Krupodorova, T.; Sevindik, M. Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta. AgroLife Sci. J., 2020, 9(1), 186-191.
Sevindik, M. Antioxidant and antimicrobial capacity of Lactifluus rugatus and its antiproliferative activity on A549 cells. Indian J. Tradit. Know, 2020, 19(2), 423-427. https://doi.org/10.56042/ijtk.v19i2.35356
DOI: https://doi.org/10.56042/ijtk.v19i2.35356
Selamoglu, Z.; Sevindik, M.; Bal, C.; Ozaltun, B.; Sen, İ.; Pasdaran, A. Antioxidant, antimicrobial and DNA protection activities of phenolic content of Tricholoma virgatum (Fr.) P. Kumm. Biointerface Res. Appl. Chem, 2020, 10(3), 5500-5506. https://doi.org/10.33263/BRIAC103.500506
DOI: https://doi.org/10.33263/BRIAC103.500506
Eraslan, E. C.; Altuntas, D.; Baba, H.; Bal, C.; Akgül, H.; Akata, I.; Sevindik, M. Some biological activities and element contents of ethanol extract of wild edible mushroom Morchella esculenta. Sigma J. Engin. Nat. Sci., 2021, 39(1), 24-28.
Sevindik, M. Anticancer, antimicrobial, antioxidant and DNA protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl. Indian J. Exp. Biol., 2021, 59(05), 310-315. https://doi.org/ 10.56042/ijeb.v59i05.50501
Bal, C.; Sevindik, M.; Akgul, H.; Selamoglu, Z. Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma J. Engin. Nat. Sci., 2019, 37(1), 1-5.
DOI: https://doi.org/10.1155/2020/5620484
Sevindik, M.; Akgul, H.; Pehlivan, M.; Selamoglu, Z. Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresenius Environ. Bull., 2017, 26(7), 4757-4763.
Mohammed, F. S.; Günal, S.; Şabik, A. E.; Akgül, H.; Sevindik, M. Antioxidant and Antimicrobial activity of Scorzonera papposa collected from Iraq and Turkey. KSU J. Agric. Nat., 2020, 23(5), 1114-1118. https://doi.org/ 10.18016/ksutarimdoga.vi.699457
DOI: https://doi.org/10.18016/ksutarimdoga.vi.699457
Korkmaz, N.; Dayangaç, A.; Sevindik, M. Antioxidant, antimicrobial and antiproliferative activities of Galium aparine. J. Fac. Pharm. Ankara, 2021, 45(3), 554-564. https://doi.org/10.33483/jfpau.977776
DOI: https://doi.org/10.33483/jfpau.977776
Żero, P.; Niemyjska, M.; Rasztawicka, M.; Maciejewska, D. Choroba Nowotworowa Pıersı I Nowe Zwıązkı O Aktywnoścı Przecıwnowotworowej. Prospects Pharm. Sci., 2005, 3(2), 10-18. https://doi.org/10.56782/pps.53
DOI: https://doi.org/10.56782/pps.53
Kawka, M.; Pilarek, M.; Sykłowska-Baranek, K.; Pietrosiuk, A. Ekstrakcja In Sıtu Roślınnych Metabolıtów Wtórnych. Prospects Pharm. Sci., 2017, 15(7), 60-67. https://doi.org/10.56782/pps.78
DOI: https://doi.org/10.56782/pps.78
Mohammed, F. S.; Akgul, H.; Sevindik, M.; Khaled, B. M. T. Phenolic content and biological activities of Rhus coriaria var. zebaria. Fresenius Environ. Bull., 2018, 27(8), 5694-5702.
Mohammed, F. S.; Karakaş, M.; Akgül, H.; Sevindik, M. Medicinal properties of Allium calocephalum collected from Gara Mountain (Iraq). Fresenius Environ. Bull., 2019, 28(10), 7419-7426.
Mohammed, F. S.; Pehlivan, M.; Sevindik, E.; Akgul, H.; Sevindik, M.; Bozgeyik, I.; Yumrutas, O. Pharmacological properties of edible Asparagus acutifolius and Asparagus officinalis collected from North Iraq and Turkey (Hatay). Acta Aliment., 2021, 50(1), 136-143. https://doi.org/10.1556/066.2020.00204
DOI: https://doi.org/10.1556/066.2020.00204
Unal, O.; Eraslan, E. C.; Uysal, I.; Mohammed, F. S.; Sevindik, M.; Akgul, H. Biological activities and phenolic contents of Rumex scutatus collected from Turkey. Fresenius Environ. Bull., 2022, 31(7), 7341-7346.
