(1) Yegen, B. C. Lifestyle and Peptic Ulcer Disease. CPD 2018, 24 (18), 2034–2040. DOI:10.2174/1381612824666180510092303.
DOI: https://doi.org/10.2174/1381612824666180510092303
(2) Xie, X.; Ren, K.; Zhou, Z.; Dang, C.; Zhang, H. The Global, Regional and National Burden of Peptic Ulcer Disease from 1990 to 2019: A Population-Based Study. BMC Gastroenterol 2022, 22 (1), 58. DOI:10.1186/s12876-022-02130-2.
DOI: https://doi.org/10.1186/s12876-022-02130-2
(3) Shell, E. J. Pathophysiology of Peptic Ulcer Disease. PA Clinics 2021, 6 (4), 603–611. DOI:10.1016/j.cpha.2021.05.005.
DOI: https://doi.org/10.1016/j.cpha.2021.05.005
(4) Srivastav, Y.; Kumar, V.; Srivastava, Y.; Kumar, M. Peptic Ulcer Disease (PUD), Diagnosis, and Current Medication-Based Management Options: Schematic Overview. JAMPS 2023, 25 (11), 14–27. DOI:10.9734/jamps/2023/v25i11651.
DOI: https://doi.org/10.9734/jamps/2023/v25i11651
(5) Lee, S. P.; Sung, I.-K.; Kim, J. H.; Lee, S.-Y.; Park, H. S.; Shim, C. S. Risk Factors for the Presence of Symptoms in Peptic Ulcer Disease. Clin Endosc 2017, 50 (6), 578–584. DOI:10.5946/ce.2016.129.
DOI: https://doi.org/10.5946/ce.2016.129
(6) Dunlap, J. J.; Patterson, S. Peptic Ulcer Disease. Gastroenterol Nur 2019, 42 (5), 451–454. DOI:10.1097/SGA.0000000000000478.
DOI: https://doi.org/10.1097/SGA.0000000000000478
(7) Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M. C.; Caramella, C. M.; Ferrari, F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics 2020, 12 (9), 859. DOI:10.3390/pharmaceutics12090859.
DOI: https://doi.org/10.3390/pharmaceutics12090859
(8) Bilal Jilani Shaikh; Indrayani D Raut; Manojkumar M Nitalikar; Shrinivas K. Mohite; Chandrakant S. Magdum. An Overview on In-Situ Gel: A Novel Drug Delivery System. Int J Pharm Sci Nanotechnol 2021, 15 (5), 6180–6189. DOI:10.37285/ijpsn.2022.15.5.10.
DOI: https://doi.org/10.37285/ijpsn.2022.15.5.10
(9) Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research Progress of In-Situ Gelling Ophthalmic Drug Delivery System. Asian J Pharm Sci 2019, 14 (1), 1–15. DOI:10.1016/j.ajps.2018.04.008.
DOI: https://doi.org/10.1016/j.ajps.2018.04.008
(10) Kamada, T.; Satoh, K.; Itoh, T.; Ito, M.; Iwamoto, J.; Okimoto, T.; Kanno, T.; Sugimoto, M.; Chiba, T.; Nomura, S.; Mieda, M.; Hiraishi, H.; Yoshino, J.; Takagi, A.; Watanabe, S.; Koike, K. Evidence-Based Clinical Practice Guidelines for Peptic Ulcer Disease 2020. J Gastroenterol 2021, 56 (4), 303–322. DOI:10.1007/s00535-021-01769-0.
DOI: https://doi.org/10.1007/s00535-021-01769-0
(11) Jadhav, S. P.; Dhakad, P. K.; Gupta, T.; Gilhotra, R. Formulation Development and Evaluation of Paliperidone Nanosuspension for Solubility Enhancement. Int J App Pharm 2024, 173–181. DOI:10.22159/ijap.2024v16i4.51218.
DOI: https://doi.org/10.22159/ijap.2024v16i4.51218
(12) Wu, H.; Marwah, S.; Wang, P.; Wang, Q.; Chen, X. Misoprostol for Medical Treatment of Missed Abortion: A Systematic Review and Network Meta-Analysis. Sci Rep 2017, 7 (1), 1664. DOI:10.1038/s41598-017-01892-0.
