1. M. Horan, Fertility Preservation in Young Women at Risk of Ovarian Insufficiency due to Malignancy or Endometriosis, Ph.D. dissertation, School of Medicine, University College Dublin, 2022.
2. S. A. Missmer et al., “Impact of Endometriosis on Life-Course Potential: A Narrative Review,” Int. J. Gen. Med., vol. 14, pp. 9–25, 2021, doi: 10.2147/IJGM.S261139.
3. G. Bonavina and H. S. Taylor, “Endometriosis-associated infertility: From pathophysiology to tailored treatment,” Front. Endocrinol., vol. 13, p. 1020827, 2022.
4. S. A. Missmer et al., “Impact of Endometriosis on Life-Course Potential: A Narrative Review,” Int. J. Gen. Med., vol. 14, pp. 9–25, 2021, doi: 10.2147/IJGM.S261139.
5. A. A. Ekine, “Effects of Endometriosis on Quality of Life (Benefit of combined hystero-laparoscopic surgery on quality of life and fertility performance in endometriosis),” 2025.
6. J. Donnez, L. Cacciottola, J.-L. Squifflet, and M.-M. Dolmans, “Profile of Linzagolix in the Management of Endometriosis, Including Design, Development and Potential Place in Therapy: A Narrative Review,” Drug Des. Devel. Ther., vol. 17, pp. 369–380, 2023, doi: 10.2147/DDDT.S269976.
7. J. S. Fuqua and E. A. Eugster, “History of puberty: normal and precocious,” Horm. Res. Paediatr., vol. 95, pp. 568–578, 2022.
8. M. D. Gonçalves et al., “Recent Advances in Biotransformation by Cunninghamella Species,” Curr. Drug Metab., vol. 22, pp. 1035–1064, 2021, doi: 10.2174/1389200222666211126100023.
9. A. A. Al-Badr, “Chapter Five - Danazol,” in Profiles of Drug Substances, Excipients and Related Methodology, vol. 47, A. A. Al-Majed, Ed. Academic Press, 2022, pp. 149–326, doi: 10.1016/bs.podrm.2021.10.005.
10. H.-E. Huang et al., “Danazol in Refractory Autoimmune Hemolytic Anemia or Immune Thrombocytopenia: A Case Series Report and Literature Review,” Pharmaceuticals, vol. 15, p. 1377, 2022, doi: 10.3390/ph15111377.
11. M. Riva et al., “Danazol Treatment for Thrombocytopenia in Myelodysplastic Syndromes: Can an ‘Old-fashioned’ Drug be Effective?” HemaSphere, vol. 7, p. e867, 2023, doi: 10.1097/HS9.0000000000000867.
12. I. Nyamba et al., “Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs,” Eur. J. Pharm. Biopharm., vol. 204, p. 114513, 2024, doi: 10.1016/j.ejpb.2024.114513.
13. G. Madhuri and R. Nagaraju, “An Overview on Novel Particle Engineering Designing: Co-crystallization Techniques,” Int. J. Pharm. Sci. Rev. Res., vol. 66, pp. 88–101, 2021, doi: 10.47583/ijpsrr.2021.v66i01.015.
14. H. Sami, N. Akhtar, A. Jain, and A. K. Singhai, “Co-Crystals in Pharmaceutical Science: An Updated Review,” 2023.
15. M. R. Dhondale et al., “Co-Crystallization Approach to Enhance the Stability of Moisture-
16. M. Bhatia, A. Kumar, V. Verma, and S. Devi, “Development of ketoprofen-p-aminobenzoic acid co-crystal: formulation, characterization, optimization, and evaluation,” Med. Chem. Res., vol. 30, pp. 2090–2102, 2021, doi: 10.1007/s00044-021-02794-7.
17. Y. Tatsumi, Y. Shimoyama, and S. G. Kazarian, “Analysis of the Dissolution Behavior of Theophylline and Its Cocrystal Using ATR-FTIR Spectroscopic Imaging,” Mol. Pharm., vol. 21, pp. 3233–3239, 2024, doi: 10.1021/acs.molpharmaceut.4c00002.
18. H. Zhang et al., “Novel Ascorbic Acid Co-Crystal Formulations for Improved Stability,” Molecules, vol. 27, p. 7998, 2022, doi: 10.3390/molecules27227998.
19. A. Chettri, A. Subba, G. P. Singh, and P. P. Bag, “Pharmaceutical co-crystals: A green way to enhance drug stability and solubility for improved therapeutic efficacy,” J. Pharm. Pharmacol., vol. 76, pp. 1–12, 2024, doi: 10.1093/jpp/rgad097.
20. S. S. Al-Nimry and M. S. Khanfar, “Enhancement of the Solubility of Asenapine Maleate Through the Preparation of Co-Crystals,” Curr. Drug Deliv., vol. 19, pp. 788–800, 2022, doi: 10.2174/1567201818666210805154345.
