1. Yegen, B. C. Lifestyle and Peptic Ulcer Disease. Curr. Pharm. Des. 2018, 24 (18), 2034–2040. DOI: 10.2174/1381612824666180510092303
2. Xie, X.; Ren, K.; Zhou, Z.; Dang, C.; Zhang, H. The Global, Regional and National Burden of Peptic Ulcer Disease from 1990 to 2019: A Population-Based Study. BMC Gastroenterol. 2022, 22 (1), Art. No: 58. DOI: 10.1186/s12876-022-02130-2
3. Shell, E. J. Pathophysiology of Peptic Ulcer Disease. Pharmacol. Clin. 2021, 6 (4), 603–611. DOI: 10.1016/j.cpha.2021.05.005
4. Srivastav, Y.; Kumar, V.; Srivastava, Y.; Kumar, M. Peptic Ulcer Disease (PUD), Diagnosis, and Current Medication-Based Management Options: Schematic Overview. J. Adv. Med. Pharm. Sci. 2023, 25 (11), 14–27. DOI: 10.9734/jamps/2023/v25i11651
5. Lee, S. P.; Sung, I.-K.; Kim, J. H.; Lee, S.-Y.; Park, H. S.; Shim, C. S. Risk Factors for the Presence of Symptoms in Peptic Ulcer Disease. Clin. Endosc. 2017, 50 (6), 578–584. DOI: 10.5946/ce.2016.129
6. Dunlap, J. J.; Patterson, S. Peptic Ulcer Disease. Gastroenterol. Nurs. 2019, 42 (5), 451–454. DOI: 10.1097/SGA.0000000000000478
7. Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M. C.; Caramella, C. M.; Ferrari, F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics 2020, 12 (9), Art. No: 859. DOI: 10.3390/pharmaceutics12090859
8. Shaikh, B. J.; Raut, I. D.; Nitalikar, M. M.; Mohite, S. K.; Magdum, C. S. An Overview on In-Situ Gel: A Novel Drug Delivery System. Int. J. Pharm. Sci. Nanotechnol. 2021, 15 (5), 6180–6189. DOI: 10.37285/ijpsn.2022.15.5.10
9. Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research Progress of In-Situ Gelling Ophthalmic Drug Delivery System. Asian J. Pharm. Sci. 2019, 14 (1), 1–15. DOI: 10.1016/j.ajps.2018.04.008.
10. Kamada, T.; Satoh, K.; Itoh, T.; Ito, M.; Iwamoto, J.; Okimoto, T.; Kanno, T.; Sugimoto, M.; Chiba, T.; Nomura, S.; et al. Evidence-Based Clinical Practice Guidelines for Peptic Ulcer Disease 2020. J. Gastroenterol. 2021, 56 (4), 303–322. DOI: 10.1007/s00535-021-01769-0
11. Jadhav, S. P.; Dhakad, P. K.; Gupta, T.; Gilhotra, R. Formulation Development and Evaluation of Paliperidone Nanosuspension for Solubility Enhancement. Int. J. Appl. Pharm. 2024, 173–181. DOI: 10.22159/ijap.2024v16i4.51218
12. Wu, H.; Marwah, S.; Wang, P.; Wang, Q.; Chen, X. Misoprostol for Medical Treatment of Missed Abortion: A Systematic Review and Network Meta-Analysis. Sci. Rep. 2017, 7 (1), Art. No: 1664. DOI: 10.1038/s41598-017-01892-0
13. Raymond, E. G.; Harrison, M. S.; Weaver, M. A. Efficacy of Misoprostol Alone for First-Trimester Medical Abortion: A Systematic Review. Obstet. Gynecol. 2019, 133 (1), 137–147. DOI: 10.1097/AOG.0000000000003017
14. Salzberger, H.; Maul, H. Gutes Misoprostol, Böses Misoprostol – Oder Wie Ich Es Schaffe, Ein Medikament Mehr Als 100-Mal Teurer zu Machen? Geburtshilfe Frauenheilkd. 2022, 82 (05), 480–486. DOI: 10.1055/a-1664-0036
15. Szpot, P.; Wachełko, O.; Zawadzki, M. Determination of Prostaglandins (Carboprost, Cloprostenol, Dinoprost, Dinoprostone, Misoprostol, Sulprostone) by UHPLC-MS/MS in Toxicological Investigations. Toxics 2023, 11 (10), Art. No: 802. DOI: 10.3390/toxics11100802
16. Da Silva, J. W. V.; Duarte, M. L.; Ribeiro, J. I.; Kishishita, J.; Souza, A. T. M.; Leal, L. B.; De Castro, W. V.; De Santana, D. P.; Bedor, D. C. G. Development and Validation of a Stability-Indicating Method, Structural Elucidation of New Degradation Products from Misoprostol by LC–MS Time-of-Flight, and an Ex Vivo Study of Vaginal Permeation. Biomed. Chromatogr. 2024, 38 (8), Art. No: e5897. DOI: 10.1002/bmc.5897
17. Rojek, B.; Wesolowski, M. A Combined Differential Scanning Calorimetry and Thermogravimetry Approach for the Effective Assessment of Drug Substance–Excipient Compatibility. J. Therm. Anal. Calorim. 2023, 148 (3), 845–858. DOI: 10.1007/s10973-022-11849-9
18. Załuski, D.; Dubis, B.; Budzyński, W.; Jankowski, K. Applicability of the 3⁵–2 Fractional Factorial Design in Determining the Effects of Cultivation Factors on Hulless Oat. Agron. J. 2016, 108 (1), 205–218. DOI: 10.2134/agronj2014.0607
19. M. S. S.; Priya, S.; Maxwell, A. Formulation and Evaluation of Novel in Situ Gel of Lafutidine. Asian J. Pharm. Clin. Res. 2018, 11 (8), Art. No: 88. DOI: 10.22159/ajpcr.2018.v11i8.25582.
