1. Mahesh, S.K.; Fathima, J.; Veena, V.G. Cosmetic potential of natural products: Industrial applications. In Natural Bio-Active Compounds: Chemistry, Pharmacology and Health Care Practices; Springer: Singapore, Singapore, 2019; Vol. 2, pp. 215–250. DOI: 10.1007/978-981-13-7205-6_10
DOI: https://doi.org/10.1007/978-981-13-7205-6_10
2. Shastri, D.H.; Gandhi, S.; Almeida, H. Enhancing collaboration and interdisciplinary strategies for navigating innovative technologies and regulatory approvals in the cosmetic industry. Curr. Org. Chem. 2023, 27(2), Art. No: E26667797324383. DOI: 10.2174/0126667797324383240913033156
DOI: https://doi.org/10.2174/0126667797324383240913033156
3. Arora, N.; Agarwal, S.; Murthy, R.S.R. Latest technology advances in cosmeceuticals. Int. J. Pharm. Sci. Drug Res. 2012, 4(3), 168-82.
DOI: https://doi.org/10.25004/IJPSDR.2012.040302
4. Garcês, A.; Amaral, M.H.; Sousa Lobo, J.M.; Silva, A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci. 2018, 112, 159–167. DOI: 10.1016/j.ejps.2017.11.023
DOI: https://doi.org/10.1016/j.ejps.2017.11.023
5. Craig, D.Q.M. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 2002, 231(2), 131–144. DOI: 10.1016/S0378-5173(01)00891-2
DOI: https://doi.org/10.1016/S0378-5173(01)00891-2
6. Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res. 2017, 68, 1–11. DOI: 10.1016/j.plipres.2017.07.001
DOI: https://doi.org/10.1016/j.plipres.2017.07.001
7. Rivera-Rangel, R.D.; González-Muñoz, M.P.; Avila-Rodriguez, M.; Razo-Lazcano, T.A.; Solans, C. Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 60–67. DOI: 10.1016/j.colsurfa.2017.07.051
DOI: https://doi.org/10.1016/j.colsurfa.2017.07.051
8. Joshi, M.; Patravale, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int. J. Pharm. 2008, 346(1–2), 124–132. DOI: 10.1016/j.ijpharm.2007.05.060
DOI: https://doi.org/10.1016/j.ijpharm.2007.05.060
9. Harde, H.; Das, M.; Jain, S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. 2011, 8(10), 1407–1424. DOI: 10.1517/17425247.2011.604311
DOI: https://doi.org/10.1517/17425247.2011.604311
10. Dhawan, S.; Sharma, P.; Nanda, S. Cosmetic nanoformulations and their intended use. In Nanocosmetics: Fundamentals, Applications and Toxicity; Elsevier: Amsterdam, Netherlands, 2020; pp. 141–169. DOI: 10.1016/B978-0-12-822286-7.00017-6
DOI: https://doi.org/10.1016/B978-0-12-822286-7.00017-6
11. Jenning, V.; Thünemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 2000, 199(2), 167–177. DOI: 10.1016/S0378-5173(00)00378-1
DOI: https://doi.org/10.1016/S0378-5173(00)00378-1
12. Srinivasan, S.; Elumalai, K. The new frontier of drug delivery through nanotechnology. Intell. Pharm. 2023, 1, 169–174. DOI: 10.1016/j.ipha.2023.08.002
DOI: https://doi.org/10.1016/j.ipha.2023.08.002
13. Liao, W.; Gharsallaoui, A.; Dumas, E.; Ghnimi, S.; Elaissari, A. Effect of carrier oil on the properties of sodium caseinate stabilized O/W nanoemulsions containing trans-cinnamaldehyde. LWT 2021, 146, Art. No: 111655. DOI: 10.1016/j.lwt.2021.111655
DOI: https://doi.org/10.1016/j.lwt.2021.111655
14. Elmowafy, M.; Al-Sanea, M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J. 2021, 29(9), 999–1012. DOI: 10.1016/j.jsps.2021.07.015
DOI: https://doi.org/10.1016/j.jsps.2021.07.015
15. Pontes, J.F.; Fonseca, M.; Macedo, A.S.; Grenha, A.; Fonte, P. New and revisited approaches on the transdermal delivery of polyphenols-loaded nanoparticles for melanoma prevention and treatment. In Phytopharmaceuticals and Herbal Drugs: Prospects and Safety Issues in the Delivery of Natural Products; Elsevier: Amsterdam, Netherlands, 2023; pp. 341–373. DOI: 10.1016/B978-0-323-99125-4.00001-9