DOI: https://doi.org/10.1038/s41598-017-01892-0
(13) Raymond, E. G.; Harrison, M. S.; Weaver, M. A. Efficacy of Misoprostol Alone for First-Trimester Medical Abortion: A Systematic Review. Obstet Gynecol 2019, 133 (1), 137–147. DOI:10.1097/AOG.0000000000003017.
DOI: https://doi.org/10.1097/AOG.0000000000003017
(14) Salzberger, H.; Maul, H. Gutes Misoprostol, böses Misoprostol – oder wie ich es schaffe, ein Medikament mehr als 100-mal teurer zu machen? Geburtshilfe Frauenheilkd 2022, 82 (05), 480–486. DOI:10.1055/a-1664-0036.
DOI: https://doi.org/10.1055/a-1664-0036
(15) Szpot, P.; Wachełko, O.; Zawadzki, M. Determination of Prostaglandins (Carboprost, Cloprostenol, Dinoprost, Dinoprostone, Misoprostol, Sulprostone) by UHPLC-MS/MS in Toxicological Investigations. Toxics 2023, 11 (10), 802. DOI:10.3390/toxics11100802.
DOI: https://doi.org/10.3390/toxics11100802
(16) Da Silva, J. W. V.; Duarte, M. L.; Ribeiro, J. I.; Kishishita, J.; Souza, A. T. M.; Leal, L. B.; De Castro, W. V.; De Santana, D. P.; Bedor, D. C. G. Development and Validation of a Stability‐indicating Method, Structural Elucidation of New Degradation Products from Misoprostol by LC–MS Time‐of‐flight, and an Ex Vivo Study of Vaginal Permeation. Biomed Chromatogr 2024, 38 (8), e5897. DOI:10.1002/bmc.5897.
DOI: https://doi.org/10.1002/bmc.5897
(17) Rojek, B.; Wesolowski, M. A Combined Differential Scanning Calorimetry and Thermogravimetry Approach for the Effective Assessment of Drug Substance-Excipient Compatibility. J Therm Anal Calorim 2023, 148 (3), 845–858. DOI:10.1007/s10973-022-11849-9.
DOI: https://doi.org/10.1007/s10973-022-11849-9
(18) Załuski, D.; Dubis, B.; Budzyński, W.; Jankowski, K. Applicability of the 35–2 Fractional Factorial Design in Determining the Effects of Cultivation Factors on Hulless Oat. Agronomy 2016, 108 (1), 205–218. DOI:10.2134/agronj2014.0607.
DOI: https://doi.org/10.2134/agronj2014.0607
(19) M, S. S.; Priya, S.; Maxwell, A. Formulation and Evaluation of Novel in Situ Gel of Lafutidine for Gastro-Retentive Drug Delivery. Asian J Pharm Clin Res 2018, 11 (8), 88. DOI:10.22159/ajpcr.2018.v11i8.25582.
DOI: https://doi.org/10.22159/ajpcr.2018.v11i8.25582
(20) S. N. Shaikh; V. G. Jain; G. J. Khan. Design, Development and Evaluation of Gastric Floating in-Situ Gel of Piroxicam. IJPSR 11 (7).
(21) Juthi, A. Z.; Li, F.; Wang, B.; Alam, M. M.; Talukder, M. E.; Qiu, B. pH-Responsive Super-Porous Hybrid Hydrogels for Gastroretentive Controlled-Release Drug Delivery. Pharmaceutics 2023, 15 (3), 816. DOI:10.3390/pharmaceutics15030816.
DOI: https://doi.org/10.3390/pharmaceutics15030816
(22) R., V.; Priya, S.; Jyothi, D.; James, J. P. Formulation and Evaluation of Novel in Situ Gel of Lafutidine for Gastro-Retentive Drug Delivery. Int J App Pharm 2024, 76–85. DOI:10.22159/ijap.2024v16i2.49033.
(23) Soni, A.; Mahesh Kumar Kataria. Formulation and Evaluation of Floating in Situ Gel of Omeprazole Magnesium for Oral Drug Delivery System. Asian J Pharm Clin Res 2021, 44–52. DOI:10.22159/ajpcr.2021.v14i9.42231.
