1. Hauss, D.J. Oral lipid-based formulations. Adv. Drug. Deliv. Rev. 2007, 59(7), 667-676. DOI: 10.1016/j.addr.2007.05.006.
DOI: https://doi.org/10.1016/j.addr.2007.05.006
2. Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front Pharmacol. 2021, 12, 618411. DOI: 10.3389/fphar.2021.618411.
DOI: https://doi.org/10.3389/fphar.2021.618411
3. Zhang, J.; Guo, M.; Luo, M.; Cai, T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci. 2023, 18(4), 100834. DOI: 10.1016/j.ajps.2023.100834.
DOI: https://doi.org/10.1016/j.ajps.2023.100834
4. Forster, A.; Hempenstall, J.; rades, T. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J Pharm Pharmacol. 2001, 53(3), 303-15. DOI: 10.1211/0022357011775532.
DOI: https://doi.org/10.1211/0022357011775532
5. Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007, 12(23-24), 1068-75. DOI: 10.1016/j.drudis.2007.09.005.
DOI: https://doi.org/10.1016/j.drudis.2007.09.005
6. Liu, J.; Grohganz, H.; Lobmann, K.; Rades, T.; Hempel N.J. Co-amorphous drug formulations in numbers: Recent advances in co-amorphous druf formulations with focus on co-formability, molar ratio, preparation methods, physical stability, in vitro and in vivo performance, and new formulation strategies. Pharmaceutics. 2021, 13(3), 389. DOI: 10.3390/pharmaceutics13030389.
DOI: https://doi.org/10.3390/pharmaceutics13030389
7. Yamamura, S.; Gotoh, H.; Sakamoto, Y.; Momose, Y. Physicochemical properties of amorphous precipitates of cimetidine-indomethacin binary system. Eur J Pharm Biopharm. 2000, 49(3), 259-65. DOI: 10.1016/s0939-6411(00)00060-6.
DOI: https://doi.org/10.1016/S0939-6411(00)00060-6
8. Turek, M.; Rozycka-Sokolowska, E.; Koprowski, M.; Marciniak, B.; Balczewski, P. Role of hydrogen bond in formation of co-amorphous valsartan/nicotinamide composition of high solubility and durability with anti-hypertension and anti-COVID-19 potential. Mol Pharmaceut. 2021, 18(5), 1970-84. DOI: 10.1021/acs.molpharmaceut.0c01096.
DOI: https://doi.org/10.1021/acs.molpharmaceut.0c01096
9. Alleso, M.; Chieng, N.; Rehder, S.; Rantanen, J.; Rades, T.; Aaltonen, J. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: Amorphous naproxen-cimetidine mixtures prepared by mechanical activation. J Control Release. 2009, 136(1), 45-53. DOI: 10.1016/j.jconrel.2009.01.027.
DOI: https://doi.org/10.1016/j.jconrel.2009.01.027
10. Shayanfar, A.; Ghavimi, H.; Hamishekar, H.; Jouyban, A. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. J Pharm Sci. 2013, 16(4), 577-57. DOI: 10.18433/j3xs4s.
DOI: https://doi.org/10.18433/J3XS4S
11. Yarlagadda, D.L.; Anand, V.K.; Nair, A.R.; Sree, K.N.; Dengale, S.J.; Bhat, K. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int J Pharm. 2021, 602, 120649. DOI: 10.1016/j.ijpharm.2021.120649.
DOI: https://doi.org/10.1016/j.ijpharm.2021.120649
12. Karagianni, A.; Kachrimanis, K.; Nikolakakis, J. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018, 10(3), 98. DOI: 10.3390/pharmaceutics 10030098.
13. Hancock, B.C.; Zografi, G.; Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997, 86(1), 1-12. DOI: 10.1021/js9601896.
DOI: https://doi.org/10.1021/js9601896
14. Kaushal, A.M.; Gupta, P.; Bansal, A.K. Amorphous drug delivery systems: molecular aspects, design, and performance. Crit Rev Ther Drug Carrier Syst. 2004, 21(3), 133-93. DOI: 10.1615/critrevtherdrugcarriersyst. v21.i3.10.
DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i3.10
15. Dierynck, I.; De Wit, M.; Gustin, E.; Keuleers, I.; Vandersmissen, J.; Hallenberger, S.; Hertogs, K. Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J Virol. 2007, 81(24), 13845-51. DOI: 10.1128/JVI.01184-07. Epub 2007 Oct 10.
