Dudrick, S.J. History of parenteral nutrition. J. Am. Coll. Nutr. 2009, 28, 243-251, doi: 10.1080/07315724.2009.10719778.
DOI: https://doi.org/10.1080/07315724.2009.10719778
James, N.; Fletcher, J. Learning zone risks and nursing care. 2013, 27, 50–58, doi.10.7748/ns2013.07.27.46.50.e7508.
DOI: https://doi.org/10.7748/ns2013.07.27.46.50.e7508
Pironi, L.; Ruggeri, E.; Zolezzi, C.; Savarino, L.; Incasa, E.; Belluzzi, A.; et al. Lipid peroxidation and antioxidant status in adults receiving lipid-based home parenteral nutrition. Am. J. Clin. Nutr. 1998, 68, 888–93, doi: 10.1093/ajcn/68.4.888.
DOI: https://doi.org/10.1093/ajcn/68.4.888
Dine, T.; Gressier, B.; Luyckx, M.; Gottrand, F.; Michaud, L.; Kambia, N. Plasma malondialdehyde levels in children on 12-hour cyclic parenteral nutrition: are there health risks? Pediatr. Dev. Pathol. 2014, 17, 286–91, doi: 10.2350/14-01-1431-OA.1.
DOI: https://doi.org/10.2350/14-01-1431-OA.1
Steger, P. J. K.; Mühlebach, S. F. Lipid Peroxidation of Intravenous Lipid Emulsions and All-in-One Admixtures in Total Parenteral Nutrition Bags: The Influence of Trace Elements. J. Parenter. Enteral Nutr. 2000, 24, 37–41, doi: 10.1177/014860710002400137.
DOI: https://doi.org/10.1177/014860710002400137
Brniak, W.; Jachowicz R. Lipid peroxidation in parenteral nutrition admixtures - prooxidative and antioxidative factors, as well as their clinical significance. Farm. Pol. 2019, 75, 638–647, doi: 10.32383/farmpol/115749.
DOI: https://doi.org/10.32383/farmpol/115749
Silvers, K. M.; Sluis, K. B.; Darlow, B.; McGill, F.; Stocker, R.; Winterbourn, C.C. Limiting light-induced lipid peroxidation and vitamin loss in infant parenteral nutrition by adding multivitamin preparations to Intralipid. Acta. Paediatr. 2001, 90, 242–249, doi: 10.1111/j.1651-2227.2001.tb00298.x
DOI: https://doi.org/10.1080/080352501300067433
Lee, M.D.; Yoon, J.E.; Kim, S.I.; Kim, I.C. Stability of total nutrient admixtures in reference to ambient temperatures. Nutrition. 2003, 19, 886–890, 2003, doi: 10.1016/S0899-9007(03)00173-4.
DOI: https://doi.org/10.1016/S0899-9007(03)00173-4
Picaud, J.; Steghens, J.; Auxenfans, C.; A. Barbieux, A.; Laborie, S.; Claris, O. Lipid peroxidation assessment by malondialdehyde measurement in parenteral nutrition solutions for newborn infants: a pilot study. Acta Paediatr. 2007, 93, 241–245, doi: 10.1111/j.1651-2227.2004.tb00713.x.
DOI: https://doi.org/10.1111/j.1651-2227.2004.tb00713.x
Jalabert, A.; Grand, A.; Steghens, J. P.; Barbotte, E.; Pigue, C.; Picaud, J.C. Lipid peroxidation in all-in-one admixtures for preterm neonates: Impact of amount of lipid, type of lipid emulsion and delivery condition. Acta. Paediatr. 2011, 100, 1200–1205, 2011, doi: 10.1111/j.1651-2227.2011.02269.x.
DOI: https://doi.org/10.1111/j.1651-2227.2011.02269.x
Miloudi K., Comte, B.; Rouleau, T.; Montoudis, A.; Levy, E.; Lavoie, J. C. The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes. Clin. Nutr. 2012, 31, 526–534, doi: 10.1016/j.clnu.2011.12.012.
DOI: https://doi.org/10.1016/j.clnu.2011.12.012
Balet, A.; Cardona, D.; Jané, S.; Molins-Pujol, A.M.; Sánchez Quesada, J.L.; Gich, I. et al. Effects of multilayered bags vs ethylvinyl-acetate bags on oxidation of parenteral nutrition. J. Parenter. Enteral Nutr. 2016, 28, 85–91, doi: 10.1177/014860710402800285
DOI: https://doi.org/10.1177/014860710402800285
Lapenna, D.; Ciofani, G.; Pierdomenico, S. D.; Giamberardino, M. A.; Cuccurullo, F. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma. Free Radic. Biol. Med. 2001, 31, 331–335, doi: 10.1016/S0891-5849(01)00584-6.