Mohammed, F. S.; Uysal, I.; Sevindik, M. Functional food Momordica charantia: biological activities. Prospects Pharm. Sci., 2023, 21(3), 22-29. https://doi.org/10.56782/pps.138
DOI: https://doi.org/10.56782/pps.138
Mohammed, F. S.; Kına, E.; Sevindik, M.; Doğan, M.; Pehlivan, M. Antioxidant and antimicrobial activities of ethanol extract of Helianthemum salicifolium (Cistaceae). Indian J. Nat. Prod. Resour., 2021, 12(3), 459-462. https://doi.org/ 10.56042/ijnpr.v12i3.46635
Mohammed, F. S.; Günal, S.; Pehlivan, M.; Doğan, M.; Sevindik, M.; Akgül, H. Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi Univ. J. Sci., 2020, 33(4), 670-677. https://doi.org/10.35378/gujs.707555
DOI: https://doi.org/10.35378/gujs.707555
Mohammed, F. S.; Uysal, I.; Sevindik, M. A review on antiviral plants effective against different virus types. Prospects Pharm. Sci., 2023, 21(2), 1-21. https://doi.org/10.56782/pps.128
DOI: https://doi.org/10.56782/pps.128
Johnson, C. P.; Myers, S. M. Identification and evaluation of children with autism spectrum disorders. Pediatrics, 2007, 120(5), 1183-1215. https://doi.org/10.1542/peds.2007-2361
DOI: https://doi.org/10.1542/peds.2007-2361
Frith, U.; Mira, M. Autism and Asperger syndrome. Focus on Autistic Behavior, 1992, 7(3), 13-15. https://doi.org/10.1177/108835769200700302
DOI: https://doi.org/10.1177/108835769200700302
Maenner, M. J.; Shaw, K. A.; Baio, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S.; Andrews, J.G.; Lopez, M.,; Hudson, A.; Baroud, T.; Schwenk, Y.; White, T.; Rosenberg, C.R.; Lee, L.C.; Harrington, R.A.; Huston, M.; Hewitt, A.; Esler, A.; Hall-Lande, J.; Poynter, J.N.; Hallas-Muchow, L.; Constantino, J.N.; Fitzgerald, R.T.; Zahorodny, W.; Shenouda, J.; Daniels, J.L.; Warren, Z.; Vehorn, A.; Salinas, A.; Durkin, M.S.; Dietz, M.P. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ, 2020, 69(4), 1-12. https://doi.org/10.15585/mmwr.ss6904a1
DOI: https://doi.org/10.15585/mmwr.ss6904a1
Won, H.; Mah, W.; Kim, E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front. Mol. Neurosci., 2013, 6, 19. https://doi.org/10.3389/fnmol.2013.00019
DOI: https://doi.org/10.3389/fnmol.2013.00019
Muhle, R.; Trentacoste, S. V.; Rapin, I. The genetics of autism. Pediatrics, 2004, 113(5), e472-e486. https://doi.org/10.1542/peds.113.5.e472
DOI: https://doi.org/10.1542/peds.113.5.e472
Baron‐Cohen, S. Autism: the empathizing–systemizing (E‐S) theory. Ann. N. Y. Acad. Sci., 2009, 1156(1), 68-80.
DOI: https://doi.org/10.1111/j.1749-6632.2009.04467.x
Kemper, T. L.; Bauman, M. L. The contribution of neuropathologic studies to the understanding of autism. Neurol. Clin., 1993, 11(1), 175-187. https://doi.org/10.1016/S0733-8619(18)30176-2
DOI: https://doi.org/10.1016/S0733-8619(18)30176-2
Rogers, S. J.; Vismara, L. A. Evidence-based comprehensive treatments for early autism. J. Clin. Child Adolesc., 2008, 37(1), 8-38. https://doi.org/10.1080/15374410701817808
DOI: https://doi.org/10.1080/15374410701817808
Brentani, H.; Paula, C. S. D.; Bordini, D.; Rolim, D.; Sato, F.; Portolese, J.; McCracken, J. T. Autism spectrum disorders: an overview on diagnosis and treatment. Rev. Bras. de Psiquiatr., 2013, 35, S62-S72. https://doi.org/10.1590/1516-4446-2013-S104
DOI: https://doi.org/10.1590/1516-4446-2013-S104
Van Bourgondien, M. E.; Reichle, N. C.; Schopler, E. Effects of a model treatment approach on adults with autism. J. Autism Dev. Disord., 2003, 33, 131-140.
