Vachharajani, A.; Dawson, J. Respiratory disorders in the neonate. In Biochemical and Molecular Basis of Pediatric Disease;Academic Press: London, Great Britain, 2021, pp. 117-130.doi.org/10.1016/B978-0-12-817962-8.00004-4
DOI: https://doi.org/10.1016/B978-0-12-817962-8.00004-4
Szczapa, J.; Szczapa T. Choroby układu oddechowego. In Podstawy neonatologii; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2008, pp. 165-167.
Martin, R.J.; Abu-Shaweesh, J.M.; Baird, T.M. Apnoea of prematurity. Paediatr Respir Rev. 2004,5, Suppl A:S377-382. doi: 10.1016/s1526-0542(04)90067-x.
DOI: https://doi.org/10.1016/S1526-0542(04)90067-X
Zhao, J.; Gonzalez, F.; Mu, D. Apnea of prematurity: from cause to treatment. Eur J Pediatr. 2011,170(9),1097-1105. doi: 10.1007/s00431-011-1409-6
DOI: https://doi.org/10.1007/s00431-011-1409-6
Martin, R.J.; Fanaroff, A.A. Neonatal apnea, bradycardia, or desaturation: does it matter? J Pediatr. 1998,132(5), 758-759. doi: 10.1016/s0022-3476(98)70297-5.
DOI: https://doi.org/10.1016/S0022-3476(98)70297-5
Poets, C.F. Apnea of prematurity: What can observational studies tell us about pathophysiology? Sleep Med. 2010, 11(7), 701-707. doi: 10.1016/j.sleep.2009.11.016.
DOI: https://doi.org/10.1016/j.sleep.2009.11.016
Jones, R.A.; Lukeman, D. Apnoea of immaturity. Mortality and handicap. Arch Dis Child. 1982, 57(10), 766-768. doi: 10.1136/adc.57.10.766.
DOI: https://doi.org/10.1136/adc.57.10.766
Janvier, A.; Khairy, M.; Kokkotis, A.; Cormier, C.; Messmer, D.; Barrington, K.J. Apnea is associated with neurodevelopmental impairment in very low birth weight infants. J Perinatol. 2004, 24(12), 763-768. doi: 10.1038/sj.jp.7211182.
DOI: https://doi.org/10.1038/sj.jp.7211182
Di Fiore, J.M.; Kaffashi, F.; Loparo, K.; Sattar, A.; Schluchter, M.; Foglyano, R.; Martin, R.J., Wilson, C.G. The relationship between patterns of intermittent hypoxia and retinopathy of prematurity in preterm infants. Pediatr Res. 2012, 72(6), 606-612. doi: 10.1038/pr.2012.132.
DOI: https://doi.org/10.1038/pr.2012.132
Williamson, M.; Poorun, R.; Hartley, C. Apnoea of Prematurity and Neurodevelopmental Outcomes: Current Understanding and Future Prospects for Research. Front Pediatr. 2021,25(9),755-677. doi: 10.3389/fped.2021.755677.
DOI: https://doi.org/10.3389/fped.2021.755677
Pergolizzi, J.; Kraus, A.; Magnusson, P.; Breve, F.; Mitchell, K.; Raffa, R.; LeQuang, J.A.K.; Varrassi, G. Treating Apnea of Prematurity. Cureus. 2022, 14(1),217-283. doi: 10.7759/cureus.21783
DOI: https://doi.org/10.7759/cureus.21783
Abu-Shaweesh, J.M., Martin, R.J. Neonatal apnea: what's new? Pediatr Pulmonol. 2008, 43(10), 937-944. doi: 10.1002/ppul.20832.
DOI: https://doi.org/10.1002/ppul.20832
Bober, K.; Swietliński, J.; Musialik-Swietlińska, E.; Łaniewski-Wołłk, P.; Rawicz, M. Zasady uwalniania noworodków z wentylacji neinwazyjnej [Weaning newborns from noninvasive ventilation. Med Wieku Rozwoj. 2008,12,865-868. Polish.