DOI: https://doi.org/10.1016/S0891-5849(01)00584-6
Driscoll, D.F.; Giampietro, K.; Wichelhous, D.P.; Peterss, H.; Nehne, J.; Niemann, W. et al. Physicochemical stability assessments of lipid emulsions of varying oil composition. Clin. Nutr. 2001, 20, 151–157, doi: 10.1054/clnu.2001.0375.
DOI: https://doi.org/10.1054/clnu.2001.0375
Lavoie, J. C.; Bélanger, S.; Spalinger, M.; Chessex, P. Admixture of a multivitamin preparation to parenteral nutrition: the major contributor to in vitro generation of peroxides. Pediatrics 1997, 99, E6, doi: 10.1542/peds.99.3.e6
DOI: https://doi.org/10.1542/peds.99.3.e6
Karpińska, A.; Gromadzka, G. Stres oksydacyjny i naturalne mechanizmy antyoksydacyjne - Znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych. Postepy Hig. Med. Dosw. 2013, 67, 43–53, doi: 10.5604/17322693.1029530.
DOI: https://doi.org/10.5604/17322693.1029530
Grotto, D.; Santa Maria, L.D.; Boeira, S.; Valentini, J.; Charão M.F.; Moro, A.M. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography–visible detection. J. Pharm. Biomed. Anal. 2007, 43, 619–624, doi: 10.1016/J.JPBA.2006.07.030.
DOI: https://doi.org/10.1016/j.jpba.2006.07.030
Wang, Y.; Zhou, K.J.; Tang Q.Y.; Hong, L.; Feng, Y.; Lu, L.N. et al. Effect of an olive oil-based lipid emulsion compared with a soybean oil-based lipid emulsion on liver chemistry and bile acid composition in preterm infants receiving parenteral nutrition: A double-blind, randomized trial. J. Parenter. Enteral Nutr. 2016, 40, 842–850 doi: 10.1177/0148607114566853.
DOI: https://doi.org/10.1177/0148607114566853
Szpetnar, M.; Matras, P.; Kiełczykowska, M.; Horecka, A.; Bartoszewska, L.; Pasternak, K. et al. Antioxidants in patients receiving total parenteral nutrition after gastrointestinal cancer surgery. Cell Biochem. Funct. 2012, 30, 211–216, doi: 10.1002/cbf.1837.
DOI: https://doi.org/10.1002/cbf.1837
Hong, L.; Wang, X.; Wu, J.; Cai, W. Mitochondria-initiated apoptosis triggered by oxidative injury play a role in total parenteral nutrition-associated liver dysfunction in infant rabbit model. J. Pediatr. Surg. 2009, 44, 1712–1718, doi: 10.1016/j.jpedsurg.2009.04.002.
DOI: https://doi.org/10.1016/j.jpedsurg.2009.04.002
Pironi, L.; Sasdelli, A. S. Intestinal Failure-Associated Liver Disease. Clin. Liver Dis. 2019, 23, 279–291, doi: 10.1016/J.CLD.2018.12.009.
DOI: https://doi.org/10.1016/j.cld.2018.12.009
de Meijer, V. E.; Gura, K.M.; Meisel; J.A.; Le, H.D.; Puder, M.. Parenteral fish oil monotherapy in the management of patients with parenteral nutrition-associated liver disease. Arch. Surg. 2010, 145(6), 547-6551, doi:10.1001/archsurg.2010.80
DOI: https://doi.org/10.1001/archsurg.2010.80
Banjare, J.; Salunke, M.; Kndapurkar, K.; Ghate, U.; Bhalerao, S. Estimation of serum malondialdehyde as a marker of lipid peroxidation in medical students undergoing examination-induced psychological stress. J. Sci. Soc. 2017, 44, 137-139, doi: 10.4103/jss.jss_13_17.
DOI: https://doi.org/10.4103/jss.JSS_13_17
Niedernhofer, L. J.; Daniels, J. S.; Rouzer, C. A.; Greene, R. E.; Marnett, L. J.; B. Hancock, B. Malondialdehyde, a Product of Lipid Peroxidation, Is Mutagenic in Human Cells. J. Biol. Chem. 2003, 278, 31426-31433, doi: 10.1074/jbc.M212549200.