DOI: https://doi.org/10.1023/A:1022931224934
Ernst, E.; Pittler, M. H. Efficacy of ginger for nausea and vomiting: a systematic review of randomized clinical trials. Br. J. Anaesth., 2000, 84(3), 367-371. https://doi.org/10.1093/oxfordjournals.bja.a013442
DOI: https://doi.org/10.1093/oxfordjournals.bja.a013442
Gupta, Y. K.; Sharma, M. Reversal of pyrogallol-induced delay in gastric emptying in rats by ginger (Zingiber officinale). Methods Find. Exp. Clin. Pharmacol., 2001, 23(9), 501-503. https://doi.org/ 10.1358/mf.2001.23.9.662137
DOI: https://doi.org/10.1358/mf.2001.23.9.662137
Parashar, A.; Udayabanu, M. Gut microbiota regulates key modulators of social behavior. Eur. Neuropsychopharmacol., 2016, 26(1), 78-91. https://doi.org/10.1016/j.euroneuro.2015.11.002
DOI: https://doi.org/10.1016/j.euroneuro.2015.11.002
Rezapour, S.; Bahmani, M.; Afsordeh, O.; Rafieian, R.; Sheikhian, A. Herbal medicines: a new hope for autism therapy. J. Herbmed Pharma., 2016, 5(3), 89-91.
Kardani, A.; Soltani, A.; Sewell, R. D.; Shahrani, M.; Rafieian-Kopaei, M. Neurotransmitter, antioxidant and anti-neuroinflammatory mechanistic potentials of herbal medicines in ameliorating autism spectrum disorder. Curr. Pharm. Des., 2019, 25(41), 4421-4429. https://doi.org/10.2174/1381612825666191112143940
DOI: https://doi.org/10.2174/1381612825666191112143940
Chilambath, M.; Sundararaman, G. Herbal Remedies for Autism. In Role of Nutrients in Neurological Disorders (pp. 333-347). 2022, Singapore: Springer Singapore.
DOI: https://doi.org/10.1007/978-981-16-8158-5_18
Amin, M.; Khikmawati, N. H.; Suryadi, Amin, I. F.; Yayoi, K..; Wibowo, A. H.; Rachman, I. Chemical interaction analysis of L-Theanine compounds from Camellia sinensis L. with kainate glutamate receptors and their toxicity effect as anti-autism candidates based on in silico. In AIP Conference Proceedings (Vol. 2237, No. 1, p. 020072). 2020, AIP Publishing LLC.
DOI: https://doi.org/10.1063/5.0008500
Bhandari, R.; Kuhad, A. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sci., 2015, 141, 156-169. https://doi.org/10.1016/j.lfs.2015.09.012
DOI: https://doi.org/10.1016/j.lfs.2015.09.012
Bhat, A.; Mahalakshmi, A. M.; Ray, B.; Tuladhar, S.; Hediyal, T. A.; Manthiannem, E.; Sakharkar, M. K.. Benefits of curcumin in brain disorders. BioFactors, 2019, 45(5), 666-689. https://doi.org/10.1002/biof.1533
DOI: https://doi.org/10.1002/biof.1533
Deb, S.; Phukan, B. C.; Dutta, A.; Paul, R.; Bhattacharya, P.; Manivasagam, T.; Borah, A. Natural products and their therapeutic effect on autism spectrum disorder. Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management, 2020, 601-614.
DOI: https://doi.org/10.1007/978-3-030-30402-7_22
Lopresti, A. L. Curcumin for neuropsychiatric disorders: a review of in vitro, animal and human studies. J. Psychopharmacol., 2017, 31(3), 287-302. https://doi.org/10.1177/0269881116686883
DOI: https://doi.org/10.1177/0269881116686883
Muralidharan, P.; Anamika, P.K. Preclinical Investigation On The Protective Effect Of Bacopa Monnieri On Human Neuroblastoma Cell Line SH-SY5Y On Its Progressive Development And Finding On Autism Spectrum Disorder. J. Pharm. Negat., 2022, 2262-2269. https://doi.org/10.47750/pnr.2022.13.S09.270
Sandhya, T.; Sowjanya, J.; Veeresh, B. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem. Res., 2012, 37, 1121-1131.
DOI: https://doi.org/10.1007/s11064-012-0717-1
Urdaneta, K. E.; Castillo, M. A.; Montiel, N.; Semprún-Hernández, N.; Antonucci, N.; Siniscalco, D. Autism spectrum disorders: potential neuro-psychopharmacotherapeutic plant-based drugs. Assay Drug Dev. Technol., 2018, 16(8), 433-444. https://doi.org/10.1089/adt.2018.848
DOI: https://doi.org/10.1089/adt.2018.848
Ahmed, A. A.; Eltahan, N. R.; Elsherif, S. A.; Elsaadany, M. Therapeutic Effect of Selected Plants on Autistic Rats. J. Home Econ., 2018, 28.
