Sollinger H.W.: Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients- U.S. Renal Transplant Mycophenolate Mofetil Study Group, Transplantation, 1995, 60(3): 225-232.
DOI: https://doi.org/10.1097/00007890-199508000-00003
Allison A. C., Elsie M.E.: Mycophenolate mofetil and its mechanisms of action, Immunopharmacology, 2000, 47.2-3: 85-118.
DOI: https://doi.org/10.1016/S0162-3109(00)00188-0
Hedstrom L.: IMP dehydrogenase: structure, mechanism, and inhibition, Chemical Reviews, 2009, 109(7): 2903-28.
DOI: https://doi.org/10.1021/cr900021w
Jain J., Almquist S. J., Ford P. J., Shlyakhter D., Wang Y., Nimmesgern E., Germann U.: Regulation of inosine monophosphate dehydrogenase type I and type II isoforms in human
lymphocytes. Biochemical Pharmacology, 2004, 67(4): 767-776.
DOI: https://doi.org/10.1016/j.bcp.2003.09.043
Sombogaard F., Peeters A. M., Baan C. C., Mathot R. A., Quaedackers M. E., Vulto A. G., Weimar W., van Gelder T.: Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not, Therapeutic Drug Monitoring, 2009, 31(5): 549–556.
Budde K., Glander P., Bauer S., Braun K., Waiser J., Fritsche L., Neumayer, H. H.: Pharmacodynamic monitoring of mycophenolate mofetil. Clinical Chemistry and Medicine Laboratory, 2000, 38(11): 1213-1216.
DOI: https://doi.org/10.1515/CCLM.2000.191
Carr S. F., Papp E., Wu J. C., Natsumeda, Y.: Characterization of human type I and type II IMP dehydrogenases, Journal of Biological Chemistry, 1993, 268(36): 27286-27290.
DOI: https://doi.org/10.1016/S0021-9258(19)74247-1
Oellerich M., Barten M. J., Armstrong V. W.: Biomarkers- The Link Between Therapeutic Drug Monitoring and Pharmacodynamics, Therapeutic Drug Monitoring, 2006, 28:35-38.
DOI: https://doi.org/10.1097/01.ftd.0000194503.85763.f5
Kellum J. A., Lameire N., Aspelin P., Barsoum R. S., Burdmann E. A., Goldstein S. L., Herzog C. A., Joannidis M., Kribben A., Levey A. S., MacLeod A. M., Mehta R. L., Murray P. T., Naicker S., Opal S. M., Schaefer F., Schetz M., Uchino S.: Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury, Kidney International Supplements, 2012, 2(1): 1-138.
Raggi M. C., Siebert S. B., Steimer W.: Customized Mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients’ outcomes after renal transplantation, Transplantation, 2010, 90: 1536-1541.
DOI: https://doi.org/10.1097/TP.0b013e3182000027
Magasanik B., Moyed H. S., Gehring L. B.: B.: Enzymes essential for the biosynthesis of nucleic acid guanine- inosine 5'-phosphate dehydrogenase of Aerobacter aerogenes, Journal of Biological Chemistry, 1957, 226(1): 339-350.
DOI: https://doi.org/10.1016/S0021-9258(18)64835-5
Proffitt R. T., Pathak V. K., Villacorte D. G., Presant, C. A.: Sensitive radiochemical assay for inosine 5′-monophosphate dehydrogenase and determination of activity in murine tumor and tissue extracts, Cancer Research, 1983, 43(4): 1620-1623.
Ikegami T., Natsumeda Y., Weber G.: Direct assay method for inosine 5′-monophosphate dehydrogenase activity, Analytical biochemistry, 1985, 150(1): 155-160.
DOI: https://doi.org/10.1016/0003-2697(85)90454-3
Balzarini J., De Clercq E.: Assay method for monitoring the inhibitory effects of antimetabolites on the activity of inosinate dehydrogenase in intact human CEM lymphocytes, Biochemical Journal, 1992, 287(3): 785-790.
DOI: https://doi.org/10.1042/bj2870785
Shimura K., Okada M., Shiraki H., Nakagawa H.: IMP dehydrogenaseStudies on regulatory properties of crude tissue extracts based on an improved assay method, The Journal of Biochemistry, 1983, 94(5:): 1595-1603.
Montero C., Duley J. A., Fairbanks L. D., McBride M. B., Micheli V., Cant A. J., Morgan G.: Demonstration of induction of erythrocyte inosine monophosphate dehydrogenase activity in Ribavirin-treated patients using a high-performance liquid chromatography linked method, Clinica Chimica Acta, 1995, 238(2): 169-178.
DOI: https://doi.org/10.1016/0009-8981(95)06088-U
Vethe N. T., Bremer S., Rootwelt H., Bergan S.: Pharmacodynamics of mycophenolic acid in CD4+ cells: a single-dose study of IMPDH and purine nucleotide responses in healthy individuals. Therapeutic Drug Monitoring, 2008, 30(6): 647-655.
DOI: https://doi.org/10.1097/FTD.0b013e31818955c3
Vethe N. T., Ali A. M., Reine P. A., Andersen A. M., Bremer S., Line P. D., Bergan S.: Simultaneous quantification of IMPDH activity and purine bases in lymphocytes using LC-MS/MS: assessment of biomarker responses to mycophenolic acid. Therapeutic Drug Monitoring, 2014, 36(1): 108-118.