DOI: https://doi.org/10.22159/ajpcr.2021.v14i9.42231
(24) Siripruekpong, W.; Praparatana, R.; Issarachot, O.; Wiwattanapatapee, R. Simultaneous Delivery of Curcumin and Resveratrol via In Situ Gelling, Raft-Forming, Gastroretentive Formulations. Pharmaceutics 2024, 16 (5), 641. DOI:10.3390/pharmaceutics16050641.
DOI: https://doi.org/10.3390/pharmaceutics16050641
(25) Mahmoud, D. B.; Shukr, M. H.; ElMeshad, A. N. Gastroretentive Cosolvent-Based In Situ Gel as a Promising Approach for Simultaneous Extended Delivery and Enhanced Bioavailability of Mitiglinide Calcium. Journal of Pharmaceutical Sciences 2019, 108 (2), 897–906. DOI:10.1016/j.xphs.2018.09.020.
(26) Kathpalia, H.; Salunkhe, S.; Juvekar, S. Formulation of Gastroretentive Sustained Release Floating in Situ Gelling Drug Delivery System of Solubility Enhanced Curcumin-Soy Lecithin Complex. J Drug Del Sci Tech 2019, 53, 101205. DOI:10.1016/j.jddst.2019.101205.
(27) Shabaraya, Ar.; T Ashwini, T.; Vineetha, K. Formulation and Evaluation of Gastroretentive In Situ Gelling System of Ketoprofen. Eur Pharm J 2023, 70 (2), 10–19. DOI:10.2478/afpuc-2023-0018.
DOI: https://doi.org/10.2478/afpuc-2023-0018
(28) Malviya, V.; Tawar, M.; Burange, P.; Bairagi, R. Preparation and Characterization of Gastroreten-Tive Sustained Release In-Situ Gel of Lafutidine. IJPSN 2022, 15 (6), 6216–6228. DOI:10.37285/ijpsn.2022.15.6.4.
DOI: https://doi.org/10.37285/ijpsn.2022.15.6.4
(29) Mahmoud, D. B.; Shukr, M. H.; ElMeshad, A. N. Gastroretentive Cosolvent-Based In Situ Gel as a Promising Approach for Simultaneous Extended Delivery and Enhanced Bioavailability of Mitiglinide Calcium. J Pharm Sci 2019, 108 (2), 897–906. DOI:10.1016/j.xphs.2018.09.020.
DOI: https://doi.org/10.1016/j.xphs.2018.09.020
(30) vijayashree R.; Divya Jyothi; Jainey P. James. Formulation and Characterisation of Gastroretentive in Situ Gel Loaded with Glycyrrhiza Glabra L. Extract for Gastric Ulcer. Int J App Pharm 2024, 76–85. DOI:10.22159/ijap.2024v16i2.49033.
DOI: https://doi.org/10.22159/ijap.2024v16i2.49033
(31) Department of Biological Science, Faculty of Science and Technology, Bingham University, Karu, Nigeria; Anyanwu, N. Development and Evaluation of in Situ Gelling Gastroretentive Formulations of Meloxicam. UJPR 2017, 2 (3), 11–14. DOI:10.22270/ujpr.v2i3.R3.
DOI: https://doi.org/10.22270/ujpr.v2i3.R3
(32) Kim, J. H.; Song, S. H.; Joo, S. H.; Park, G. H.; Weon, K.-Y. Formulation of a Gastroretentive In Situ Oral Gel Containing Metformin HCl Based on DoE. Pharmaceutics 2022, 14 (9), 1777. DOI:10.3390/pharmaceutics14091777.
DOI: https://doi.org/10.3390/pharmaceutics14091777
(33) Kathpalia, H.; Salunkhe, S.; Juvekar, S. Formulation of Gastroretentive Sustained Release Floating in Situ Gelling Drug Delivery System of Solubility Enhanced Curcumin-Soy Lecithin Complex. J Drug Del Sci Tech 2019, 53, 101205. DOI:10.1016/j.jddst.2019.101205.
DOI: https://doi.org/10.1016/j.jddst.2019.101205