DOI: https://doi.org/10.1016/B978-0-323-99125-4.00001-9
16. Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016, 12(1), 143–161. DOI: 10.1016/j.nano.2015.09.004
DOI: https://doi.org/10.1016/j.nano.2015.09.004
17. Ghate, V.M.; Lewis, S.A.; Prabhu, P.; Dubey, A.; Patel, N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur. J. Pharm. Biopharm. 2016, 108, 253–261. DOI: 10.1016/j.ejpb.2016.07.026
DOI: https://doi.org/10.1016/j.ejpb.2016.07.026
18. Thiele, J.J., Hsieh, S.N., Ekanayake-Mudiyanselage, S. Vitamin E: critical review of its current use in cosmetic and clinical dermatology. Dermatol Surg. 2005, 31(7 Pt 2), 805–813. DOI: 10.1111/j.1524-4725.2005.31724
DOI: https://doi.org/10.1111/j.1524-4725.2005.31724
19. Manca, M.L.; Manconi, M.; Nacher, A.; Carbone, C.; Valenti, D.; MacCioni, A.M.; et al. Development of novel diolein-niosomes for cutaneous delivery of tretinoin: Influence of formulation and in vitro assessment. Int. J. Pharm. 2014, 477(1–2), 176–186. DOI: 10.1016/j.ijpharm.2014.10.031.
DOI: https://doi.org/10.1016/j.ijpharm.2014.10.031
20. Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target. 2012, 20(10), 813–830. DOI: 10.3109/1061186X.2012.716845
DOI: https://doi.org/10.3109/1061186X.2012.716845
21. Jores, K.; Mehnert, W.; Drechsler, M.; Bunjes, H.; Johann, C.; Mäder, K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release 2004, 95(2), 217–227. DOI: 10.1016/j.jconrel.2003.11.012
DOI: https://doi.org/10.1016/j.jconrel.2003.11.012
22. Saez, V.; Souza, I.D.L.; Mansur, C.R.E. Structure of lipid nanoparticles: A review. Int. J. Cosmet. Sci. 2018, 40(2), 103–116. DOI: 10.1111/ics.12452
DOI: https://doi.org/10.1111/ics.12452
23. Singh, B.; Mehta, G.; Kumar, R.; Bhatia, A.; Ahuja, N.; Katare, O. Lipid carriers for transdermal delivery of bioactives. Curr. Drug Deliv. 2005, 2(2), 143–153. DOI: 10.2174/1567201053585985
DOI: https://doi.org/10.2174/1567201053585985
24. Li, Q.; Cai, T.; Huang, Y.; Xia, X.; Cole, S.P.C.; Cai, Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 2017, 7(6), Art. No: 122. DOI: 10.3390/nano7060122
DOI: https://doi.org/10.3390/nano7060122
25. Gonnet, M.; Lethuaut, L.; Boury, F. New trends in encapsulation of lipophilic vitamins. J. Control. Release 2010, 146(3), 276–290. DOI: 10.1016/j.jconrel.2010.01.037
DOI: https://doi.org/10.1016/j.jconrel.2010.01.037
26. Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. DOI: 10.1016/j.ejpb.2018.10.017
DOI: https://doi.org/10.1016/j.ejpb.2018.10.017
27. Bartosova, L.; Bajgar, J. Transdermal drug delivery in vitro using diffusion cells. Curr. Med. Chem. 2012, 19(27), 4671–4677. DOI: 10.2174/092986712803306358
DOI: https://doi.org/10.2174/092986712803306358
28. Senior, J.; Delgado, C.; Fisher, D.; Tilcock, C.; Gregoriadis, G. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: Studies with poly(ethylene glycol)-coated vesicles. Biochim. Biophys. Acta Biomembr. 1991, 1062(1), 77–82. DOI: 10.1016/0005-2736(91)90337-8
DOI: https://doi.org/10.1016/0005-2736(91)90337-8
29. Shidhaye, S.; Vaidya, R.; Sutar, S.; Patwardhan, A.; Kadam, V. Solid lipid nanoparticles and nanostructured lipid carriers – Innovative generations of solid lipid carriers. Curr. Drug Deliv. 2008, 5(4), 324–331. DOI: 10.2174/156720108785915087
DOI: https://doi.org/10.2174/156720108785915087
