1. Osol, A.; Hoover, J.E. Remington's Pharmaceutical Sciences, Easton: Mack Publishing Company, USA, 1985; pp. 154–196.
2. Yeola, C.A.; Sonawane, V.N.; Sonawane, V.N.; Surana, K.R.; Patil, D.M.; Sonawane, D.D. Development and validation of simple UV-spectrophotometric method for estimation of diclofenac sodium. Asian J. Pharm. Anal. 2023, 13(3), 183–189. DOI:10.52711/2231-5675.2023.00030.
DOI: https://doi.org/10.52711/2231-5675.2023.00030
3. Augustijns, P.; Brewster, M.E., Eds. Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics; Springer: New York, NY, USA, 2007; pp. 1–450.
DOI: https://doi.org/10.1007/978-0-387-69154-1
4. Pharmacopoeia I. Government of India, Ministry of Health and Family Welfare. Indian Pharmacopoeia; Controller of Publications: Delhi, India, 1996; Vol. 2, pp. 448.
5. Sonawane, V.N.; Suryawanshi, K.G.; Wagh, K.H.; Sonawane, S.L.; Sonar, A.D.; Sakle, S.J.; Sonawane, D.D. A comparative study of dissolution profiles on various brands of diclofenac sodium prolonged release tablet formulation. Prog. Chem. Biochem. Res. 2023, 6(4), 341–355. DOI: 10.48309/pcbr.2023.411501.1280.
6. Jindal, K. Review on solubility: A mandatory tool for pharmaceuticals. Int. Res. J. Pharm. 2017, 8(11), 11–15. DOI:10.7897/2230-8407.0811210.
DOI: https://doi.org/10.7897/2230-8407.0811210
7. Kumar, S.; Singh, P. Various techniques for solubility enhancement: An overview. Pharma Innov. J. 2016, 5(1, Part A), 23.
8. Patil, M.S.; Godse, S.Z.; Saudagar, R.B. Solubility enhancement by various techniques: An overview. World J. Pharm. Pharm. Sci. 2013, 2(6), 4558–4572.
9. Sikarra, D.; Shukla, V.; Kharia, A.A.; Chatterjee, D.P. Techniques for solubility enhancement of poorly soluble drugs: An overview. J. Med. Pharm. Allied Sci. 2012, 1, 1–22. DOI:10.55522/jmpas.V1I1.0002.
DOI: https://doi.org/10.55522/jmpas.V1I1.0002
10. Kolhe, S.; Chipade, M.; Chaudhari, P.D. Solubility and solubilization techniques–A review. Int. J. Pharm. Chem. Sci. 2012, 1(1), 129–150.
11. Jain, H.; Chella, N. Methods to improve the solubility of therapeutical natural products: A review. Environ. Chem. Lett. 2021, 19, 111–121. DOI: 10.1007/s10311-020-01082.
DOI: https://doi.org/10.1007/s10311-020-01082-x
12. Majeed, A.; Raza, S.N.; Khan, N.A. Hydrotrophy: Novel solubility enhancement technique: A review. Int. J. Sci. Prog. Res. 2019, 10(3), 1025–1036. DOI: 10.13040/IJPSR.0975-8232.10(3).1025-36.
DOI: https://doi.org/10.13040/IJPSR.0975-8232.10(3).1025-36
13. Joshi, J.; Nainwal, N.; Saharan, V.A. Review on hydrotropy: A potential approach for the solubility enhancement of poorly soluble drug. Asian J. Pharm. Clin. Res. 2019, 12(10), 19–26. DOI: 10.22159/ajpcr.2019.v12i10.34811.
DOI: https://doi.org/10.22159/ajpcr.2019.v12i10.34811
14. Shukla, R.S.; Patel, A.; Soni, M.L.; Modi, V.; Jaliwala, Y.A. Quantitative spectrophotometric estimation of cefadroxil using hydrotropic solubilization technique. Asian J. Pharm. 2008, 2(3). DOI:10.4103/0973-8398.43298.