Hadland, S. E.; Knight, J. R.; Harris, S. K. Medical marijuana: Review of the science and implications for developmental behavioral pediatric practice. J. Dev. Behav. Pediatr., 2015, 36(2), 115-123. https://doi.org/ 10.1097/DBP.0000000000000129
DOI: https://doi.org/10.1097/DBP.0000000000000129
Niederhofer, H. First preliminary results of an observation of Ginkgo Biloba treating patients with autistic disorder. Phyto. Res., 2009, 23(11), 1645-1646. https://doi.org/10.1002/ptr.2778
DOI: https://doi.org/10.1002/ptr.2778
Román, G. C. Autism: transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents. J. Neurol. Sci., 2007, 262(1-2), 15-26. https://doi.org/10.1016/j.jns.2007.06.023
DOI: https://doi.org/10.1016/j.jns.2007.06.023
Woolf, A. D. Herbal remedies and children: do they work? Are they harmful?. Pediatrics, 2003, 112(1-2), 240-246.
DOI: https://doi.org/10.1542/peds.112.S1.240
Agarwal, R., Burke, S. L., Maddux, M. (2019). Current state of evidence of cannabis utilization for treatment of autism spectrum disorders. BMC psychiatry, 2003, 19(1), 1-10.
DOI: https://doi.org/10.1186/s12888-019-2259-4
Aran, A.; Cassuto, H.; Lubotzky, A.; Wattad, N.; Hazan, E. Brief report: cannabidiol-rich cannabis in children with autism spectrum disorder and severe behavioral problems—a retrospective feasibility study. J. Autism Dev. Disord., 2019, 49(3), 1284-1288.
DOI: https://doi.org/10.1007/s10803-018-3808-2
Mostafavi, M.; Gaitanis, J.. Autism spectrum disorder and medical cannabis: review and clinical experience. In Seminars in pediatric neurology (Vol. 35, p. 100833). 2020, WB Saunders.
DOI: https://doi.org/10.1016/j.spen.2020.100833
Perucca, E.. Cannabinoids in the treatment of epilepsy: hard evidence at last?. J. Epilepsy Res., 2017, 7(2), 61. https://doi.org/ 10.14581/jer.17012
DOI: https://doi.org/10.14581/jer.17012
Solimini, R.; Rotolo, M. C.; Pichini, S.; Pacifici, R. Neurological disorders in medical use of cannabis: an update. CNS Neurol. Disord. Drug. Targets, 2017, 16(5), 527-533. https://doi.org/10.2174/1871527316666170413105421
DOI: https://doi.org/10.2174/1871527316666170413105421
Babayeva, M.; Assefa, H.; Basu, P.; Loewy, Z. Autism and associated disorders: cannabis as a potential therapy. Frontiers in Bioscience-Elite, 2022, 14(1), 1. https://doi.org/ 10.31083/j.fbe1401001
DOI: https://doi.org/10.31083/j.fbe1401001
Bedir, E.; Pugh, N.; Calis, I.; Pasco, D. S.; Khan, I. A. Immunostimulatory effects of cycloartane-type triterpene glycosides from Astragalus species. Biol. Pharma. Bull., 2000, 23(7), 834-837. https://doi.org/10.1248/bpb.23.834
DOI: https://doi.org/10.1248/bpb.23.834
Guenné, S.; Ouedraogo, G. G.; Lefter, R.; Timofte, D.; Foyet, H. S.; Hilou, A.; Kiendrebéogo, M. Anxiolytic and anti-depressant effect of Salvia spp. essential oil on rat model of Autism Spectrum Disorder. Bull. Integ. Psych., 2020, 84(1), 19-28.
DOI: https://doi.org/10.36219/BPI.2020.1.02
Schnapp, A.; Harel, M.; Cayam-Rand, D.; Cassuto, H.; Polyansky, L.; Aran, A. A Placebo-Controlled Trial of Cannabinoid Treatment for Disruptive Behavior in Children and Adolescents with Autism Spectrum Disorder: Effects on Sleep Parameters as Measured by the CSHQ. Biomedicines, 2022, 10(7), 1685. https://doi.org/10.3390/biomedicines10071685
DOI: https://doi.org/10.3390/biomedicines10071685
Zheng, Z.; Liu, D.; Song, C.; Cheng, C.; Hu, Z. Studies on chemical constituents and immunological function activity of hairy root of Astragalus membranaceus. Chinese j. biotech., 1998, 14(2), 93-97.
Amini, F.; Amini-Khoei, H.; Haratizadeh, S.; Setayesh, M.; Basiri, M.; Raeiszadeh, M.; Nozari, M. Hydroalcoholic extract of Passiflora incarnata improves the autistic-like behavior and neuronal damage in a valproic acid-induced rat model of autism. J. Tradit. Complement. Med., 2023, https://doi.org/10.1016/j.jtcme.2023.02.005.