30. Walters, K.; Roberts, M. The structure and function of skin. In Dermal Absorption and Toxicity Assessment, 1st ed.; Roberts, M., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 1–39. DOI: 10.1201/9780824743239.ch1
DOI: https://doi.org/10.1201/9780824743239.ch1
31. Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54(Suppl. 1), S131–S155. DOI: 10.1016/S0169-409X(02)00118-7
DOI: https://doi.org/10.1016/S0169-409X(02)00118-7
32. Lauterbach, A.; Müller-Goymann, C.C. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur. J. Pharm. Biopharm. 2015, 97, 152–163. DOI: 10.1016/j.ejpb.2015.06.020
DOI: https://doi.org/10.1016/j.ejpb.2015.06.020
33. Hadgraft, J.; Lane, M.E. Skin: The ultimate interface. Phys. Chem. Chem. Phys. 2011, 13(12), 5215–5222. DOI: 10.1039/c0cp02943b
DOI: https://doi.org/10.1039/c0cp02943b
34. Li, F.; Hu, J.; Deng, J.; Su, H.; Xu, S.; Liu, J. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int. J. Pharm. 2006, 324(2), 152–157. DOI: 10.1016/j.ijpharm.2006.06.006
DOI: https://doi.org/10.1016/j.ijpharm.2006.06.006
35. zur Mühlen, A.; Schwarz, C. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism. Eur. J. Pharm. Biopharm. 1998, 45(2), 149–155.
DOI: https://doi.org/10.1016/S0939-6411(97)00150-1
36. Hu, H.; Liu, X.; Hong, J.; Ye, N.; Xiao, C.; Wang, J.; et al. Mesoporous polydopamine-based multifunctional nanoparticles for enhanced cancer phototherapy. J. Colloid Interface Sci. 2022, 612, 246–260. DOI: 10.1016/j.jcis.2021.12.172
DOI: https://doi.org/10.1016/j.jcis.2021.12.172
37. Papakostas, D.; Rancan, F.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Nanoparticles in dermatology. Arch. Dermatol. Res. 2011, 303(8), 533–550. DOI: 10.1007/s00403-011-1163-7
DOI: https://doi.org/10.1007/s00403-011-1163-7
38. Uttley, A.; Collins, C.; Naidoo, J. Vancomycin-resistant enterococci. Lancet 1988, 331(8575), P57-58.
DOI: https://doi.org/10.1016/S0140-6736(88)91037-9
39. Wissing, S.A.; Müller, R.H. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 2003, 254(1–2), 65–68. DOI: 10.1016/S0378-5173(02)00684-1
DOI: https://doi.org/10.1016/S0378-5173(02)00684-1
40. Peetla, C.; Stine, A.; Labhasetwar, V. Biophysical interactions with model lipid membranes: Applications in drug discovery and drug delivery. Mol. Pharm. 2009, 6(5), 1264–1276. DOI: 10.1021/MP9000662
DOI: https://doi.org/10.1021/mp9000662
41. Yang, X.Z.; Dou, S.; Wang, Y.C.; Long, H.Y.; Xiong, M.H.; Mao, C.Q.; et al. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano 2012, 6(6), 4955–4965. DOI: 10.1021/NN300500U
DOI: https://doi.org/10.1021/nn300500u
42. Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366(1–2), 170–184. DOI: 10.1016/J.IJPHARM.2008.10.003
DOI: https://doi.org/10.1016/j.ijpharm.2008.10.003
43. Fang, J.Y.; Fang, C.L.; Liu, C.H.; Su, Y.H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 2008, 70(2), 633–640. DOI: 10.1016/J.EJPB.2008.05.008
DOI: https://doi.org/10.1016/j.ejpb.2008.05.008
44. Lin, W.J.; Duh, Y.S. Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole. Eur. J. Pharm. Biopharm. 2016, 108, 297–303. DOI: 10.1016/J.EJPB.2016.07.015
DOI: https://doi.org/10.1016/j.ejpb.2016.07.015
45. Sarhadi, S.; Gholizadeh, M.; Moghadasian, T.; Golmohammadzadeh, S. Moisturizing effects of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using deionized and magnetized water by in vivo and in vitro methods. Iran. J. Basic Med. Sci. 2020, 23(3), 337–343. DOI: 10.22038/IJBMS.2020.39587.9397