DOI: https://doi.org/10.1128/JVI.01184-07
16. Fujimoto, H.; Higuchi, M.; Watanabe, H.; Koh, Y.; Ghosh, A.K.; Mitsuya, H.; Tanoue, N.; Hamada, A.; Saito, H. P-glycoprotein mediates efflux transport of darunavir in human intestinal Caco-2 and ABCB1 gene-transfected renal LLC-PK1 cell lines. Biological and Pharmaceutical Bulletin. 2009, 32(9), 1588-93. DOI: 10.1248/bpb.32.1588.
DOI: https://doi.org/10.1248/bpb.32.1588
17. Back, D.; Sekar, V.; Hoetelmans, R. M. Darunavir: pharmacokinetics and drug interactions, Antivir Ther. 2008, 13(1), 1-13. DOI: 10.1177/135965350801300101.
DOI: https://doi.org/10.1177/135965350801300101
18. Darwish, I.A.; Al-Majed, A.A.; Alsaif, N.A.; Bakheit, A.H.; Herqash, R.N.; Alzaid, A. Darunavir: A comprehensive profile. Profiles Drug Subst Excip Relat Methodol. 2021, 46, 1-50. DOI: 10.1016/bs.podrm.2020.07.001.
DOI: https://doi.org/10.1016/bs.podrm.2020.07.001
19. Deng, Y.; Liu, S.; Jiang, Y.; Martins, I.C.; Rades, T. recent advances in co-former screening and formation prediction of multicomponent solid forms of low molecular weight drugs. Pharmaceutics. 2023, 15(9), 2174. DOI: 10.3390/pharmaceutics15092174.
DOI: https://doi.org/10.3390/pharmaceutics15092174
20. Deng, Y.; Luo, W.; Zheng, Z.; Wei, G.; Liu, S.; Jiang, Y.; Yang, H. Predication of co-amorphous formation using non-bonded interaction energy: Molecular dynamic simulation and experimental validation. Chemical Engineering Science. 2023, 272, 118618. DOI: 10.1016/j.ces.2023.118618.
DOI: https://doi.org/10.1016/j.ces.2023.118618
21. Feng, Y.; Li, B.; Yang, L.; Liu, Y. Co-amorphous delivery systems based on curcumin and hydroxycinnamic acids: Stabilization, solubilization, and controlled release. LWT. 2022, 170, 114091. DOI: 10.1016/j.lwt.2022.114091.
22. Deng, Y.; Deng, W.; Huang, W.; Zheng, Z.; Zhang, R.; Liu, S.; Jiang, Y. Norfloxacin co-amorphous salt system: Effects of molecular descriptors on the formation and physical stability of co-amorphous systems. Chemical Engineering Science. 2022, 253, 117549. DOI: 10.1016/j.ces.2022.117549.
DOI: https://doi.org/10.1016/j.ces.2022.117549
23. Gani, R. Group contribution-based property estimation methods: advances and perspectives. Current Opinion in Chemical Engineering. 2019, 23, 184-96. DOI: 10.1016/j.coche.2019.04.007.
DOI: https://doi.org/10.1016/j.coche.2019.04.007
24. Vay, K.; Scheler, S.; Friess, W. Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres. Int J Pharm. 2011, 416(1), 202-9. DOI: 10.1016/j.ijpharm.2011.06.047.
DOI: https://doi.org/10.1016/j.ijpharm.2011.06.047
25. Tsutsumi, S.; Kato, Y.; Namba, K.; Yamamoto, H. Functional composite material design using Hansen solubility parameters. Results in Materials. 2019, 4, 100046. DOI: 10.1016/j.rinma.2019.100046.
DOI: https://doi.org/10.1016/j.rinma.2019.100046
26. Mark, J. Physical properties of polymers, 3rd edition.; Cambridge University Peak, Cambridge, 2004; pp. 72-144.
27. Thakral, S.; Thakral, N.K. Prediction of drug-polymer miscibility through the use of solubility parameter-based Flory-Huggin’s interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci. 2013, 102(7), 2254-63. DOI: 10.1002/jps.23583.
DOI: https://doi.org/10.1002/jps.23583
28. Shi, Q.; Moinuddin, S.M.; Cai, T. Advances in coamorphous drug delivery systems. Acta Pharm Sci B. 2019, 9(1), 19-35. DOI: 10.1016/j.apsb.2018.08.002.