DOI: https://doi.org/10.1016/j.jtcme.2023.02.005
El-Ansary, A.; Ibrahim, E. M.; Shafi Bhat, R.. Lepidium sativum seeds as a suggested complex nutritional supplement to treat biomarkers related deficits in autism. Nov. Tech. Nutr. Food Sci., 2019, 3(3), 258-62.
DOI: https://doi.org/10.31031/NTNF.2019.03.000562
Joon, P.; Dhingra, D.; Parle, M. Biochemical evidence for anti-autistic potential of Asparagus racemosus. Int. J. Plant Sci., 2020, 15(1), 42-51.
DOI: https://doi.org/10.15740/HAS/IJPS/15.1/42-51
Nessma, E.; Metwally, M. A.; Samah, H. Assessment of Oil and Seed Extracts of Moringa oleifera for Promising Anticandidal Activity in Autistic Children. Egyptian J. Bot., 2022, 62(3), 825-835. https://doi.org/ 10.21608/ejbo.2022.61779.1624
Dhanik, J.; Arya, N.; Nand, V. A review on Zingiber officinale. J. pharmacogn. phytochem., 2017, 6(3), 174-184.
Ujang, Z.; Nordin, N. I.; Subramaniam, T. Ginger species and their traditional uses in modern applications. J. Ind. Technol. 2015, 23(1), 59-70.
DOI: https://doi.org/10.21908/jit.2015.4
Kumar Gupta, S.; Sharma, A. Medicinal properties of Zingiber officinale Roscoe-A review. J. Pharm. Biol. Sci, 2014, 9, 124-129.
DOI: https://doi.org/10.9790/3008-0955124129
Loying, R.; Gogoi, R.; Sarma, N.; Borah, A.; Munda, S.; Pandey, S. K.; Lal, M. Chemical compositions, in-vitro antioxidant, anti-microbial, anti-inflammatory and cytotoxic activities of essential oil of Acorus calamus L. rhizome from North-East India. J. Essent. Oil-Bear. Plants, 2019, 22(5), 1299-1312.
DOI: https://doi.org/10.1080/0972060X.2019.1696236
Rajput, S. B.; Tonge, M. B.; Karuppayil, S. M. An overview on traditional uses and pharmacological profile of Acorus calamus Linn.(Sweet flag) and other Acorus species. Phytomedicine, 2014, 21(3), 268-276. https://doi.org/10.1016/j.phymed.2013.09.020
DOI: https://doi.org/10.1016/j.phymed.2013.09.020
Balakumbahan, R.; Rajamani, K.; Kumanan, K. Acorus calamus: An overview. J. Med. Plants Res., 2010, 4(25), 2740-2745.
Singh, R.; Sharma, P. K.; Malviya, R. Pharmacological properties and ayurvedic value of Indian buch plant (Acorus calamus): a short review. Adv. Biol. Res., 2011, 5(3), 145-154.
Pachiappan, S.; Matheswaran, S.; Saravanan, P. P.; Muthusamy, G. Medicinal plants for polycystic ovary syndrome: A review of phytomedicine research. Int. J. Herb. Med., 2017, 5(2), 78-80.
Salari, S.; Amiri, M. S.; Ramezani, M.; Moghadam, A. T.; Elyasi, S.; Sahebkar, A.; Emami, S. A. Ethnobotany, phytochemistry, traditional and modern uses of Actaea racemosa L.(Black cohosh): a review. Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health, 2021, 403-449.
DOI: https://doi.org/10.1007/978-3-030-64872-5_24
Nuntanakorn, P.; Jiang, B.; Einbond, L. S.; Yang, H.; Kronenberg, F.; Weinstein, I. B.; Kennelly, E. J. Polyphenolic Constituents of Actaea racemosa. J. Nat. Prod., 2006, 69(3), 314-318.
DOI: https://doi.org/10.1021/np0501031
Kursinszki, L. Factors influencing the pharmaceutically important characteristics of Lobelia inflata L. Afr. J. Tradit. Complement. Altern. Med., 2009, 318-318.
Folquitto, D. G.; Swiech, J. N.; Pereira, C. B.; Bobek, V. B.; Possagno, G. C. H.; Farago, P. V.; Miguel, O. G. Biological activity, phytochemistry and traditional uses of genus Lobelia (Campanulaceae): A systematic review. Fitoterapia, 2019, 134, 23-38. https://doi.org/10.1016/j.fitote.2018.12.021
DOI: https://doi.org/10.1016/j.fitote.2018.12.021
Máthé, Á. Indian Tobacco (Lobelia inflata L.). Medicinal and Aromatic Plants of North America, 2020, 159-186.