46. Pavlou, P.; Siamidi, A.; Varvaresou, A.; Vlachou, M. Skin Care Formulations and Lipid Carriers as Skin Moisturizing Agents. Cosmetics 2021, 8(3), Art. No: 89. DOI: 10.3390/cosmetics8030089
DOI: https://doi.org/10.3390/cosmetics8030089
47. Suter, F.; Schmid, D.; Wandrey, F.; Zülli, F. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur. J. Pharm. Biopharm. 2016, 108, 304–309. DOI: 10.1016/J.EJPB.2016.06.014
DOI: https://doi.org/10.1016/j.ejpb.2016.06.014
48. Ammar, H.O.; Ghorab, M.M.; Mostafa, D.M.; Ibrahim, E.S. Folic acid loaded lipid nanocarriers with promoted skin antiaging and antioxidant efficacy. J. Drug Deliv. Sci. Technol. 2016, 31, 72–82. DOI: 10.1016/J.JDDST.2015.11.007
DOI: https://doi.org/10.1016/j.jddst.2015.11.007
49. Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Hair follicle targeting for effective drug delivery. J. Pharm. Bioallied Sci. 2012, 4(3), 186–193. DOI: 10.4103/0975-7406.99016
DOI: https://doi.org/10.4103/0975-7406.99016
50. Patzelt, A.; Richter, H.; Knorr, F.; Schäfer, U.; Lehr, C.M.; Dähne, L.; et al. Selective follicular targeting by modification of the particle sizes. J. Control. Release 2011, 150(1), 45–48. DOI: 10.1016/J.JCONREL.2010.11.015
DOI: https://doi.org/10.1016/j.jconrel.2010.11.015
51. Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Nanotechnology in hair care: Scope and future. J. Pharm. (Cairo) 2018, 2018, Art. No: 3420204. DOI: 10.1155/2018/3420204
DOI: https://doi.org/10.1155/2018/3420204
52. Fatehi, A.; Ekhlasi, E. Women’s limitations in strategic studies. Women’s Strat. Stud. 2008, 11(1), 9–42.
53. Shioi, A.; Harada, M.; Tanabe, M. Static light scattering from oil-rich microemulsions containing polydispersed cylindrical aggregates in sodium bis(2-ethylhexyl) phosphate system. J. Phys. Chem. 1995, 99(12), 4750–4756. DOI: 10.1021/J100013A052
DOI: https://doi.org/10.1021/j100013a052
54. Fubini, B.; Gasco, M.R.; Gallarate, M. Microcalorimetric study of microemulsions as potential drug delivery systems. II. Evaluation of enthalpy in the presence of drugs. Int. J. Pharm. 1989, 50(2), 213–217. DOI: 10.1016/0378-5173(89)90124-5
DOI: https://doi.org/10.1016/0378-5173(89)90124-5
55. Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J. 2013, 4(4), 267–272. DOI: 10.4103/2229-5178.120635
DOI: https://doi.org/10.4103/2229-5178.120635
56. Gentile, P.; Marini, C.; Ammirati, E.; Perna, E.; Saponara, G.; Garascia, A.; et al. Long-term administration of intravenous inotropes in advanced heart failure. ESC Heart Fail. 2021, 8(6), 4322–4327. DOI: 10.1002/EHF2.13394
DOI: https://doi.org/10.1002/ehf2.13394
57. Shinoda, K.; Araki, M.; Sadaghiani, A.; Khan, A.; Lindman, B. Lecithin-based microemulsions: Phase behavior and microstructure. J. Phys. Chem. 1991, 95(3), 989–993. DOI: 10.1021/J100155A091
DOI: https://doi.org/10.1021/j100155a091
58. Sander, M.; Sander, M.; Burbidge, T.; Beecker, J. Sunscreen and sun protection: Current state of the art. CMAJ 2020, 192(48), E1802–E1808. DOI: 10.1503/CMAJ.201085
DOI: https://doi.org/10.1503/cmaj.201085
59. Cosmeceuticals Market Size, Share. Available online: https://www.arizton.com/market-reports/cosmeceuticals-market-size-share (accessed on 12 March 2024).
60. Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 2004, 99(1), 53–62. DOI: 10.1016/J.JCONREL.2004.06.015
DOI: https://doi.org/10.1016/j.jconrel.2004.06.015
61. Gillani, S.M.; Tareen, A.; Baig, M.; Bukhari, N.; Mehreen, R.; Zafar, A. Awareness and use of sunscreen among Pakistani population. J. Pak. Assoc. Dermatol. 2023, 33(2), 165–171.