DOI: https://doi.org/10.4103/0973-8398.43298
15. Sharma, U.; Saroha, K. A review of hydrotropic solubilization techniques for enhancing the bioavailability of poorly soluble drugs. Int. J. Toxicol. 2024, 43(1), 63–71. DOI: 10.1177/10915818231216.
DOI: https://doi.org/10.1177/10915818231216414
16. Dhapte, V.; Mehta, P. Advances in hydrotropic solutions: An updated review. St. Petersbg. Polytech. Univ. J. Phys. Math. 2015, 1(4), 424–435. DOI: 10.1016/j.spjpm.2015.12.006.
DOI: https://doi.org/10.1016/j.spjpm.2015.12.006
17. Neha, S.; Sania, Z.S. Hydrotropy. Int. J. Pharm. Pharm. Res. 2011, 2, 471–481.
18. Khatri, H.; Hussain, M.S.; Tyagi, S. Solubility enhancement techniques: An overview. World J. Pharm. Res. 2022, 11, 468–482. DOI:10.20959/wjpr20225-23812
19. Vemula, V.R.; Lagishetty, V.; Lingala, S. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res. 2010, 5(1), 41–51.
20. Cornell, J.A. The fitting of Scheffé-type models for estimating solubilities of multisolvent systems. J. Biopharm. Stat. 1991, 1(2), 303–329.
DOI: https://doi.org/10.1080/10543409108835025
21. De Spiegeleer, B.; Wattyn, E.; Slegers, G.; Van der Meeren, P.; Vlaminck, K.; Van Vooren, L. The importance of the cosolvent propylene glycol on the antimicrobial preservative efficacy of a pharmaceutical formulation by DOE-ruggedness testing. Pharm. Dev. Technol. 2006, 11(3), 275–284. DOI: 10.1080/10837450600767342.
DOI: https://doi.org/10.1080/10837450600767342
22. Maheshwari, R.K. "Mixed-solvency approach"–Boon for solubilization of poorly water-soluble drugs. Asian J. Pharm. 2010, 4(1). DOI:10.4103/0973-8398.63981.
DOI: https://doi.org/10.4103/0973-8398.63981
23. Maheshwari, R.K. Potentiation of solvent character by mixed solvency concept: A novel concept of solubilization. J. Pharm. Res. 2010, 3(2), 411–413.
24. Akinyelu, J.; Oladimeji, O.; Daniels, A.; Singh, M. Folate-targeted doxorubicin delivery to breast and cervical cancer cells using a chitosan-gold nano-delivery system. J. Drug Deliv. Sci. Technol. 2022, 67, 102978. DOI: 10.1016/j.jddst.2021.102978.
DOI: https://doi.org/10.1016/j.jddst.2021.102978
25. Maestri, G.; Boemo, R.L.; do Amaral Soares, L.; de Souza, A.A.; Immich, A.P. Development of drug reservoirs based on nanofibers and capsules for epistaxis treatment. J. Drug Deliv. Sci. Technol. 2020, 55, 101398. DOI: 10.1016/j.jddst.2019.101398.
DOI: https://doi.org/10.1016/j.jddst.2019.101398
26. Jacob, S.; Kather, F.S.; Boddu, S.H.; Attimarad, M.; Nair, A.B. Nanosuspension innovations: Expanding horizons in drug delivery techniques. Pharmaceutics 2025, 17(1), 136. DOI: 10.3390/pharmaceutics17010136.
DOI: https://doi.org/10.3390/pharmaceutics17010136
27. Kumari, L.; Choudhari, Y.; Patel, P.; Gupta, G.D.; Singh, D.; Rosenholm, J.M.; Bansal, K.K.; Kurmi, B.D. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. Life 2023, 13(5), 1099. DOI: 10.3390/life13051099.
DOI: https://doi.org/10.3390/life13051099