DOI: https://doi.org/10.1074/jbc.M212549200
Spickett, C. M.; Wiswedel, I.; Siems, W.; Zarkovic, K.; Zarkovic, N. Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radic. Res. 2010, 44, 1172–1202, doi: 10.3109/10715762.2010.498476.
DOI: https://doi.org/10.3109/10715762.2010.498476
Roggero, P.; Mosca, F.; Gianni, ML.; Orsi, A.; Amato, O. et al. F2-isoprostanes and total radical-trapping antioxidant potential in preterm infants receiving parenteral lipid emulsions. Nutrition. 2010, 26, 551–555, doi: 10.1016/j.nut.2009.06.018.
DOI: https://doi.org/10.1016/j.nut.2009.06.018
Ito, F.; Sono, Y.; Ito, T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants. 2019, 8, 72, doi: 10.3390/antiox8030072
DOI: https://doi.org/10.3390/antiox8030072
Del Rio, D.; Stewart, A. J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316-328, doi: 10.1016/j.numecd.2005.05.003.
DOI: https://doi.org/10.1016/j.numecd.2005.05.003
Kumagai, T.; Matsukawa, N.; Kaneko, Y.; Kusumi, Y.; Mitsumata, M.; Uchida, K. A lipid peroxidation-derived inflammatory mediator: Identification of 4-hydroxy-2-nonenal as a potential inducer of cyclooxygenase-2 in macrophages. J.Biol. Chem. 2004, 279, 48389–48396, doi: 10.1074/jbc.M409935200.
DOI: https://doi.org/10.1074/jbc.M409935200
Gutteridge, J. M. C. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995, 41,1819–1828, doi: 10.1093/CLINCHEM/41.12.1819.
DOI: https://doi.org/10.1093/clinchem/41.12.1819
Morrow, J. D.; Hill, K. E.; Burk, R.F.; Nammour, T. M.; Badr, K. F.; Roberts, L. J. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. 1990, 87, 9383–9387, doi: 10.1073/PNAS.87.23.9383.
DOI: https://doi.org/10.1073/pnas.87.23.9383
Comporti, M.; Signorini, C.; Arezzini, B.; Vecchio, D; Monaco, B.; Gardi, C. F2-isoprostanes are not just markers of oxidative stress. Free Radic. Biol. Med. 2008, 44, 247–256, doi: 10.1016/J.FREERADBIOMED.2007.10.004.
DOI: https://doi.org/10.1016/j.freeradbiomed.2007.10.004
Cracowski, J. L.; T. Durand, T. Cardiovascular pharmacology and physiology of the isoprostanes. Fundam. Clin. Pharmacol. 2006, 20, 417–427, doi: 10.1111/J.1472-8206.2006.00435.X.
DOI: https://doi.org/10.1111/j.1472-8206.2006.00435.x
Montuschi, P.; Barnes, P.; Jackson Roberts, L. Insights into Oxidative Stress: The Isoprostanes. Curr. Med. Chem. 2007, 14, 703 – 717, 2007, doi: 10.2174/092986707780059607.
DOI: https://doi.org/10.2174/092986707780059607
Belik, J.; González-Luis, G.E.; Perez-Vizcaino, F.; Villamor, E. Isoprostanes in fetal and neonatal health and disease. Free Radic. Biol. Med. 2010, 48, 177–188, doi: 10.1016/J.FREERADBIOMED.2009.10.043.
DOI: https://doi.org/10.1016/j.freeradbiomed.2009.10.043
Fridovich, I. Superoxide anion radical (O2-·), superoxide dismutases, and related matters. J. Biol. Chem. 1997, 272, 18515–18517, doi: 10.1074/jbc.272.30.18515.
DOI: https://doi.org/10.1074/jbc.272.30.18515
Fridovich, I. Superoxide dismutases: studies of structure and mechanism. Adv. Exp. Med. Biol., 1976, 74, 530–539, doi: 10.1007/978-1-4684-3270-1_44.
DOI: https://doi.org/10.1007/978-1-4684-3270-1_44
Hatanaka, N. et al. Selenium kinetics and changes in glutathione peroxidase activities in patients receiving long-term parenteral nutrition and effects of supplementation with selenite. Nutrition. 2000, 16, 22–26, doi: 10.1016/S0899-9007(99)00183-5.
DOI: https://doi.org/10.1016/S0899-9007(99)00183-5
Mazur-Zielińska, H.; Zieliński, M.; Ł. Pilarz, Ł.; Karbowska, D.; E. Birkner, E. Całkowita pojemnos̈ć antyoksydacyjna (TAC) i całkowity status oksydacyjny (TOS) u dzieci z młodzieńczym idiopatycznym zapaleniem stawów - doniesienie wstępne. Pediatr. Pol. 2015, 90, 459–463, doi: 10.1016/j.pepo.2015.08.003.