62. Hughes, M.C.B.; Williams, G.M.; Baker, P.; Green, A.C. Sunscreen and melanoma prevention. Ann. Intern. Med. 2013, 158(11), 781–790. DOI: 10.7326/0003-4819-158-11-201306040-00002
DOI: https://doi.org/10.7326/0003-4819-158-11-201306040-00002
63. Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin. Drug Deliv. 2020, 17(3), 357–377. DOI: 10.1080/17425247.2020.1727883
DOI: https://doi.org/10.1080/17425247.2020.1727883
64. Kumari, S.; Pal, B.; Tewari, D.; Sahu, S.K. Epidemiological limitations in dermatological studies. Clin. Epidemiol. Glob. Health 2023, 23, Art. No: 101382. DOI: 10.1016/j.cegh.2023.101382
DOI: https://doi.org/10.1016/j.cegh.2023.101382
65. Darlington, S.; Williams, G.; Neale, R.; Frost, C.; Green, A. Early-life sun exposure and melanoma risk. Arch. Dermatol. 2003, 139(4), 451–455. DOI: 10.1001/archderm.139.4.451
DOI: https://doi.org/10.1001/archderm.139.4.451
66. Nanjwade, B.K. Commercialization of topical formulations containing nanoparticles. World J. Pharm. Pharm. Sci. 2017, 6(4), 643–691. DOI: 10.20959/WJPPS20174-8927
DOI: https://doi.org/10.20959/wjpps20174-8927
67. Affandi, M.M.R.M.M.; Tripathy, M.; Majeed, A.B.A. Solubility enhancement of simvastatin and atorvastatin by arginine: Contact angle determination, wettability and surface energy characteristics. J. Mol. Liq. 2017, 240, 340–344. DOI: 10.1016/j.molliq.2017.05.068
DOI: https://doi.org/10.1016/j.molliq.2017.05.068
68. González-Rodríguez, M.L., Rabasco, A.M. Nanomaterials in hair care and treatment. Acta Biomater. 2022, 142, 14-35. doi:10.1016/j.actbio.2022.02.025.
DOI: https://doi.org/10.1016/j.actbio.2022.02.025
69. Katoh, N. Future perspectives in the treatment of atopic dermatitis. J. Dermatol. 2009, 36(4), 367–376. DOI: 10.1111/j.1346-8138.2009.00662.x
DOI: https://doi.org/10.1111/j.1346-8138.2009.00662.x
70. Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020, 12(3), 288. DOI: 10.3390/pharmaceutics12030288
DOI: https://doi.org/10.3390/pharmaceutics12030288
71. Brugè, F.; Damiani, E.; Marcheggiani, F.; Offerta, A.; Puglia, C.; Tiano, L. A comparative study on the possible cytotoxic effects of different nanostructured lipid carrier (NLC) compositions in human dermal fibroblasts. Int. J. Pharm. 2015, 495(2), 879–885. DOI: 10.1016/j.ijpharm.2015.09.033
DOI: https://doi.org/10.1016/j.ijpharm.2015.09.033
72. Azarnezhad, A.; Samadian, H.; Jaymand, M.; Sobhani, M.; Ahmadi, A. Toxicological profile of lipid-based nanostructures: Are they considered as completely safe nanocarriers? Crit. Rev. Toxicol. 2020, 50(2), 148–176. DOI: 10.1080/10408444.2020.1719974
DOI: https://doi.org/10.1080/10408444.2020.1719974
73. Acevedo-Morantes, C.Y.; Acevedo-Morantes, M.T.; Suleiman-Rosado, D.; Ramírez-Vick, J.E. Evaluation of the cytotoxic effect of camptothecin solid lipid nanoparticles on MCF7 cells. Drug Deliv. 2013, 20(4), 338–348. DOI: 10.3109/10717544.2013.834412
DOI: https://doi.org/10.3109/10717544.2013.834412
74. Mendes, L.P.; Delgado, J.M.F.; Costa, A.D.A.; Vieira, M.S.; Benfica, P.L.; Lima, E.M.; et al. Biodegradable nanoparticles designed for drug delivery: The number of nanoparticles impacts on cytotoxicity. Toxicol. In Vitro 2015, 29(6), 1268–1274. DOI: 10.1016/j.tiv.2014.12.021
DOI: https://doi.org/10.1016/j.tiv.2014.12.021
75. Fang, J.-Y.; Hwang, T.-L.; Fang, C.-L.; Chiu, H.-C. In vitro and in vivo evaluations of the efficacy and safety of skin permeation enhancers using flurbiprofen as a model drug. Int. J. Pharm. 2003, 255(1–2), 153–166. DOI: 10.1016/S0378-5173(03)00086-3
DOI: https://doi.org/10.1016/S0378-5173(03)00086-3
76. Kligman, A.M. Cosmetics: A dermatologist looks to the future—Promises and problems. Dermatol. Clin. 2000, 18(4), 699–709. DOI: 10.1016/S0733-8635(05)70221-7
DOI: https://doi.org/10.1016/S0733-8635(05)70221-7
77. Rees, G.D.; Robinson, B.H. Esterification reactions catalyzed by Chromobacterium viscosum lipase in CTAB-based microemulsion systems. Biotechnol. Bioeng. 1995, 45(4), 344–355. DOI: 10.1002/bit.260450409.
