Chronic Nucleoside Reverse Transcriptase Inhibitor-Induced Premature Endothelial Senescence,” Cardiovasc Toxicol, vol. 19, no. 6, pp. 500–509, Dec. 2019, doi: 10.1007/s12012-019-09520-1.
[108] C. Sun et al., “The role of Sirtuin 1 and its activators in age-related lung disease,” Biomedicine & Pharmacotherapy, vol. 162, p. 114573, Jun. 2023, doi: 10.1016/j.biopha.2023.114573.
[109] W. Zhang, Y. Zheng, F. Yan, M. Dong, and Y. Ren, “Research progress of quercetin in cardiovascular disease,” Front Cardiovasc Med, vol. 10, Nov. 2023, doi: 10.3389/fcvm.2023.1203713.
[110] S. S. ul Hassan et al., “The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress,” Front Pharmacol, vol. 13, Oct. 2022, doi: 10.3389/fphar.2022.1015835.
[111] H. Khan, H. Ullah, M. Aschner, W. S. Cheang, and E. K. Akkol, “Neuroprotective Effects of Quercetin in Alzheimer’s Disease,” Biomolecules, vol. 10, no. 1, p. 59, Dec. 2019, doi: 10.3390/biom10010059.
[112] M. Naoi, Y. Wu, M. Shamoto-Nagai, and W. Maruyama, “Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure,” Int J Mol Sci, vol. 20, no. 10, p. 2451, May 2019, doi: 10.3390/ijms20102451.
[113] S. K. Biswas, Md. Z. Abedin, B. C. Dey, Md. S. Al Reza, L. Bari, and Md. A. Zubair, “Nutritional Composition and Bioactive Compounds of Bael (<i>Aegle marmelos</i>) and Development of Functional Food Products,” Food Nutr Sci, vol. 14, no. 04, pp. 328–340, 2023, doi: 10.4236/fns.2023.144022.
[114] I. R. A. Menezes et al., “Chemical composition and evaluation of acute toxicological, antimicrobial and modulatory resistance of the extract of Murraya paniculata,” Pharm Biol, vol. 53, no. 2, pp. 185–191, Feb. 2015, doi: 10.3109/13880209.2014.913068.
[115] S. H. Warsito et al., “Analysis of Quercetin Levels in the Ethanol Extract of Curry Leaves (Murraya koenigii L.) as a Potential Animal Feed using High-Performance Liquid Chromatography,” BIO Integration, vol. 5, no. 1, 2024, doi: 10.15212/bioi-2024-0031.
[116] T. K. Lim, “Triphasia trifolia,” in Edible Medicinal And Non-Medicinal Plants, Dordrecht: Springer Netherlands, 2012, pp. 900–903. doi: 10.1007/978-94-007-4053-2_104.
[117] S. Verma, A. Gupta, M. V. Ramana, and A. K. S. Rawat, “High-performance thin-layer chromatographic analysis for the simultaneous quantification of gallic acid, vanillic acid, protocatechuic acid, and quercetin in the methanolic fraction of Limonia acidissima L. fruits,” JPC - Journal of Planar Chromatography - Modern TLC, vol. 29, no. 5, pp. 356–360, Oct. 2016, doi: 10.1556/1006.2016.29.5.5.
[118] KAMRAN GHASEMI, YOSEF GHASEMI, and MOHAMMAD ALI EBRAHIMZADEH, “ANTIOXIDANT ACTIVITY, PHENOL AND FLAVONOID CONTENTS OF 13 CITRUS SPECIES PEELS AND TISSUES ,” Pak J Pharm Sci, vol. 22, no. 3, pp. 277–281, 2009, doi: 10.1556/1006.2016.29.5.5.
[119] M. DELOURDESMATABILBAO, C. ANDRESLACUEVA, O. JAUREGUI, and R. LAMUELARAVENTOS, “Determination of flavonoids in a Citrus fruit extract by LC–DAD and LC–MS,” Food Chem, vol. 101, no. 4, pp. 1742–1747, 2007, doi: 10.1016/j.foodchem.2006.01.032.
[120] J. Akinyelu et al., “Phenolic-rich extract from Citrus sinensis leaves attenuates diabetic cardiomyopathy in male wistar rats by modulating oxidative stress, hyperlipidemia, and pyroptosis-related gene expression,” Food Chemistry Advances, vol. 6, p. 100877, Mar. 2025, doi: 10.1016/j.focha.2024.100877.
[121] J. Wang, Y. Bian, Y. Cheng, R. Sun, and G. Li, “Effect of lemon peel flavonoids on UVB-induced skin damage in mice,” RSC Adv, vol. 10, no. 52, pp. 31470–31478, 2020, doi: 10.1039/D0RA05518B.
[122] P. Mattila, J. Astola, and J. Kumpulainen, “Determination of Flavonoids in Plant Material by HPLC with Diode-Array and Electro-Array Detections,” J Agric Food Chem, vol. 48, no. 12, pp. 5834–5841, Dec. 2000, doi: 10.1021/jf000661f.
[123] W. Inthachat et al., “Optimization of Phytochemical-Rich Citrus maxima Albedo Extract Using Response Surface Methodology,” Molecules, vol. 28, no. 10, p. 4121, May 2023, doi: 10.3390/molecules28104121.
[124] M. Gabriele et al., “Citrus bergamia powder: Antioxidant, antimicrobial and anti-inflammatory properties,” J Funct Foods, vol. 31, pp. 255–265, Apr. 2017, doi: 10.1016/j.jff.2017.02.007.
[125] B. Khettal, N. Kadri, K. Tighilet, A. Adjebli, F. Dahmoune, and F. Maiza-Benabdeslam, “Phenolic compounds from Citrus leaves: antioxidant activity and enzymatic browning inhibition,” J Complement Integr Med, vol. 14, no. 1, May 2017, doi: 10.1515/jcim-2016-0030.
[126] Fatima Zahra Essadik, Sara Haida, Kribii Abderahim, Abdelaziz Ramadane KRIBII, Ounine Khadija, and Amar Habsaoui, “Antioxidant activity of Citrus aurantium L. var. amara Peel from western of Morocco, identification of volatile compounds of its essential oil by GC-MS and a preliminary study of their antibacterial activity,” International Journal of Innovation and Scientific Research, vol. 16, no. 2, pp. 425–432, Jul. 2015.
[127] M. G. L. Hertog, P. C. H. Hollman, and D. P. Venema, “Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits,” J Agric Food Chem, vol. 40, no. 9, pp. 1591–1598, Sep. 1992, doi: 10.1021/jf00021a023.
[128] A. Shakthi Deve, T. Sathish kumar, K. Kumaresan, and V. S. Rapheal, “Extraction process optimization of polyphenols from Indian Citrus sinensis – as novel antiglycative agents in the management of diabetes mellitus,” J Diabetes Metab Disord, vol. 13, no. 1, p. 11, Jan. 2014, doi: 10.1186/2251-6581-13-11.