DOI: https://doi.org/10.1016/j.pepo.2015.08.003
Katerji, M.; Filippova, M.; Duerksen-Hughes, P. Approaches and methods to measure oxidative stress in clinical samples: Research applications in the cancer field. Oxid. Med. Cell. Longev. 2019, Art. No.:1279250, doi: 10.1155/2019/1279250.
DOI: https://doi.org/10.1155/2019/1279250
Abuja, P. M.; Albertini, R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta. 2001, 306, 1–17, doi: 10.1016/S0009-8981(01)00393-X.
DOI: https://doi.org/10.1016/S0009-8981(01)00393-X
Luo, M.; Fernandez-Estivariz, C.; Jones, D.P.; Accardi, C.R.; Alteheld, B.; Bazargan N. et al. Depletion of plasma antioxidants in surgical intensive care unit patients requiring parenteral feeding: effects of parenteral nutrition with or without alanyl-glutamine dipeptide supplementation. Nutrition, 2008, 24, 37–44, doi: 10.1016/j.nut.2007.10.004.
DOI: https://doi.org/10.1016/j.nut.2007.10.004
Chessex, P.; Harrison, A.; Khashu, M.; Lavoie, J.C. In Preterm Neonates, is the Risk of Developing Bronchopulmonary from Exposure to Ambient Light ? J. Pediatr. 2007, 151, 213–214, doi: 10.1016/j.jpeds.2007.04.029 213.
DOI: https://doi.org/10.1016/j.jpeds.2007.04.029
Boisramé-helms, J.; Toti, F.; Hasselmann, M.; Meziani, F. Lipid emulsions for parenteral nutrition in critical illness. Prog. Lipid. Res. 2015, 60, 1–16, doi:10.1016/j.plipres.2015.08.002.
DOI: https://doi.org/10.1016/j.plipres.2015.08.002
Agostoni, C.; Bruzzese, M. G. Fatty acids: their biochemical and functional classification. Pediatr. Med. Chir. 2022, 14, 473–479.
Calder, P. C.; Jensen, G. L.; Koletzko, B. V.; P. Singer, P.; Wanten, G.J.A. Lipid emulsions in parenteral nutrition of intensive care patients: current thinking and future directions. Intensive Care Med. 2010, 36, 735–749, doi: 10.1007/s00134-009-1744-5.
DOI: https://doi.org/10.1007/s00134-009-1744-5
De Caterina, R. n-3 fatty acids in cardiovascular disease. N. Engl. J. Med. 2011, 364, 2439–2450, doi: 10.1056/NEJMRA1008153.
DOI: https://doi.org/10.1056/NEJMra1008153
L. Pironi, L.; Agostini, F.; Guidetti, M. Intravenous lipids in home parenteral nutrition. World Rev. Nutr. Diet. 2015, 112, 141–149, doi: 10.1159/000365608.
DOI: https://doi.org/10.1159/000365608
Guidetti, M.; Sforzini, A.; Bersani, G.; Corsini, C.; Grossi, G.; Zolezzi, C. et al. Vitamin A and Vitamin E Isoforms Stability and Peroxidation Potential of All-In-One Admixtures for Parenteral Nutrition. Int. J. Vitam. Nutr. Res. 2008, 78, 156–166, doi: 10.1024/0300-9831.78.3.156.
DOI: https://doi.org/10.1024/0300-9831.78.3.156
Rogulska, J.; Osowska, S.; Zawada, K.; Giebułtowicz, J. Effect of different amino acid solutions on the oxidative stability of three different lipid emulsions in all-in-one admixtures. J. Parenter. Enteral Nutr. 2023, 1-8, doi: 10.1002/JPEN.2511.
DOI: https://doi.org/10.1002/jpen.2511
Pironi, L.; Guidetti, M.; Zolezzi, C.; Fasano, M.C.; Paganelli, F.; Merli, C. et al. Peroxidation potential of lipid emulsions after compounding in all-in-one solutions. Nutrition 2003, 19, 784–788, 2003, doi: 10.1016/S0899-9007(03)00099-6.
DOI: https://doi.org/10.1016/S0899-9007(03)00099-6
Zaloga, G. P. Narrative review of n-3 polyunsaturated fatty acid supplementation upon immune functions, resolution molecules and lipid peroxidation. Nutrients 2021, 13, Art. No.: 662 doi: 10.3390/nu13020662.