DOI: https://doi.org/10.1002/bit.260450409
78. Kováčik, A.; Kopečná, M.; Vávrová, K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv. 2020, 17(2), 145–155. DOI: 10.1080/17425247.2020.1713087
DOI: https://doi.org/10.1080/17425247.2020.1713087
79. Azeem, A.; Khan, Z.I.; Aqil, M.; Ahmad, F.J.; Khar, R.K.; Talegaonkar, S. Microemulsions as a surrogate carrier for dermal drug delivery. Drug Dev. Ind. Pharm. 2009, 35(5), 525–547. DOI: 10.1080/03639040802448646
DOI: https://doi.org/10.1080/03639040802448646
80. Abud, M.M.; Ibrahim, R.I. The effect of high temperatures on the optical properties of sun creams protecting against ultraviolet radiation. J. Optics. 2025, 54(2), 1137–1143. DOI:10.1007/s12596-025-02568-z
DOI: https://doi.org/10.1007/s12596-025-02568-z
81. Dhapte-Pawar, V.; Kadam, S.; Saptarsi, S.; Kenjale, P.P. Nanocosmeceuticals: Future aspects. Future Sci. OA 2020, 6(2), Art. No: FSO409. DOI: 10.2144/fsoa-2019-0109
DOI: https://doi.org/10.2144/fsoa-2019-0109
82. Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv. 2006, 13(3), 175–187. DOI: 10.1080/10717540500455975
DOI: https://doi.org/10.1080/10717540500455975
83. Al-Halaseh, L.K.; Al-Adaileh, S.; Mbaideen A, Abu Hajleh MN, Al-Samydai A, Zakaraya ZZ, Abu Dayyih W. Implication of parabens in cosmetics and cosmeceuticals: Advantages and limitations. J. Cosmet. Dermatol. 2022, 21(11), 3265–3271. DOI: 10.1111/jocd.14775.
DOI: https://doi.org/10.1111/jocd.14775
84. Rosen, J.; Landriscina, A.; Friedman, A.J. Nanotechnology-based cosmetics for hair care. Cosmetics 2015, 2(3), 211–224. DOI: 10.3390/cosmetics2030211
DOI: https://doi.org/10.3390/cosmetics2030211
85. Shahzad, K.; Ahmad, F.; Javaid, A. Medicine affordability and accessibility: A case of low and middle-income group of Gujranwala district. Int. J. Manag. Res. Emerg. Sci. 2022, 12(3). DOI: 10.56536/ijmres.v12i3.238
DOI: https://doi.org/10.56536/ijmres.v12i3.238
86. Draelos, Z.D. Nutrition and enhancing youthful-appearing skin. Clin. Dermatol. 2010, 28(4), 400–408. DOI: 10.1016/j.clindermatol.2010.03.019
DOI: https://doi.org/10.1016/j.clindermatol.2010.03.019
87. Rabasco Alvarez, A.M.; González Rodríguez, M.L. Lipids in pharmaceutical and cosmetic preparations. Grasas Aceites 2000, 51(1–2). DOI: 10.3989/gya.2000.v51.i1-2.409
DOI: https://doi.org/10.3989/gya.2000.v51.i1-2.409
88. Hönzke, S.; Gerecke, C.; Elpelt, A.; Zhang, N.; Unbehauen, M.; Kral, V.; et al. Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing. J. Control. Release 2016, 242, 50–63. DOI: 10.1016/j.jconrel.2016.06.030
DOI: https://doi.org/10.1016/j.jconrel.2016.06.030
89. Rona, C.; Berardesca, E. Aging skin and food supplements: The myth and the truth. Clin. Dermatol. 2008, 26(6), 641–647. DOI: 10.1016/j.clindermatol.2007.09.002
DOI: https://doi.org/10.1016/j.clindermatol.2007.09.002
90. Kim, S.K. Marine cosmeceuticals. J. Cosmet. Dermatol. 2014, 13(1), 56–67. DOI: 10.1111/jocd.12057
DOI: https://doi.org/10.1111/jocd.12057
91. Ahsan, H. The biomolecules of beauty: Biochemical pharmacology and immunotoxicology of cosmeceuticals. J. Immunoassay Immunochem. 2019, 40(1), 91–108. DOI: 10.1080/15321819.2018.1555766