29. Garbiec, E.; Rosiak, N.; Tykarsha, E.; Zalewski, P.; Cielecka-Piontek, J. Sinapic acid Co-amorphous systems with amino acids for improved solubility and antioxidant activity. Int J Mol Sci. 2023, 24(6), 5533. DOI: 10.3390/ijms24065533.
DOI: https://doi.org/10.3390/ijms24065533
30. Lobmann, K.; Laitinen, R.; Grohganz, H.; Gordon, K.C.; Strachan, C.; Rades, T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011, 8(5), 1919-28. DOI: 10.1021/mp2002973.
31. Lobmann, K.; Laitinen, R.; Grohganz, H.; Gordon, K.C.; Strachan, C.; Rades, T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011, 8(5), 1919-28. DOI: 10.1021/mp2002973.
DOI: https://doi.org/10.1021/mp2002973
32. Jensen, K.T.; Blaabjerg, L.I.; Lenz, E.; Bohr, A.; Grohganz, H.; Kleinebudde, P.; Rades, T.; Lobmann, K. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts. J Pharm Pharmacol. 2016, 68(5), 615-24. DOI: 10.1111/jphp.12458.
DOI: https://doi.org/10.1111/jphp.12458
33. Craye, G.; Lobmann, K.; Grohganz, H.; Rades, T.; Laitinen, R. Characterization of amorphous and co-amorphous simvastatin formulations prepared by spray drying. Molecules. 2015, 20(12), 21532-48. DOI: 10.3390/molecules201219784.
DOI: https://doi.org/10.3390/molecules201219784
34. Alhajj, N.; O’Reilly, N.J.; Cathcart, H. Development and characterization of a spray-dried inhalable ciprofloxacin-quercetin co-amorphous system. Int J Pharm. 2022, 618, 121657. DOI: 10.1016/j.ijpharm.2022.121657.
DOI: https://doi.org/10.1016/j.ijpharm.2022.121657
35. Feng, Y.; Li, B.; Yang, L.; Liu, Y. Co-amorphous delivery systems based on curcumin and hydroxycinnamic acids: Stabilization, solubilization, and controlled release. LWT. 2022, 170, 114091. DOI: 10.1016/j.lwt.2022.114091.
DOI: https://doi.org/10.1016/j.lwt.2022.114091
36. Ojarinta, R.; Heikkinen, A.T.; Sievanen, E.; Laitinen, R. Dissolution behavior of co-amorphous amino acid-indomethacin mixtures: The ability of amino acids to stabilize the supersaturated state of indomethacin. Eur J Pharm Biopharm. 2017, 112, 85-95. DOI: 10.1016/j.ejpb.2016.11.023.
DOI: https://doi.org/10.1016/j.ejpb.2016.11.023
37. Ali, A.; Abdelhaleem, M.; Ali, A.A.; Maghrabi, I.A. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation. Acta Pharm. 2015, 65(2), 133-46. DOI: 10.1515/acph-2015-0014.
DOI: https://doi.org/10.1515/acph-2015-0014
38. Nair, A.; Varma, R.; Gourishetti, K.; Bhat, K.; Dengale, S. Influence of preparation methods on physicochemical and pharmacokinetic properties of co-amorphous formulations: The case of co-amorphous atorvastatin: Naringin. J Pharm Innov. 2020, 15, 365-79. DOI: 10.1007/s12247-019-09381-9.
DOI: https://doi.org/10.1007/s12247-019-09381-9
39. Wu, W.; Lobmann, K.; Schnitzkewitz, J.; Knuhtsen, A.; Pedersen, D.S.; Grohganz, H.; Rades, T. Aspartame as a co-former in co-amorphous systems. Int J Pharm. 2018, 549(12), 380-87. DOI: 10.1016/j.ijpharm.2018.07.063.
DOI: https://doi.org/10.1016/j.ijpharm.2018.07.063
40. Holzapfel, K.; Rades, T.; Leopold, C.S. CO-amorphous systems consisting of indomethacin and the chiral co-former tryptophan: Solid-state properties and molecular mobilities. Int J Pharm. 2023, 636, 122840. DOI: 10.1016/j.ijpharm.2023.122840.