DOI: https://doi.org/10.1007/978-3-030-44930-8_7
Subarnas, A.; Tadano, T.; Nakahata, N.; Arai, Y.; Kinemuchi, H.; Oshima, Y.; Ohizumi, Y. A possible mechanism of antidepresant activity of beta-amyrin palmitate isolated from lobelia inflata leaves in the forced swimming test. Life Sci., 1993, 52(3), 289-296.
DOI: https://doi.org/10.1016/0024-3205(93)90220-W
He, D. Y.; Dai, S. M. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine. Frontiers pharmacol., 2011, 2, 10. https://doi.org/10.3389/fphar.2011.00010
DOI: https://doi.org/10.3389/fphar.2011.00010
Parker, S.; May, B.; Zhang, C.; Zhang, A. L.; Lu, C.; Xue, C. C. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phyto. Res., 2016, 30(9), 1445-1473. https://doi.org/10.1002/ptr.5653
Zhao, D. D.; Jiang, L. L.; Li, H. Y.; Yan, P. F.; Zhang, Y. L. Chemical components and pharmacological activities of terpene natural products from the genus Paeonia. Molecules, 2016, 21(10), 1362. https://doi.org/10.3390/molecules21101362
DOI: https://doi.org/10.3390/molecules21101362
Parker, S.; May, B.; Zhang, C.; Zhang, A. L.; Lu, C.; Xue, C. C. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phyto. Res., 2016, 30(9), 1445-1473. https://doi.org/10.1002/ptr.5653
DOI: https://doi.org/10.1002/ptr.5653
Ferrara, L.; Montesano, D.; Senatore, A. The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). Il farmaco, 2001, 56(5-7), 397-401. https://doi.org/10.1016/S0014-827X(01)01104-1
DOI: https://doi.org/10.1016/S0014-827X(01)01104-1
Sharangi, A. B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)–A review. Food Res. Int., 2009, 42(5-6), 529-535. https://doi.org/10.1016/j.foodres.2009.01.007
DOI: https://doi.org/10.1016/j.foodres.2009.01.007
Namita, P.; Mukesh, R.; Vijay, K. J. Camellia sinensis (green tea): a review. Glob. J. Pharmacol., 2012, 6(2), 52-59.
Zhang, L.; Ho, C. T.; Zhou, J.; Santos, J. S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf., 2019, 18(5), 1474-1495.
DOI: https://doi.org/10.1111/1541-4337.12479
Thangaselvabal, T.; Gailce Leo Justin, C.; Leelamathi, M. Black pepper (Piper nigrum L.)‘the king of spices’–A review. Agri. Rev., 2008, 29(2), 89-98.
Meghwal, M.; Goswami, T. K. Piper nigrum and piperine: an update. Phyto. Res., 2013, 27(8), 1121-1130.
DOI: https://doi.org/10.1002/ptr.4972
Damanhouri, Z. A.; Ahmad, A. A review on therapeutic potential of Piper nigrum L. Black Pepper): The King of Spices. Med. Aromat. Plants, 2014, 3(3), 161. http://dx.doi.org/10.4172/2167-0412.1000161
DOI: https://doi.org/10.4172/2167-0412.1000161
Ashokkumar, K.; Murugan, M.; Dhanya, M. K.; Pandian, A.; Warkentin, T. D. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review. Clin. Phytosci., 2021, 7(1), 1-11.
DOI: https://doi.org/10.1186/s40816-021-00292-2
Akram, M.; Shahab-Uddin, A. A.; Usmanghani, K. H. A. N.; Hannan, A. B. D. U. L.; Mohiuddin, E.; Asif, M. Curcuma longa and curcumin: a review article. Rom. J. Biol. Plant. Biol., 2010, 55(2), 65-70.
Krup, V.; Prakash, L. H.; Harini, A. Pharmacological activities of turmeric (Curcuma longa Linn): a review. J. Homeop. Ayurv. Med., 2013, 2(133), 2167-1206.
DOI: https://doi.org/10.4172/2167-1206.1000133
Labban, L. Medicinal and pharmacological properties of Turmeric (Curcuma longa): A review. Int. J. Pharm. Biomed. Sci., 2014, 5(1), 17-23.
Tripathi, N.; Chouhan, D. S.; Saini, N.; Tiwari, S. Assessment of genetic variations among highly endangered medicinal plant Bacopa monnieri (L.) from Central India using RAPD and ISSR analysis. 3 Biotech, 2012, 2, 327-336.
DOI: https://doi.org/10.1007/s13205-012-0059-3
Sudhakaran, M. V. Botanical Pharmacognosy of Bacopa monnieri (Linn.) Pennell. Pharmacogn. J., 2020, 12(6), 1559-1572.