21. Z. Huang, S. Staufenbiel, and R. Bodmeier, “Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs,” Pharm. Res., vol. 39, pp. 949–961, 2022, doi: 10.1007/s11095-022-03243-9.
22. X. Ji et al., “Enhanced Solubility, Dissolution, and Permeability of Abacavir by Salt and Cocrystal Formation,” Cryst. Growth Des., vol. 22, pp. 428–440, 2022, doi: 10.1021/acs.cgd.1c01051.
23. T. V. H. H. Nadh, P. S. Kumar, M. V. Ramana, and N. R. Rao, “Formulation and Optimization of Zolmitriptan Orodispersible Tablets,” J. Drug Deliv. Ther., vol. 11, p. 50, 2021, doi: 10.22270/jddt.v11i3.4703.
24. Formulation and Evaluation of Pharmaceutical Co-Crystals,” Asian J. Res. Chem., vol. 14, no. 4, 2021. [Online]. Available
25. S. Jadhav, “Formulation of Tablet of Ivermectin Co-Crystal for Enhancement of Solubility and Other Physical Properties,” 2023. [Online]. Available: (accessed Feb. 28, 2025).
26. H. Abdelrahman, E. Essa, G. E. Maghraby, and M. Arafa, “L-proline as Co-crystal Forming Amino Acid for Enhanced Dissolution Rate of Lamotrigine: Development of Buccal Tablet,” Indones. J. Pharm., pp. 574–583, 2023, doi: 10.22146/ijp.6867.
27. T. Eidevåg, E. S. Thomson, D. Kallin, J. Casselgren, and A. Rasmuson, “Angle of repose of snow: An experimental study on cohesive properties,” Cold Reg. Sci. Technol., vol. 194, p. 103470, 2022, doi: 10.1016/j.coldregions.2021.103470.
28. Formulation and Evaluation of Some Cocrystals for Enhanced Drug Properties,” Res. J. Pharm. Technol., vol. 14, no. 3, 2021. [Online]. Available:
29. A. F. Al-Dulaimi, M. Al-kotaji, and F. T. Abachi, “Paracetamol/naproxen co-crystals; a simple way for improvement of flowability, tableting and dissolution properties,” 2021.
30. C. Botella-Martínez, M. Viuda-Martos, J. A. Fernández-López, J. A. Pérez-Alvarez, and J. Fernández-López, “Development of plant-based burgers using gelled emulsions as fat source and beetroot juice as colorant: Effects on chemical, physicochemical, appearance and sensory characteristics,” LWT, vol. 172, p. 114193, 2022, doi: 10.1016/j.lwt.2022.114193.
31. J. Simão, S. A. Chaudhary, and A. J. Ribeiro, “Implementation of Quality by Design (QbD) for development of bilayer tablets,” Eur. J. Pharm. Sci., vol. 184, p. 106412, 2023, doi: 10.1016/j.ejps.2023.106412.
32. M. Ficzere et al., “Real-time coating thickness measurement and defect recognition of film coated tablets with machine vision and deep learning,” Int. J. Pharm., vol. 623, p. 121957, 2022, doi: 10.1016/j.ijpharm.2022.121957.
33. M. Momeni, M. Afkanpour, S. Rakhshani, A. Mehrabian, and H. Tabesh, “A prediction model based on artificial intelligence techniques for disintegration time and hardness of fast disintegrating tablets in pre-formulation tests,” BMC Med. Inform. Decis. Mak., vol. 24, p. 88, 2024, doi: 10.1186/s12911-024-02485-4.
34. H. Zhao et al., “A new parameter for characterization of tablet friability based on a systematical study of five excipients,” Int. J. Pharm., vol. 611, p. 121339, 2022, doi: 10.1016/j.ijpharm.2021.121339.
35. A. Berardi et al., “Advancing the understanding of the tablet disintegration phenomenon – An update on recent studies,” Int. J. Pharm., vol. 598, p. 120390, 2021, doi: 10.1016/j.ijpharm.2021.120390.
36. A. Farquharson et al., “Drug Content Uniformity: Quantifying Loratadine in Tablets Using a Created Raman Excipient Spectrum,” Pharmaceutics, vol. 13, p. 309, 2021, doi: 10.3390/pharmaceutics13030309.
37. S. Chakraborty and D. S. Mondal, “A Green Eco-friendly Analytical Method Development, Validation, and Stress Degradation Studies of Favipiravir in Bulk and Different Tablet Dosages Form by UV-spectrophotometric and RP-HPLC Methods with their Comparison by Using ANOVA and in-vitro Dissolution Studies,” Int. J. Pharm. Investig., vol. 13, pp. 290–305, 2023, doi: 10.5530/ijpi.13.2.039.
