1. Kaur, I.P.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv. 2010, 7(11), 1303–1327. DOI: 10.1517/17425247.2010.525230
DOI: https://doi.org/10.1517/17425247.2010.525230
2. Wu, S., Song, R., Liu, T. & Li, C. Antifungal therapy: Novel drug delivery strategies driven by new targets. Adv. Drug Deliv. Rev. 2023, 199, Art. No: 114967. DOI: 10.1016/j.addr.2023.114967
DOI: https://doi.org/10.1016/j.addr.2023.114967
3. Rani, N.; Sharma, A.; Gupta, G.K.; Singh, R. Imidazoles as potential antifungal agents: A review. Mini Rev. Med. Chem. 2013, 13, 1626–1655. DOI: 10.2174/13895575113139990069
DOI: https://doi.org/10.2174/13895575113139990069
4. Mathur, M.; Devi, V.K. Potential of novel drug delivery systems in the management of topical candidiasis. J. Drug Target 2017, 25, 685–703. DOI: 10.1080/1061186X.2017.1331352
DOI: https://doi.org/10.1080/1061186X.2017.1331352
5. Jain, S.; Tripathi, S.; Tripathi, P.K. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J. Drug Deliv. Sci. Technol. 2021, 61, Art. No: 102166. DOI: 10.1016/j.jddst.2020.102166.
6. Akhtar, N.; Verma, A.; Pathak, K.Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr. Pharm. Des. 2015, 21, 2892–2913. DOI: 10.2174/1381612821666150428150456.
DOI: https://doi.org/10.2174/1381612821666150428150456
7. Nangare, S.; Dugam, S. Smart invasome synthesis, characterizations, pharmaceutical applications, and pharmacokinetic perspective: A review. Futur. J. Pharm. Sci. 2020, 6, Art. No :123. DOI: 10.1186/s43094-020-00145-8
DOI: https://doi.org/10.1186/s43094-020-00145-8
8. Gaynanova, G., Vasileva, L., Kashapov, R., Kuznetsova, D., Kushnazarova, R., Tyryshkina, A., Vasilieva, E., Petrov, K., Zakharova, L. & Sinyashin, O. Self-assembling drug formulations with tunable permeability and biodegradability. Molecules 2021, 26, Art. No: 6786 DOI:10.3390/molecules26226786
DOI: https://doi.org/10.3390/molecules26226786
9. Albash, R.; Al-Mahallawi, A.M.; Hassan, M.; Alaa-Eldin, A.A. Development and optimization of terpene-enriched vesicles (Terpesomes) for effective ocular delivery of fenticonazole nitrate: in vitro characterization and in vivo assessment. Int. J. Nanomed. 2021, 16, 609-621. DOI: 10.2147/IJN.S274290
DOI: https://doi.org/10.2147/IJN.S274290
10. Walbi, I.A.; Ahmad, M.Z.; Ahmad, J.; Algahtani, M.S., Alali, A.S.; Alsudi, S.A.; Aodah, A.H.; Albarqi, H.A. Development of a curcumin-loaded lecithin/chitosan nanoparticle utilizing a box-behnken design of experiment: formulation design and influence of process parameters. Polymers 2022, 14, Art. No: 3758. DOI: 10.3390/polym14183758
DOI: https://doi.org/10.3390/polym14183758
11. Alhalmi, A.; Amin, S.; Beg,.S.; Al-Salahi; R.; Mir,.S.R., Kohli, K. Formulation and optimization of naringin loaded nanostructured lipid carriers using Box-Behnken based design: In vitro and ex vivo evaluation. J. Drug Deliv. Sci. Technol. 2022, 74, Art. No: 103590. DOI: 10.1016/j.jddst.2022.103590
DOI: https://doi.org/10.1016/j.jddst.2022.103590
12. Sala, M.;. Elaissari, A.; Fessi, H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J. Control. Rel. 2016, 239, 182–202. DOI: 10.1016/j.jconrel.2016.07.003
DOI: https://doi.org/10.1016/j.jconrel.2016.07.003