DOI: https://doi.org/10.3390/nu13020662
Milne, G. L.; Yin, H.; Brooks, J. D.; Sanchez, S.; Jackson Roberts, L.; Morrow, J. D. Quantification of F2‐Isoprostanes in Biological Fluids and Tissues as a Measure of Oxidant Stress. Meth.Enzymol. 2007, 433, 113–126, doi: 10.1016/S0076-6879(07)33006-1.
DOI: https://doi.org/10.1016/S0076-6879(07)33006-1
Miller, E.; Morel, A.; Saso, L.; Saluk, J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2014, Art. No.: 360438, doi: 10.1155/2014/572491.
DOI: https://doi.org/10.1155/2014/572491
Song, W.L. et al. Novel Eicosapentaenoic Acid-derived F 3-isoprostanes as Biomarkers of Lipid Peroxidation, J. Biol. Chem. 2009, 284, 23636–23643, doi: 10.1074/jbc.M109.024075.
DOI: https://doi.org/10.1074/jbc.M109.024075
Moore, K.; Roberts, L.J.; Measurement of Lipid Peroxidation. Free Radic. Res. 2009, 28, 659-671, doi: 10.3109/10715769809065821
DOI: https://doi.org/10.3109/10715769809065821
Kadiiska, M.B.; Gladen, B.C.; Baird, D.D.; Germolec, D.; Graham L.B.; Parker, C.E.; et al. Biomarkers of Oxidative Stress Study II. Are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Rad. Biol. Med. 2005, 38, 698–710, doi: 10.1016/j.freeradbiomed.2004.09.017
DOI: https://doi.org/10.1016/j.freeradbiomed.2004.09.017
Oliveira-Filho R. S. et al. Effect of a parenteral fish-oil-containing lipid emulsion on liver lipid perioxidation and antioxidative defenses in Lewis rats. J. Parenter. Enteral Nutr. 2023, 47, 572–579, doi: 10.1002/JPEN.2492.
DOI: https://doi.org/10.1002/jpen.2492
Deshpande, G.; Simmer, K.; Deshmukh, M; Mori, T. A.; Croft, K. D.; Kristensen, J. Fish oil (SMOFlipid) and olive oil lipid (clinoleic) in very preterm neonates. J Pediatr. Gastroenterol Nutr. 2014, 58, 177–182, doi: 10.1097/MPG.0000000000000174.
DOI: https://doi.org/10.1097/MPG.0000000000000174
Kosek, V. et al. The ω -3 Polyunsaturated Fatty Acids and Oxidative Stress in Long-Term Parenteral Nutrition Dependent Adult Patients: Functional Lipidomics Approach. Nutrients 2020, 12, Art. No.: 2351.
DOI: https://doi.org/10.3390/nu12082351
Ozkan, H.; Koksal, N.; Dorum, B.A.; Kocael, F.; Ozarda, Y.; Bozyigit, C. et al. New-generation fish oil and olive oil lipid for prevention of oxidative damage in preterm infants: Single center clinical trial at university hospital in Turkey. Pediatr. Int., 2019, 61, 388–392, doi: 10.1111/ped.13798.
DOI: https://doi.org/10.1111/ped.13798
Hasanoǧlu, A.; Dalgiç, N.; Tümer, L.; Atalay, Y.; Cinasal, G.; Biberoǧlu, G. et al. Free oxygen radical-induced lipid peroxidation and antioxidant in infants receiving total parenteral nutrition. Prostaglandins Leukot. Essent. Fatty Acids 2005, 73, 99–102, doi: 10.1016/j.plefa.2005.04.015.
DOI: https://doi.org/10.1016/j.plefa.2005.04.015
Yildizdas, H.Y.; Poyraz, B.; Atli, G.; Sertdemir, Y.; Mert, K.; Ozlu, F. et al. et al. Effects of two different lipid emulsions on antioxidant status, lipid peroxidation and parenteral nutrition- related cholestasis in premature babies, a randomized-controlled study. Pediatr. Neonatol. 2019, 60, 359–367, doi: 10.1016/j.pedneo.2018.07.012.
DOI: https://doi.org/10.1016/j.pedneo.2018.07.012
Rogulska, J.; Osowska, S., Kunecki, M.; Sobocki, J.; Ładażynski, P.; Giebułtowicz, J. Antioxidant balance in plasma of patients on home parenteral nutrition: A pilot study comparing three different lipid emulsions. Clin. Nutr. 2021, 40, 3950–3958, doi: 10.1016/j.clnu.2021.04.006.
DOI: https://doi.org/10.1016/j.clnu.2021.04.006