38. O. González-González et al., “Drug Stability: ICH versus Accelerated Predictive Stability Studies,” Pharmaceutics, vol. 14, p. 2324, 2022, doi: 10.3390/pharmaceutics14112324.
39. S. Parvarinezhad, M. Salehi, M. Kubicki, and R. E. Malekshah, “Synthesis, characterization, spectral studies and evaluation of noncovalent interactions in co-crystal of μ-oxobridged polymeric copper(II) complex derived from pyrazolone by theoretical studies,” J. Mol. Struct., vol. 1260, p. 132780, 2022, doi: 10.1016/j.molstruc.2022.132780.
40. B. Rojek, A. Bartyzel, E. Leyk, and A. Plenis, “Arbidol hydrochloride compatibility study with starchy excipients using DSC, FTIR, TGA-FTIR, and PXRD methods,” J. Therm. Anal. Calorim., 2025, doi: 10.1007/s10973-025-14056-4.
41. M. Bhatia and S. Devi, “Co-crystallization: a green approach for the solubility enhancement of poorly soluble drugs,” CrystEngComm, vol. 26, pp. 293–311, 2024, doi: 10.1039/D3CE01047C.
42. J. Han et al., “Deaggregation and Crystallization Inhibition by Small Amount of Polymer Addition for a Co-Amorphous Curcumin-Magnolol System,” Pharmaceutics, vol. 13, p. 1725, 2021, doi: 10.3390/pharmaceutics13101725.
43. J. C. Adama, C. G. Arocha, and P. O. Ogbobe, “Determination of some physical properties, angles of repose and frictional properties of a local variety of kernel and nut of oil palm,” Niger. J. Technol., vol. 41, pp. 365–369, 2022, doi: 10.4314/njt.v41i2.18.
44. S. Kole, R. Vinchurkar, A. Gawade, and A. Kuchekar, “The Impact of Co-crystal Formation on the Stability of Camylofin Dihydrochloride Immediate Release Tablets,” Hacet. Univ. J. Fac. Pharm., vol. 44, pp. 108–123, 2024, doi: 10.52794/hujpharm.1331991.
45. R. Iovanov et al., “Testing the disintegration and texture-related palatability predictions for orodispersible tablets using an instrumental tool coupled with multivariate analysis: Focus on process variables and analysis settings,” Eur. J. Pharm. Sci., vol. 198, p. 106801, 2024, doi: 10.1016/j.ejps.2024.106801.
46. S. Devi et al., “Ketoprofen–FA Co-crystal: In Vitro and In Vivo Investigation for the Solubility Enhancement of Drug by Design of Expert,” AAPS PharmSciTech, vol. 23, p. 101, 2022, doi: 10.1208/s12249-022-02253-5.
47. B. Zarrik et al., “Adsorption of crystal violet using a composite based on graphene Oxide-ED@Cellulose: Adsorption modeling, optimization and recycling,” Inorg. Chem. Commun., vol. 162, p. 112179, 2024, doi: 10.1016/j.inoche.2024.112179.
48. S. Mazloomi et al., “Parametric study and process modeling for metronidazole removal by rhombic dodecahedron ZIF-67 crystals,” Sci. Rep., vol. 13, p. 14654, 2023, doi: 10.1038/s41598-023-41724-y.
49. S. Ruhil, M. Dahiya, H. Kaur, and J. Singh, “New insights into the disintegration mechanism and disintegration profiling of rapidly disintegrating tablets (RDTs) by thermal imaging,” Int. J. Pharm., vol. 611, p. 121283, 2022, doi: 10.1016/j.ijpharm.2021.121283.
50. C. Hu, F. Zhang, and H. Fan, “Evaluation of Drug Dissolution Rate in Co-amorphous and Co-crystal Binary Drug Delivery Systems by Thermodynamic and Kinetic Methods,” AAPS PharmSciTech, vol. 22, p. 21, 2021, doi: 10.1208/s12249-020-01864-0.
51. I. Janilkarn-Urena et al., “Improving the solubility of pseudo-hydrophobic chemicals through co-crystal formulation,” PNAS Nexus, vol. 4, p. pgaf007, 2025, doi: 10.1093/pnasnexus/pgaf007.
52. L. Orszulak et al., “Inhibition of naproxen crystallization by polymers: The role of topology and chain length of polyvinylpyrrolidone macromolecules,” Eur. J. Pharm. Biopharm., vol. 207, p. 114581, 2025, doi: 10.1016/j.ejpb.2024.114581.
53. B. Priya et al., “Temozolomide cocrystal forms with enhanced dissolution, stability and biological activity towards Glioblastoma,” J. Mol. Struct., vol. 1313, p. 138751, 2024, doi: 10.1016/j.molstruc.2024.138751.