DOI: https://doi.org/10.1016/j.ijpharm.2023.122840
41. Wairkar, S.; Gaud, R. Co-amorphous combination of nateglinide-metformin hydrochloride for dissolution enhancement. AAPS PharmSciTech. 2016, 17(3), 673-81. DOI: 10.1208/s12249-015-0371-4.
DOI: https://doi.org/10.1208/s12249-015-0371-4
42. Bhalekar, M.R.; Madgulkar, A.R.; Desale, P.S.; Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Ind Pharm. 2017, 43(6), 1003-10. DOI: 10.1080/03639045.2017.1291666.
DOI: https://doi.org/10.1080/03639045.2017.1291666
43. Anand, V.K.; Sakhare, S.D.; Sree, K.N.; Nair, A.R.; Varma, K.R.; Gourishetti, K. Dengale, S.J. The relevance of co-amorphous formulations to develop supersaturated dosage forms: In-vitro, and ex-vivo investigation of Ritonavir-Lopinavir co-amorphous materials. Eur J Pharm Sci. 2018, 123, 124-34. DOI; 10.1016/j.ejps.2018.07.046.
DOI: https://doi.org/10.1016/j.ejps.2018.07.046
44. Shi, X.; Zhou, X.; Shen, S.; Chen, Q.; Song, S.; Gu, C.; Wang, C. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction. Eur J Pharm Sci. 2021, 161, 105773. DOI: 10.1016/j.ejps.2021.105773.
DOI: https://doi.org/10.1016/j.ejps.2021.105773
45. Karagianni, A.; Kachrimanis, K.; Nikolakakis, I. Co-amorphous solid dispersions for solubility and absorption imrpovemnet of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018, 10(3), 98. DOI: 10.3390/pharmaceutics10030098.
DOI: https://doi.org/10.3390/pharmaceutics10030098
46. Indian Pharmacopoeia, 8th edition.; The Indian Pharmacopoeia Commission Vol II, Ghaziabad, 2018, pp. 498-1500.
47. Lachman, L.; Lieberman, H. The theory and practice of Industrial Pharmacy, 3rd edition.; Varghese Publishing House, India, 1991, pp. 293-355.
48. Van krevelen, D.W.; Te Nijenhuis, K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 3rd edition.; Elsevier Science, Netherlands, 2008, pp. 129-87.
49. Favre, E.; Nguyen, Q.T.; Clement, R.; Neel, J. Application of Flory-Huggins theory to ternary polymer-solvents equilibria: A case study. Eur Polym J. 1996, 32(3), 303-09. DOI: 10.1016/0014-3057(95)00146-8.
DOI: https://doi.org/10.1016/0014-3057(95)00146-8
50. Aryanti, P.P.; Ariono, D.; Hakim, A.N.; Wenten, I.G. Flory-Huggins based model to determine thermodynamic property of polymeric membrane solution. J Phys Conf Ser. 2018, 1090(1), 012074.
DOI: https://doi.org/10.1088/1742-6596/1090/1/012074
51. Wang, Z.; Sun, M.; Liu, T.; Gao, Z.; Ye, Q.; Tan, X.; Hou, Y.; Sun, J.; Wang, D.; He, Z. Co-amorphous solid dispersion systems of lacidipine-spironolactone with improved dissolution rate and enhanced physical stability. Asian J Pharm Sci. 2019, 14(1), 95-103. DOI: 10.1016/j.ajps.2018.11.001.
DOI: https://doi.org/10.1016/j.ajps.2018.11.001
52. Garbiec, E.; Rosiak, N.; Zalewski, P.; Tajber, L.; Cielecka-Piontek, J. Genistein co-amorphous systems with amino acids: An investigation into enhanced solubility and biological activity. Pharmaceutics. 2023, 15(12), 2653. DOI: 10.3390/pharmaceutics15122653.
DOI: https://doi.org/10.3390/pharmaceutics15122653
53. Aragon-Avurto, S.O.; Mondragon-Vasquez, K.; Valerio-Alfaro, G.; Dominguez-Chavez, J.G. Characterization, stability and solubility of co-amorphous systems of glibenclamide and L-arginine at different pH. Trop J Pharm Res. 2022, 21(7), 1355-64. DOI: 10.4314/tjpr.v2li7.1.
DOI: https://doi.org/10.4314/tjpr.v21i7.1
54. Lien, N.K.; Friscic, T.; Dar, G.M.; Gladden, L.F.; Jones, W. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nat Mater. 2007, 6(3), 206-9. DOI: 10.1038/nmat1848.