13. Dragicevic-Curic, N.; Gräfe, S.; Gitter, B.; Fahr, A. Efficacy of temoporfin-loaded invasomes in the photodynamic therapy in human epidermoid and colorectal tumour cell lines. J. Photochem. Photobiol. B, Biol. 2010, 101, 238–250. DOI: 10.1016/j.jphotobiol.2010.07.009
DOI: https://doi.org/10.1016/j.jphotobiol.2010.07.009
14. Sailaja, A.K.; Kirthi, R. Ethosomes and invasomes-A Vesicular Drug delivery carrier and their applications in transdermal drug delivery systems. Pharm. Pharmacol. Res. 2024, 7, 158. DOI: 10.31579/2688-7517/158
15. Raina, N., Rani R., Thakur V.K., Gupta M. New insights in topical drug delivery for skin disorders: from a nanotechnological perspective. ACS omega 2023, 8, 19145-19167. DOI: 1021/acsomega.2c08016
DOI: https://doi.org/10.1021/acsomega.2c08016
16. Samir,.B.; El-Kamel,.A.; Zahran,.N.; Heikal,.L. Resveratrol-loaded invasome gel: A promising nanoformulation for treatment of skin cancer. Drug Deliv. Transl. Res. 2024, 14, 3354-3370. DOI: 10.1007/s13346-024-01534-9
DOI: https://doi.org/10.1007/s13346-024-01534-9
17. Teaima, M.H.; Eltabeeb, M.A.; El-Nabarawi, M.A., Abdellatif, M.M. Utilization of propranolol hydrochloride mucoadhesive invasomes as a locally acting contraceptive: In-vitro, ex-vivo, and in-vivo evaluation. Drug Deliv. 2022, 29(1), 2549–2560. DOI: 10.1080/10717544.2022.2100514
DOI: https://doi.org/10.1080/10717544.2022.2100514
18. Badran, M.M.; Kuntsche, J.; Fahr, A. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: Dependency on needle size and applied formulation. Eur. J. Pharm. Sci. 2009, 36, 511–523. DOI: 10.1016/j.ejps.2008.12.008,
DOI: https://doi.org/10.1016/j.ejps.2008.12.008
19. Cunha, I.V; Campos, A.M.; Gerola, A.P.; Caon, T. Effect of invasome composition on membrane fluidity, vesicle stability and skin interactions. Int. J. Pharm. 2023, 646, Art. No: 123472. DOI: 10.1016/j.ijpharm.2023.123472
DOI: https://doi.org/10.1016/j.ijpharm.2023.123472
20. Jain,.S.; Tripathi,.S.;.Tripathi,.P.K., Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J. Drug Deliv. Sci. Technol. 2021, 61, Art. No: 102166. DOI: 10.1016/j.jddst.2020.102166
DOI: https://doi.org/10.1016/j.jddst.2020.102166
21. El-Kayal, M.; Hatem, S., A comparative study between nanostructured lipid carriers and invasomes for the topical delivery of luteolin: Design, optimization and pre-clinical investigations for psoriasis treatment. J. Drug Deliv. Sci. Technol. 2024, 97, Art. No: 105740. DOI: 10.1016/j.jddst.2024.105740
DOI: https://doi.org/10.1016/j.jddst.2024.105740
22. Salem, H.F.; Gamal, A.; Saeed, H.; Kamal, M.; Tulbah, A.S. Enhancing the bioavailability and efficacy of vismodegib for the control of skin cancer: in vitro and in vivo studies. Pharmaceuticals 2022, 15(2), Art. No: 126. DOI: 10.3390/ph15020126
DOI: https://doi.org/10.3390/ph15020126
23. Dragicevic-Curic, N.; Scheglmann, D.; Albrecht, V.; Fahr, A. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies. J. Control. Rel. 2008, 127, 59–69. DOI: 10.1016/j.jconrel.2007.12.013
DOI: https://doi.org/10.1016/j.jconrel.2007.12.013
24. RefeKumar, B.; Sahoo, P.K.; Manchanda, S. Formulation, characterization and ex vivo study of curcumin nano-invasomal gel for enhanced transdermal delivery. OpenNano 2022, 7, Art. No: 100058. DOI: 10.1016/j.onano.2022.100058
DOI: https://doi.org/10.1016/j.onano.2022.100058