DOI: https://doi.org/10.1097/FTD.0b013e3182a13900
Albrecht W., Storck M., Pfetsch E., Martin W., Abendroth D.: Development and application of a high-performance liquid chromatography-based assay for determination of the activity of inosine 5´-monophosphate dehydrogenase in whole blood and isolated mononuclear cells. Therapeutic Drug Monitoring, 2002, 22(3): 283-294.
DOI: https://doi.org/10.1097/00007691-200006000-00009
Griesmacher A., Weigel G., Seebacher G., Müller, M. M.: IMPdehydrogenase inhibition in human lymphocytes and lymphoblasts by mycophenolic acid and mycophenolic acid glucuronide. Clinical Chemistry, 1997, 43(12): 2312-2317.
DOI: https://doi.org/10.1093/clinchem/43.12.2312
Glander P., Braun K. P., Hambach P., Bauer S., Mai I., Roots I., Budde K.: Non-radioactive determination of inosine 5′-monophosphate dehydrogenase (IMPDH) in peripheral mononuclear cells. Clinical Biochemistry, 2001, 34(7): 543-549.
DOI: https://doi.org/10.1016/S0009-9120(01)00267-3
Glander P., Sombogaard F., Budde K., van Gelder T., Hambach P., Liefeldt L., Mathot R. A.: Improved assay for the nonradioactive determination of inosine 5'-monophosphate dehydrogenase activity in peripheral blood mononuclear cells. Therapeutic Drug Monitoring, 2009, 31(3): 351-359.
DOI: https://doi.org/10.1097/FTD.0b013e31819c3f3d
Daxecker H., Raab M., Müller M. M.: Influence of mycophenolic acid on inosine 5′-monophosphate dehydrogenase activity in human peripheral blood mononuclear cells. Clinica Chimica Acta, 2002, 318(1-2): 71-77.
DOI: https://doi.org/10.1016/S0009-8981(01)00801-4
Laverdiere I., Caron P., Couture F., Guillemette C., Lévesque E.: Liquid chromatography–coupled tandem mass spectrometry-based assay to evaluate inosine-5′-monophosphate dehydrogenase activity in peripheral blood mononuclear cells from stem cell transplant recipients. Analytical Chemistry, 2012, 84(1): 216-223.
DOI: https://doi.org/10.1021/ac202404y
Beringer A., Citterio-Quentin A., Otero R. O., Gustin C., Clarke R., Salvi J. P., Boulieu R.: Determination of inosine 5′-monophosphate dehydrogenase activity in red blood cells of thiopurine-treated patients using HPLC. Journal of Chromatography B, 2017, 1044: 194-199.
DOI: https://doi.org/10.1016/j.jchromb.2017.01.006
Kawanishi M., Yano I., Yoshimura K., Yamamoto T., Hashi S., Masuda S., Matsubara, K.: Sensitive and validated LC-MS/MS methods to evaluate mycophenolic acid pharmacokinetics and
pharmacodynamics in hematopoietic stem cell transplant patients. Biomedical Chromatography, 2015, 29(9): 1309-1316.
DOI: https://doi.org/10.1002/bmc.3423
Liu F., Xu L., Sheng C., Qiu X., Zhang M., Jiao, Z.: Optimization and application of an HPLC method for quantification of inosine-5′-monophosphate dehydrogenase activity as a
pharmacodynamic biomarker of mycophenolic acid in Chinese renal transplant patients. Clinica Chimica Acta, 2018, 485: 333-339.
DOI: https://doi.org/10.1016/j.cca.2018.06.042
Weißbarth G., Wiesen M. H., Fietz C., Streichert T., Ehren R., Weber L. T., Müller C.: Pharmacodynamic monitoring of Mycophenolic acid therapy: improved liquid chromatography-tandem mass spectrometry method for measuring inosin-5'-monophosphate dehydrogenase activity. Therapeutic Drug Monitoring, 2020, 42(2): 282-288.
DOI: https://doi.org/10.1097/FTD.0000000000000688
Spector, T.: Refinement of the Coomassie blue method of protein quantitation: a simple and linear spectrophotometric assay for ≤ 0.5 to 50 μg of protein. Analytical Biochemistry, 1978, 86(1): 42-146.
DOI: https://doi.org/10.1016/0003-2697(78)90327-5
Sombogaard F., Peeters A. M., Baan C. C., Mathot R. A., Quaedackers M. E., Vulto A. G., van Gelder T.: Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not. Therapeutic Drug Monitoring, 2009, 31(5:): 549-556.
DOI: https://doi.org/10.1097/FTD.0b013e3181b7a9d0
Brunet M., Shipkova M., van Gelder T., Wieland E., Sommerer C., Budde K., Haufroid V., Christians U., López-Hoyos M., Barten M., Bergan S., Picard N., Millán L., Marquet P., Hesselink D., Noceti O., Pawinski T., Wallemacq P., Oellerich, M.: Barcelona Consensus on Biomarker-Based Immunosuppressive Drugs Management in Solid Organ Transplantation, Therapeutic Drug Monitoring, 2016, 38(2): 1-20.
DOI: https://doi.org/10.1097/FTD.0000000000000287