Moretti, C.; Gizzi, C.; Papoff, P.; Lampariello, S.; Capoferri, M.; Calcagnini, G.; Bucci, G. Comparing the effects of nasal synchronized intermittent positive pressure ventilation (nSIPPV) and nasal continuous positive airway pressure (nCPAP) after extubation in very low birth weight infants. Early Hum Dev. 1999,56(2-3),167-177. doi: 10.1016/s0378-3782(99)00046-8.
DOI: https://doi.org/10.1016/S0378-3782(99)00046-8
Aldana-Aguirre, J.C.; Pinto, M.; Featherstone, R.M.; Kumar, M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017, 102(1), 17-23. doi: 10.1136/archdischild-2015-310299.
DOI: https://doi.org/10.1136/archdischild-2015-310299
Smith, V.C.; Kelty-Stephen, D.; Qureshi Ahmad, M.; Mao, W.; Cakert, K; Osborne, J; Paydarfar, D. Stochastic Resonance Effects on Apnea, Bradycardia, and Oxygenation: A Randomized Controlled Trial. Pediatrics. 2015,136(6),1561-1568. doi: 10.1542/peds.2015-1334.
DOI: https://doi.org/10.1542/peds.2015-1334
Smit, J.P.; Hagen, E.J. Polymorphism in Caffeine Citric Acid Cocrystals. J Chem Crystallogr. 2015, 45, 128–133. https://doi.org/10.1007/s10870-015-0573-3
DOI: https://doi.org/10.1007/s10870-015-0573-3
National Center for Biotechnology Information. "PubChem Compound Summary for CID 6241, Caffeine Citrate" PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Caffeine-Citrate. Accessed 23 December, 2023.
National Center for Biotechnology Information. "PubChem Compound Summary for CID 2153, Theophylline" PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Theophylline. Accessed 24 December, 2023.
Armanian, A.M.; Badiee, Z.; Afghari, R.; Salehimehr, N.; Hassanzade, A.; Sheikhzadeh, S.; Sharif Tehrani, M.; Rezvan, G. Prophylactic aminophylline for prevention of apnea at higher-risk preterm neonates. Iran Red Crescent Med J. 2014,16(8), 125-159. doi: 10.5812/ircmj.12559.
DOI: https://doi.org/10.5812/ircmj.12559
National Center for Biotechnology Information. "PubChem Compound Summary for CID 3156, Doxapram" PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Doxapram. Accessed 24 December, 2023.
Katzung, B.G., Masters, S.B., Trevor, A.J. Drugs with important actions on smooth muscle. In Basic and Clinical Pharmacology, 12th Edition; The McGraw-Hill Companies: London, Great Britain 2012; 344-346.
Aranda, J.V.; Beharry, K.D. Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Semin Fetal Neonatal Med. 2020, 25(6), 1011-10083. doi: 10.1016/j.siny.2020.101183.
DOI: https://doi.org/10.1016/j.siny.2020.101183
Mutschler, E. Farmakologia szczegółowa. In Farmakologia i Toksykologia, MedPharm:Wrocław, Polska, 2010; 195-196 and651-652.
Bruschettini, M.; Brattström, P.; Russo, C.; Onland, W.; Davis, P.G.; Soll, R. Caffeine dosing regimens in preterm infants with or at risk for apnea of prematurity. Cochrane Database Syst Rev. 2023, 4(4), 138-173. doi: 10.1002/14651858.CD013873.pub2.
DOI: https://doi.org/10.1002/14651858.CD013873.pub2
Hascoet, J.M.; Hamon, I.; Boutroy, M.J. Risks and benefits of therapies for apnoea in premature infants. Drug Saf. 2000, 23(5), 363-79. doi: 10.2165/00002018-200023050-00002.
DOI: https://doi.org/10.2165/00002018-200023050-00002
Yost, C.S. A new look at the respiratory stimulant doxapram. CNS Drug Rev. 2006, 12(3-4), 236-249. doi: 10.1111/j.1527-3458.2006.00236.x.