DOI: https://doi.org/10.5530/pj.2020.12.214
Jain, P. K.; Das, D.; Jain, P.; Jain, P. Pharmacognostic and pharmacological aspect of Bacopa monnieri: a review. Int. J. Pharm. Pharm. Sci., 2016, 4(3), 7-11.
Vishnupriya, P.; Padma, V. V. A review on the antioxidant and therapeutic potential of Bacopa monnieri. React. Oxygen Spec., 2017, 3, 111-120.
DOI: https://doi.org/10.20455/ros.2017.817
Brar, G. S.; Carter Jr, T. E. Soybean: Glycine max (L) Merrill. Genetic improvement of vegetable crops, 1993, 427-463.
DOI: https://doi.org/10.1016/B978-0-08-040826-2.50034-5
Stupar, R. M.; Specht, J. E. Insights from the soybean (Glycine max and Glycine soja) genome: past, present, and future. Adv. Agron., 2013, 118, 177-204. https://doi.org/10.1016/B978-0-12-405942-9.00004-9
DOI: https://doi.org/10.1016/B978-0-12-405942-9.00004-9
Ponnusha, B. S.; Subramaniyam, S.; Pasupathi, P. Antioxidant and Antimicrobial properties of Glycine max-A review. Int. J. Cur. Bio. Med. Sci., 2011, 1(2), 49-62.
Fischer, E.; Cachon, R.; Cayot, N. Pisum sativum vs Glycine max, a comparative review of nutritional, physicochemical, and sensory properties for food uses. Trends Food Sci. Tech., 2020, 95, 196-204. https://doi.org/10.1016/j.tifs.2019.11.021
DOI: https://doi.org/10.1016/j.tifs.2019.11.021
Mahadevan, S.; Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. Journal of food science, 2008, 73(1), 14-19. https://doi.org/10.1111/j.1750-3841.2007.00597.x
DOI: https://doi.org/10.1111/j.1750-3841.2007.00597.x
Fang, J.; Wang, Z.; Wang, P.; Wang, M. Extraction, structure and bioactivities of the polysaccharides from Ginkgo biloba: A review. Int. J. Biol. Macromol., 2020, 162, 1897-1905. https://doi.org/10.1016/j.ijbiomac.2020.08.141
DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.141
Yoshikawa, T.; Naito, Y.; Kondo, M. Ginkgo biloba leaf extract: review of biological actions and clinical applications. Antioxid. Redox. Signal., 1999, 1(4), 469-480. https://doi.org/10.1089/ars.1999.1.4-469
DOI: https://doi.org/10.1089/ars.1999.1.4-469
Ude, C.; Schubert-Zsilavecz, M.; Wurglics, M. Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients. Clin. Pharmacokinet., 2013, 52, 727-749.
DOI: https://doi.org/10.1007/s40262-013-0074-5
Clarke, R. C.; Watson, D. P. Botany of natural Cannabis medicines. Cannabis and cannabinoids: pharmacology, toxicology and therapeutic potential, 2002, 3-13.
Rajput, R.; Kumar, K. A review on Cannabis sativa: its compounds and their effects. Int. J. Pharm. Sci. Rev. Res., 2018, 53(2), 59-63.
Manosroi, A.; Chankhampan, C.; Kietthanakorn, B. O.; Ruksiriwanich, W.; Chaikul, P.; Boonpisuttinant, K.; Manosroi, J. Pharmaceutical and cosmeceutical biological activities of hemp (Cannabis sativa L. var. sativa) leaf and seed extracts. Chiang Mai J. Sci, 2019, 46, 180-195.
Ashton, C. H. Pharmacology and effects of cannabis: a brief review. BJPsych, 2001, 178(2), 101-106.
DOI: https://doi.org/10.1192/bjp.178.2.101
Asadi, S.; Moghadam, H.; Naghdi Badi, H.; Naghavi, M. R.; Salami, S. A. R. A review on agronomic, phytochemical and pharmacological aspects of cannabis (Cannabis sativa L.). J. Med. Plants, 2019, 18(70), 1-20.
DOI: https://doi.org/10.29252/jmp.2.70.1
Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Yang, S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res, 2014, 28(9), 1275-1283. https://doi.org/10.1002/ptr.5188
DOI: https://doi.org/10.1002/ptr.5188
Zhang, J.; Wu, C.; Gao, L.; Du, G., Qin, X. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. Adv. Pharma., 2020, 87, 89-112. https://doi.org/10.1016/bs.apha.2019.08.002
DOI: https://doi.org/10.1016/bs.apha.2019.08.002
Jin, M.; Zhao, K.; Huang, Q.; Shang, P. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol., 2014, 64, 257-266.
DOI: https://doi.org/10.1016/j.ijbiomac.2013.12.002
Gohil, K. J.; Patel, J. A.; Gajjar, A. K.. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J. Pharm. Sci., 2010, 72(5), 546.