DOI: https://doi.org/10.1080/15321819.2018.1555766
92. Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 2016, 21(5), Art. No: 551. DOI: 10.3390/molecules21050551
DOI: https://doi.org/10.3390/molecules21050551
93. Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. DOI: 10.2147/NSA.S19419
DOI: https://doi.org/10.2147/NSA.S19419
94. Bialek, A.; Bialek, M.; Jelinska, M.; Tokarz, A. Fatty acid profile of new promising unconventional plant oils for cosmetic use. Int. J. Cosmet. Sci. 2016, 38(4), 382–388. DOI: 10.1111/ICS.12301
DOI: https://doi.org/10.1111/ics.12301
95. Bonnet, C. Lipids, a natural raw material at the heart of cosmetics innovation. OCL - Oilseeds Fats, Crops Lipids 2018, 25, Art. No. 055. DOI: 10.1051/OCL/2018055
DOI: https://doi.org/10.1051/ocl/2018055
96. Wang, Z.; Zhao, L.; Mou, X.; Chen, Y. Enzymatic approaches to site-selective oxidation of quinoline and derivatives. Org. Biomol. Chem. 2022, 20(14), 2580–2600. DOI: 10.1039/D2OB00200K
DOI: https://doi.org/10.1039/D2OB00200K
97. Bukhari, S.I.; Imam, S.S.; Ahmad, M.Z.; Vuddanda, P.R.; Alshehri, S.; Mahdi, W.A.; et al. Recent progress in lipid nanoparticles for cancer theranostics: Opportunity and challenges. Pharmaceutics 2021, 13(6), Art. No. 840. DOI: 10.3390/PHARMACEUTICS13060840
DOI: https://doi.org/10.3390/pharmaceutics13060840
98. Puri, A.; Loomis, K.; Smith, B.; Lee, J.H.; Yavlovich, A.; Heldman, E.; et al. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009, 26(6), 523–580. DOI: 10.1615/CRITREVTHERDRUGCARRIERSYST.V26.I6.10
DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
99. Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; et al. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, Art. No. 102. DOI: 10.1186/1556-276X-8-102
DOI: https://doi.org/10.1186/1556-276X-8-102
100. Cevc, G.; Vierl, U. Nanotechnology and the transdermal route. A state of the art review and critical appraisal. J. Control. Release 2010, 141(3), 277–299. DOI: 10.1016/J.JCONREL.2009.10.016
DOI: https://doi.org/10.1016/j.jconrel.2009.10.016
101. Kakadia, P.G.; Conway, B.R. Solid lipid nanoparticles: A potential approach for dermal drug delivery. Am. J. Pharmacol. Sci. 2014, 2(5A), 1–7. DOI: 10.12691/AJPS-2-5A-1
DOI: https://doi.org/10.12691/ajps-2-5A-1
102. Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015, 6, Art. No. 286. DOI: 10.3389/FPHAR.2015.00286
DOI: https://doi.org/10.3389/fphar.2015.00286
103. Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part II - Ocular drug-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm. 2017, 110, 58–69. DOI: 10.1016/j.ejpb.2016.10.013
DOI: https://doi.org/10.1016/j.ejpb.2016.10.013
104. Castelli, F.; Puglia, C.; Sarpietro, M.G.; Rizza, L.; Bonina, F. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int. J. Pharm. 2005, 304(1–2), 231–238. DOI: 10.1016/J.IJPHARM.2005.08.011
DOI: https://doi.org/10.1016/j.ijpharm.2005.08.011
105. Marcato, P.D.; Durán, N. New aspects of nanopharmaceutical delivery systems. J. Nanosci. Nanotechnol. 2008, 8(5), 2216–2229. DOI: 10.1166/JNN.2008.274