20. Siraj, S.N.; Vrushabha, J.G.; Khan, G. J. Design, Development and Evaluation of Gastric Floating In-Situ Gel of Piroxicam. Int. J. Pharm. Sci. Res. 2019, 11 (7), 3409-3416.
21. Juthi, A. Z.; Li, F.; Wang, B.; Alam, M. M.; Talukder, M. E.; Qiu, B. pH-Responsive Super-Porous Hybrid Hydrogels for Gastroretentive Controlled-Release Drug Delivery. Pharmaceutics 2023, 15 (3), Art. No: 816. DOI: 10.3390/pharmaceutics15030816
22. Vijayashree, R.; Priya, S.; Jyothi, D.; James, J. P. Formulation and Characterisation of Gastroretentive In Situ Gel Loaded with Glycyrrhiza glabra L. Extract for Gastric Ulcer. Int. J. Appl. Pharm. 2024, 16 (2), 76–85. DOI: 10.22159/ijap.2024v16i2.49033
23. Soni, A.; Kataria, M. K. Formulation and Evaluation of Floating In Situ Gel of Omeprazole Magnesium for Oral Drug Delivery System. Asian J. Pharm. Clin. Res. 2021, 14 (9), 44–52. DOI: 10.22159/ajpcr.2021.v14i9.42231
24. Siripruekpong, W.; Praparatana, R.; Issarachot, O.; Wiwattanapatapee, R. Simultaneous Delivery of Curcumin and Resveratrol via In Situ Gelling, Raft-Forming, Gastroretentive Formulations. Pharmaceutics 2024, 16 (5), Art. No: 641. DOI: 10.3390/pharmaceutics16050641
25. Mahmoud, D. B.; Shukr, M. H.; ElMeshad, A. N. Gastroretentive Cosolvent-Based In Situ Gel as a Promising Approach for Simultaneous Extended Delivery and Enhanced Bioavailability of Mitiglinide Calcium. J. Pharm. Sci. 2019, 108 (2), 897–906. DOI: 10.1016/j.xphs.2018.09.020
26. Kathpalia, H.; Salunkhe, S.; Juvekar, S. Formulation of Gastroretentive Sustained Release Floating In Situ Gelling Drug Delivery System of Solubility-Enhanced Curcumin–Soy Lecithin Complex. J. Drug Deliv. Sci. Technol. 2019, 53, Art. No: 101205. DOI: 10.1016/j.jddst.2019.101205
27. Shabaraya, A.; Ashwini, T.; Vineetha, K. Formulation and Evaluation of Gastroretentive In Situ Gelling System of Ketoprofen. Eur. Pharm. J. 2023, 70 (2), 10–19. DOI: 10.2478/afpuc-2023-0018
28. Malviya, V.; Tawar, M.; Burange, P.; Bairagi, R. Preparation and Characterization of Gastroretentive Sustained Release In-Situ Gel of Lafutidine. Int. J. Pharm. Sci. Nanotechnol. 2022, 15 (6), 6216–6228. DOI: 10.37285/ijpsn.2022.15.6.4
29. Amante, C.; Falcone, G.; Aquino, R. P.; Russo, P.; Nicolais, L.; Del Gaudio, P. In Situ Hydrogel Formulation for Advanced Wound Dressing: Influence of Co-Solvents and Functional Excipient on Tailored Alginate–Pectin–Chitosan Blend Gelation Kinetics, Adhesiveness, and Performance. Gels 2024, 10 (1), Art. No: 3. DOI: 10.3390/gels10010003
30. Debnath, S.; Subhashis, D.; et al. Formulation and Evaluation of Controlled Release Gastro-Retentive In Situ Gel for Diltia zem Hydrochloride. Indian J. Pharm. Educ. Res. 2016, 50 (3 Suppl), S254–S265. DOI: 10.5530/ijper.50.3.36
31. Anyanwu, N. Development and Evaluation of In Situ Gelling Gastroretentive Formulations of Meloxicam. Universal J. Pharm. Res. 2017, 2 (3), 11–14. DOI: 10.22270/ujpr.v2i3.R3
32. Kim, J. H.; Song, S. H.; Joo, S. H.; Park, G. H.; Weon, K.-Y. Formulation of a Gastroretentive In Situ Oral Gel Containing Metformin HCl Based on DoE. Pharmaceutics 2022, 14 (9), Art. No: 1777. DOI: 10.3390/pharmaceutics14091777
33. Patel, T.; Desai, S.; Jain, H.; Meshram, D.; Rahevar, K. Formulation and Evaluation of Floating In-Situ Gel of Nicardipine Hydrochloride. J. Drug Deliv. Ther. 2022, 12 (3S), 196–211. DOI: 10.22270/jddt.v12i3-s.5406