DOI: https://doi.org/10.4103/0250-474X.78519
Pittella, F.; Dutra, R. C.; Junior, D. D.; Lopes, M. T.; Barbosa, N. R. Antioxidant and cytotoxic activities of Centella asiatica (L) Urb. Int. J. Mol. Sci., 2009, 10(9), 3713-3721.
DOI: https://doi.org/10.3390/ijms10093713
Torbati, F. A.; Ramezani, M.; Dehghan, R.; Amiri, M. S.; Moghadam, A. T.; Shakour, N.; Emami, S. A. Ethnobotany, phytochemistry and pharmacological features of Centella asiatica: a comprehensive review. Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health, 2021, 451-499.
DOI: https://doi.org/10.1007/978-3-030-64872-5_25
Pehlivan, M.; Sevindik, M. Antioxidant and antimicrobial activities of Salvia multicaulis. Turkish JAF Sci.Tech., 2018, 6(5), 628-631.
DOI: https://doi.org/10.24925/turjaf.v6i5.628-631.1906
Uysal, I.; Koçer, O.; Mohammed, F. S.; Lekesiz, Ö.; Doğan, M.; Şabik, A. E.; Sevindik, E.; Gerçeker, F.Ö.; Sevindik, M. Pharmacological and Nutritional Properties: Genus Salvia. Adv. Pharmacol. Pharm., 2023, 11(2), 140-155. https://doi.org/ 10.13189/app.2023.110206
DOI: https://doi.org/10.13189/app.2023.110206
Baregama, C.; Goyal, A. Phytoconstituents, pharmacological activity, and medicinal use of Lepidium sativum Linn.: A review. Asian J. Pharm. Clin. Res., 2019, 12(4), 45-50.
DOI: https://doi.org/10.22159/ajpcr.2019.v12i4.31292
Al-Snafi, A. E. Chemical constituents and pharmacological effects of lepidium sativum. Int. J. Curr. Pharm. Res., 2019, 11(6), 1-10.
DOI: https://doi.org/10.22159/ijcpr.2019v11i6.36338
Mali, R. G.; Mahajan, S. G.; Mehta, A. A. Lepidium sativum (Garden cress): a review of contemporary literature and medicinal properties. Adv. Tradit. Med., 2007, 7(4), 331-335. https://doi.org/ 10.3742/OPEM.2007.7.4.331
DOI: https://doi.org/10.3742/OPEM.2007.7.4.331
Alok, S.; Jain, S. K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis., 2013, 3(3), 242-251. https://doi.org/10.1016/S2222-1808(13)60049-3
DOI: https://doi.org/10.1016/S2222-1808(13)60049-3
Shaha, P.; Bellankimath, A. Pharmacological profile of Asparagus racemosus: A review. Int. J. Curr. Microbiol. App. Sci., 2017, 6(11), 1215-23.
DOI: https://doi.org/10.20546/ijcmas.2017.611.144
Mishra, J. N.; Verma, N. K. Asparagus racemosus: chemical constituents and pharmacological activities-a review. Eur. J. Biomed. Pharm. Sci., 2017, 4, 207-213.
Patel, S. S.; Saleem, T. M.; Ravi, V.; Shrestha, B.; Verma, N. K.; Gauthaman, K. Passiflora incarnata Linn: A phytopharmacological review. Int. J. Green Pharm., 2009, 3(4), 277-280.
Patel, S.; Verma, N.; Gauthaman, K. Passiflora incarnata Linn: A review on morphology, phytochemistry and pharmacological aspects. Phcog. Rev., 2009, 3(5), 186.
DOI: https://doi.org/10.4103/0973-8258.59731
Tiwari, S.; Singh, S.; Tripathi, S.; Kumar, S. A pharmacological review: Passiflora species. Asian J. Pharm. Res., 2015, 5(4), 195-202.
DOI: https://doi.org/10.5958/2231-5691.2015.00030.1
Mahmood, K. T.; Mugal, T.; Haq, I. U. Moringa oleifera: a natural gift-A review. J. Pharm. Sci. Res., 2010, 2(11), 775.
Bhattacharya, A.; Tiwari, P.; Sahu, P. K.; Kumar, S. A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J. Pharm. Bioallied. Sci., 2018, 10(4), 181. https://doi.org/ 10.4103/JPBS.JPBS_126_18
DOI: https://doi.org/10.4103/JPBS.JPBS_126_18
Pareek, A.; Pant, M.; Gupta, M. M.; Kashania, P.; Ratan, Y.; Jain, V.; Chuturgoon, A. A. Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int. J. Mol. Sci., 2023, 24(3), 2098. https://doi.org/10.3390/ijms24032098
DOI: https://doi.org/10.3390/ijms24032098