DOI: https://doi.org/10.1166/jnn.2008.274
106. Traversier, M.; Gaslondes, T.; Milesi, S.; Michel, S.; Delannay, E. Polar lipids in cosmetics: recent trends in extraction, separation, analysis and main applications. Phytochem. Rev. 2018, 17(6), 1179–1210. DOI: 10.1007/S11101-018-9588-7
DOI: https://doi.org/10.1007/s11101-018-9588-7
107. Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. DOI: 10.2147/IJN.S68861
DOI: https://doi.org/10.2147/IJN.S68861
108. Kaur, I.P.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv. 2010, 7(11), 1303–1327. DOI: 10.1517/17425247.2010.525230
DOI: https://doi.org/10.1517/17425247.2010.525230
109. Passerini, N.; Gavini, E.; Albertini, B.; Rassu, G.; Di Sabatino, M.; Sanna, V.; et al. Evaluation of solid lipid microparticles produced by spray congealing for topical application of econazole nitrate. J. Pharm. Pharmacol. 2010, 61(5), 559–567. DOI: 10.1211/JPP.61.05.0003
DOI: https://doi.org/10.1211/jpp.61.05.0003
110. Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm. 2007, 328(1–2), 191–195. DOI: 10.1016/J.IJPHARM.2006.08.007
DOI: https://doi.org/10.1016/j.ijpharm.2006.08.007
111. Lacatusu, I.; Istrati, D.; Bordei, N.; Popescu, M.; Seciu, A.M.; Panteli, L.M.; et al. Synergism of plant extract and vegetable oils-based lipid nanocarriers: Emerging trends in development of advanced cosmetic prototype products. Mater. Sci. Eng. C 2020, 108, Art. No. 110412. DOI: 10.1016/J.MSEC.2019.110412
DOI: https://doi.org/10.1016/j.msec.2019.110412
112. Arsenie, L.V.; Lacatusu, I.; Oprea, O.; Bordei, N.; Bacalum, M.; Badea, N. Azelaic acid-willow bark extract-panthenol–Loaded lipid nanocarriers improve the hydration effect and antioxidant action of cosmetic formulations. Ind. Crops Prod. 2020, 154, Art. No. 112658. DOI: 10.1016/J.INDCROP.2020.112658
DOI: https://doi.org/10.1016/j.indcrop.2020.112658
113. Bhalekar, M.R.; Pokharkar, V.; Madgulkar, A.; Patil, N.; Patil, N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech 2009, 10(1), 289–296. DOI: 10.1208/S12249-009-9199-0
DOI: https://doi.org/10.1208/s12249-009-9199-0
114. Fagionato Masiero, J.; Barbosa, E.J.; de Oliveira Macedo, L.; de Souza, A.; Nishitani Yukuyama, M.; Arantes, G.J.; et al. Vegetable oils in pharmaceutical and cosmetic lipid-based nanocarriers preparations. Ind. Crops Prod. 2021, 170, Art. No. 113838. DOI: 10.1016/J.INDCROP.2021.113838
DOI: https://doi.org/10.1016/j.indcrop.2021.113838
115. Hu, F.Q.; Jiang, S.P.; Du, Y.Z.; Yuan, H.; Ye, Y.Q.; Zeng, S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm. 2006, 314(1–2), 83–89. DOI: 10.1016/J.IJPHARM.2006.01.040
DOI: https://doi.org/10.1016/j.ijpharm.2006.01.040
116. Pople, P.V.; Singh, K.K. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int. J. Pharm. 2010, 398(1–2), 165–178. DOI: 10.1016/J.IJPHARM.2010.07.008
DOI: https://doi.org/10.1016/j.ijpharm.2010.07.008
117. Montenegro, L.; Lai, F.; Offerta, A.; Sarpietro, M.G.; Micicchè, L.; Maccioni, A.M.; et al. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol. 2016, 32, 100–112. DOI: 10.1016/J.JDDST.2015.10.003
DOI: https://doi.org/10.1016/j.jddst.2015.10.003