1. Herdiawan, R. P.; Rezano, A.; Vitriana, .; Ruslina, I.; Pitaloka, P.; Achadiyani. Comparison of Wound Healing of Skin Incision on Albino Rat (Rattus norwegicus) by Treatment of Electrical Stimulations. J. Med. Sci. 2019, 51 (2), 98–105. DOI: 10.19106/JMedSci005102201901.
2. Reinke, J. M.; Sorg, H. Wound Repair and Regeneration. Eur. Surg. Res. 2012, 49 (1), 35–43. https://doi.org/10.1159/000339613.
3. Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. J. Gels 2024, 10 (43), 1-21. https://doi.org/10.3390/gels10010043.
4. Ding, X.; Tang, Q.; Xu, Z.; Xu, Y.; Zhang, H.; Zheng, D.; Wang, S.; Tan, Q.; Maitz, J.; Maitz, P. K.; Yin, S.; Wang, Y.; Chen, J. Challenges and Innovations in Treating Chronic and Acute Wound Infections: From Basic Science to Clinical Practice. Burn. Trauma 2022, 10 (1), 1–16. https://doi.org/10.1093/burnst/tkac014.
5. Salas-Oropeza, J.; Rodriguez-Monroy, M. A.; Jimenez-Estrada, M.; Perez-Torres, A.; Castell-Rodriguez, A. E.; Becerril-Millan, R.; Jarquin-Yanez, K.; Canales-Martinez, M. M. Essential Oil of Bursera morelensis Promotes Cell Migration on Fibroblasts: In Vitro Assays. Molecules 2023, 28 (17), 1–13. https://doi.org/10.3390/molecules28176258.
6. Fadilah, N. I. M.; Phang, S. J.; Kamaruzaman, N.; Salleh, A.; Zawani, M.; Sanyal, A.; Maarof, M.; Fauzi, M. B. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants 2023, 12 (4), 787–822. https://doi.org/10.3390/antiox12040787.
7. Leporini, M.; Tundis, R.; Sicari, V.; Loizzo, M. R. Citrus Species: Modern Functional Food and Nutraceutical-Based Product Ingredient. Ital. J. Food Sci. 2021, 33 (2), 63–107. https://doi.org/10.15586/ijfs.v33i2.2009
8. Groppo, M.; Afonso, L. F.; Pirani, J. R. A Review of Systematics Studies in the Citrus Family (Rutaceae, Sapindales), with Emphasis on American Groups. Rev. Bras. Bot. 2022, 45 (1), 181–200. https://doi.org/10.1007/s40415-021-00784-y
9. Maree, J.; Kamatou, G.; Gibbons, S.; Viljoen, A.; Van Vuuren, S. The Application of GC-MS Combined with Chemometrics for the Identification of Antimicrobial Compounds from Selected Commercial Essential Oils. Chemom. Intell. Lab. Syst. 2014, 130 (1), 172–181. https://doi.org/10.1016/j.chemolab.2013.11.004
10. Syafri, S.; Husni, E.; Wafiqah, N.; Ramadhan, F.; Ramadani, S.; Hamidi, D. Evaluation of Antimicrobial and Proliferation of Fibroblast Cells Activities of Citrus Essential Oils. J. Med. Sci. 2022, 10 (A), 1051-1057. https://doi.org/10.3889/oamjms.2022.8596
11. Ishfaq, M.; Akhtar, B.; Muhammad, F.; Sharif, A.; Akhtar, M.; Hamid, I.; Sohail, K.; Muhammad, H. Antioxidant and Wound Healing Potential of Essential Oil from Citrus reticulata Peel and Its Chemical Characterization. Curr. Pharm. Biotechnol 2021, 22 (8),1114-1121. https://doi.org/10.2174/138920102199920091810212
12. Lemes, R. S.; Alves, C. C. F.; Estevam, E. B. B.; Santiago, M. B.; Martins, C. H. G.; Dos Santos, T. C. L.; Crotti, A. E. M.; Miranda, M. L. D. Chemical Composition and Antibacterial Activity of Essential Oils from Citrus aurantifolia Leaves and Fruit Peel Against Oral Pathogenic Bacteria. An. Acad. Bras. Cienc. 2018, 90 (2), 1285–1292. https://doi.org/10.1590/0001-3765201820170847
13. Sharopov, F. S.; Wink, M.; Setzer, W. N. Radical Scavenging and Antioxidant Activities of Essential Oil Components-An Experimental and Computational Investigation. Nat. Prod. Commun. 2015, 10 (1), 153–156. https://doi.org/10.1177/1934578x1501000135
14. Raharjo, D.; Haryoto. Antioxidant Activity of Mangrove Sonneratia caseolaris L Using the FRAP Method. Int. Summit Sci. Technol. Humanit. 2019, 623–629.