DOI: https://doi.org/10.1111/j.1527-3458.2006.00236.x
Cunningham, K.P.; MacIntyre, D.E.; Mathie, A.; Veale, E.L. Effects of the ventilatory stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) channels. Acta Physiol (Oxf). 2020,228(2), 133-161. doi: 10.1111/apha.13361.
DOI: https://doi.org/10.1111/apha.13361
Greze, E.; Benard, M.; Hamon, I.; Casper, C.; Haddad, F.E.; Boutroy, M.J.; Hascoët, J.M. Doxapram Dosing for Apnea of Prematurity Based on Postmenstrual Age and Gender: A Randomized Controlled Trial. Paediatr Drugs. 2016,18(6), 443-449. doi: 10.1007/s40272-016-0192-2.
DOI: https://doi.org/10.1007/s40272-016-0192-2
Barbé, F.; Hansen, C.; Badonnel, Y.; Legagneur, H.; Vert, P.; Boutroy, M.J. Severe side effects and drug plasma concentrations in preterm infants treated with doxapram. Ther Drug Monit. 1999,21(5), 547-552. doi: 10.1097/00007691-199910000-00011
DOI: https://doi.org/10.1097/00007691-199910000-00011
Charakterystyka Produktu Leczniczego Peyona, https://ec.europa.eu/health/documents/community-register/2016/20160224134299/anx_134299_pl.pdf. Accessed 16 February, 2024.
Aranda, J.V.; Turmen, T.; Sasyniuk, B.I. Pharmacokinetics of diuretics and methylxanthines in the neonate. Eur J Clin Pharmacol. 1980,18(1), 55-63. doi: 10.1007/BF00561479.
DOI: https://doi.org/10.1007/BF00561479
Adamska-Dyniewska, H. Teofilina In Terapia monitorowana Wydawnictwo TTM:Łódź, Polska 1994, 68-79
Flint, R.B.; Simons, S.H.P.; Andriessen, P.; Liem, K.D.; Degraeuwe, P.L.J.; Reiss, I.K.M.; Ter Heine, R.; Engbers, A.G.J.; Koch, B.C.P.; Groot, R.; Burger, D.M.; Knibbe, C.A.J.; Völler, S. DINO Research Group. The bioavailability and maturing clearance of doxapram in preterm infants. Pediatr Res. 2021, 89(5), 1268-1277. doi: 10.1038/s41390-020-1037-9.
DOI: https://doi.org/10.1038/s41390-020-1037-9
Lopez-Sanchez, R.D.C.; Lara-Diaz, V.J.; Aranda-Gutierrez, A.; Martinez-Cardona, J.A.; Hernandez, J.A. HPLC Method for Quantification of Caffeine and Its Three Major Metabolites in Human Plasma Using Fetal Bovine Serum Matrix to Evaluate Prenatal Drug Exposure. J Anal Methods Chem. 2018, 208, 50-59. doi: 10.1155/2018/2085059.
DOI: https://doi.org/10.1155/2018/2085059
Routledge, P.A.; Hutchings, A. Therapeutic drug monitoring. TDM. 2013, 945-962.
DOI: https://doi.org/10.1016/B978-0-08-097037-0.00076-2
Long, J.Y.; Hu, Y.H.; Xia, Y.; Du, F.F.; Dai, H.R.; Tian, M.; Xu, J.; Cheng, R.; Ding, X.S.; Guo, H.L.; Chen, F. Therapeutic drug monitoring of caffeine and its primary metabolites in plasma using LC-ESI-MS/MS for apnea of prematurity treatment: Evaluation of ultrapure water as a surrogate matrix. Biomed Chromatogr. 2022, 36(11),54-62. doi: 10.1002/bmc.5462.
DOI: https://doi.org/10.1002/bmc.5462
Pesce, A.J.; Rashkin, M.; Kotagal, U. Standards of laboratory practice: theophylline and caffeine monitoring. National Academy of Clinical Biochemistry. Clin Chem. 1998, 44(5), 1124-1128.
Juárez-Olguín, H. Therapeutic monitoring of theophylline in newborns with apnea.P&T.2004, 29, 322-324.