DOI: https://doi.org/10.1038/nmat1848
55. Laitinen, R.; Lobmann, K.; Grohganz, H.; Priemel, P.; Strachan, C.J.; Rades, T. Supersaturating drug delivery systems: The potential of co-amorphous drug formulations. Int J Pharm. 2017, 532(1), 1-12. DOI: 10.1016/j.ijpharm.2017.08.123.
DOI: https://doi.org/10.1016/j.ijpharm.2017.08.123
56. Mendes, C.; Valentini, G.; Chamorro Rengifo, A.F.; Pinto, J.M.; Silva, M.S. Parize, A.L. Supersaturating drug delivery system of fixed drug combination: sulfamethoxazole and trimethoprim. Expert Rev Anti Infect Ther. 2019, 17(10), 841-50. DOI: 10.1080/14787210.2019.1675508.
DOI: https://doi.org/10.1080/14787210.2019.1675508
57. Shi, N.Q.; Wang, S.R.; Zhang, Y.; Huo, J.S.; Wang, L.N.; Cai, J.H.; Li, Z.Q.; Ziang, B.; Qi, X.R. Hot melt extrusion technology for improved dissolution, solubility and “spring-parachute” processes of amorphous self-micellizing solid dispersions containing BCS II drugs indomethacin and fenofibrate: Profiles and mechanisms. Eur J Pharm Sci. 2019, 130, 78-90. DOI: 10.1016/j.ejps.2019.01.019.
DOI: https://doi.org/10.1016/j.ejps.2019.01.019
58. Shi, N.Q.; Zhang, Y.; Li, Y.; Lai, H.W.; Xiao, X.; Feng, B.; Qi, X.R. Self-micellizing solid dispersions enhance the properties and therapeutic potential of fenofibrate: Advantages, profiles and mechanisms. Int J Pharm. 2017, 528(1-2), 563-77. DOI: 10.1016/j.ijpharm.2017.06.017.
DOI: https://doi.org/10.1016/j.ijpharm.2017.06.017
59. Shi, Q.; Moinuddin, S.M.; Cai, T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B. 2019, 9(1), 19-35. DOI: 10.1016/j.apsb.2018.08.002.
DOI: https://doi.org/10.1016/j.apsb.2018.08.002
60. Kissi, E.O.; Khorami, K.; Rades, T. Determination of stable co-amorphous drug-drug ratios from the eutectic behavior of crystalline physical mixtures. Pharmaceutics. 2019, 11(12), 628.
DOI: https://doi.org/10.3390/pharmaceutics11120628
61. Penzel, E.; Rieger, J.; Schneider, H.A. The glass transition temperature of random copolymer: Experimental data and the Gordon-taylor equation. Polymer. 1997, 38(2), 325-37. DOI: 10.1016/S0032-3861(96)00521-6.
DOI: https://doi.org/10.1016/S0032-3861(96)00521-6
62. Moinuddin, S.M.; Ruan, S.; Huang, Y.; Gao, Q.; Shi, Q.; Cai, B.; Cai, T. Facile formation of co-amorphous atenolol and hydrochlorohiazide mixtures via cryogenic-milling: Enhanced physical stability, dissolution and pharmacokinetic profile. Int J Pharm. 2017, 532(1), 393-400. DOI: 10.1016/j.ijpharm.2017.09.020.
DOI: https://doi.org/10.1016/j.ijpharm.2017.09.020
63. Hancock, B.C.; Shamblin, S.L. Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochimica acta. 2001, 380(2), 95-107. DOI: 10.1016/S0040-6031(01)00663-3.
DOI: https://doi.org/10.1016/S0040-6031(01)00663-3
64. Lobmann, K.; Laitinen, R.; Grohganz, H.; Strachan, C.; Rades, T.; Gordon, K.C. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin. Int J Pharm. 2013, 453(1), 80-87. DOI: 10.1016/j.ijpharm.2012.05.016.
DOI: https://doi.org/10.1016/j.ijpharm.2012.05.016
65. Vasanti M.; Preeti S. HPLC Estimation, Ex vivo Everted Sac Permeability and In Vivo Pharmacokinetic studies of Darunavir. J Chrom Sci. 2018, 56(4), 307-16. DOI: 10.1093/chromsci/bmx113.
DOI: https://doi.org/10.1093/chromsci/bmx113