15. Syafri, S.; Jaswir, I.; Yusof, F.; Rohman, A.; Hamidi, D. The Use of GC-MS and FTIR Spectroscopy Couple with Multivariate Analysis for The Detection of Red Ginger Oil Adulteration. Rasayan J. Chem. 2022, 15 (4), 2231–2236. https://doi.org/10.31788/RJC.2022.1547039
16. Suparman; Rahayu, W. S.; Sundhani, E.; Saputri, S. D. The Use of Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography Mass Spectroscopy (GCMS) for Halal Authentication in Imported Chocolate with Various Variants. J. Food Pharm. Sci. 2015, 2 (1), 6–11.
17. Kar, A. Pharmacognosy & Pharmacobiotechnology; New Age International Publisher: New Delhi, 2007.
18. Bhuiyan, M. N. I.; Begum, J.; Sardar, P. K.; Rahman, M. S. Constituents of Peel and Leaf Essential Oils of Citrus medica L. J. Sci. Res. 2009, 1 (2), 387–392. https://doi.org/10.3329/jsr.v1i2.1760
19. Elidahanum, H.; Fitri, Y.; Dachriyanus. Chemical Contents Profile of Essential Oil from Calamansi (Citrus microcarpa Bunge) Peels and Leaves and Its Antibacterial Activities. ICCSCP 2021 2021, 1 (40), 14–22. https://doi.org/10.2991/ahsr.k.211105.046
20. Meloni, D. A.; Lescano, J. A.; Arraiza, M. P.; Beltrán, R. E. Yield, Chemical Composition and Functional Properties of Essential Oils from Mentha spicata (Lamiaceae) in Santiago Del Estero, Argentina. UNED Res. J. 2019, 11 (3), 327–333. https://doi.org/10.22458/urj.v11i3.2624
21. Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64 (5), 997–1027. https://doi.org/10.1021/acs.jafc.5b04739
22. Benedetto, N.; Carlucci, V.; Faraone, I.; Lela, L.; Ponticelli, M.; Russo, D.; Mangieri, C.; Tzvetkov, N. T.; Milella, L. An Insight into Citrus Medica Linn.: A Systematic Review on Phytochemical Profile and Biological Activities. Plants 2023, 12 (12), 2267–2349. https://doi.org/10.3390/plants12122267.
23. Malhotra, S. Chemical Composition and Antioxidant Activity of Citrus medica Var Acidica Essential Oil. J. Chem. Biol. Phys. Sci. 2016, 6 (2), 574–580.
24. Nguyen, T. N.; Huynh, T. N.; Tran, V.; Dang, C.; Hoang, T. K.; Nguyen, T. Physicochemical Characterization and Bioactivity Evaluation of Essential Oils from Citrus microcarpa Bunge Leaf and Flower. J. Essent. Oil Res. 2018, 30 (4), 285–292. https://doi.org/10.1080/10412905.2018.1435428
25. Tuan, L. H. A.; Tam, V. D. Le. Antioxidant and Antimicrobial Activities of Essential Oil Extracted from Citrus microcarpa Peel Using Microwave-Assisted Extraction Method. 2nd Int. Conf. Chem. Eng. Food Biotechnol. 2015, 79–83.
26. Rohaeti, E.; Karunina, F.; Rafi, M. FTIR-Based Fingerprinting and Chemometrics for Rapid Investigation of Antioxidant Activity from Syzygium polyanthum Extracts. Indones. J. Chem. 2020, 21 (1), 128–136. https://doi.org/10.22146/ijc.54577
27. Sami, R. A.; Khojah, E. Y.; Elgarni, E. A.; Benajiba, N. Evaluation of Nutritional Status for Some Sensitive Sets and Its Relationship to Natural Antioxidants. J. King Abdulaziz Univ. - Med. Sci. 2017, 24 (1), 1–9. https://doi.org/10.4197/Med.24-1.1
28. Soural, I.; Švestková, P.; Híc, P.; Balík, J. Different Values Obtained by the FRAP Method for the Determination of Slowly and Rapidly Reacting Phenols. Acta Aliment. 2022, 51 (1), 84–92. https://doi.org/10.1556/066.2021.00168
29. Wu, Z.; Li, H.; Yang, Y.; Zhan, Y.; Tu, D. Variation in the Components and Antioxidant Activity of Citrus medica L. Var. Sarcodactylis Essential Oils at Different Stages of Maturity. Ind. Crops Prod. 2013, 46 (13), 311–316. https://doi.org/10.1016/j.indcrop.2013.02.015
30. Roberto, D.; Micucci, P.; Sebastian, T.; Graciela, F.; Anesini, C. Antioxidant Activity of Limonene on Normal Murine Lymphocytes: Relation to H2O2 Modulation and Cell Proliferation. Basic Clin. Pharmacol. Toxicol. 2010, 106 (1), 38–44. https://doi.org/10.1111/j.1742-7843.2009.00467.x