Priyashantha, A.K.H.; Dai, D.-Q.; Bhat, D.J.; Stephenson, S.L.; Promputtha, I.; Kaushik, P.; Tibpromma, S.; Karunarathna, S.C. Plant–Fungi Interactions: Where It Goes? Biology 2023, 12, Art. No: 809, doi:10.3390/biology12060809.
Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J. Fungal Symbiosis from Mutualism to Parasitism: Who Controls the Outcome, Host or Invader? New Phytol. 2001, 151, 705–716. doi:10.1046/j.0028-646x.2001.00210.x.
Bael, V.; A, S. Fungal Diversity. Diversity 2020, 12, Art. No: 437. doi:10.3390/d12110437.
Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017, 5(4), Art. No: 10.1128/microbiolspec.funk-0052-2016. doi:10.1128/microbiolspec.FUNK-0052-2016.
Baxi, S.N.; Portnoy, J.M.; Larenas-Linnemann, D.; Phipatanakul, W.; Barnes, C.; Baxi, S.; Grimes, C.; Horner, W.E.; Kennedy, K.; Larenas-Linnemann, D.; et al. Exposure and Health Effects of Fungi on Humans. J. Allergy Clin. Immunol. Pract. 2016, 4, 396–404. doi:10.1016/j.jaip.2016.01.008.
Arslan, N.P.; Dawar, P.; Albayrak, S.; Doymus, M.; Azad, F.; Esim, N.; Taskin, M. Fungi-Derived Natural Antioxidants. Crit. Rev. Food Sci. Nutr. 2023, 1–24. doi:10.1080/10408398.2023.2298770.
Pohleven, J.; Korošec, T.; Gregori, A. Medicinal Mashrooms; MycoMedica, d. o. o.; ISBN 978-961-93889-1-4.
Sułkowska-Ziaja, K.; Muszyńska, B.; Gawalska, A.; Sałaciak, K. Laetiporus sulphureus - chemical composition and medicinal value. ACTA SCI. POL-HORTORU. 2018, 17, 87–96.
Jasicka-Misiak, I. Grzyby wielkoowocnikowe jako źródło substancji bioaktywnych. Wiadomości Chemiczne 2020, 74, 71–87.
Wasser, S.P.; Weis, A.L. Medicinal Properties of Substances Occurring in Higher Basidiomycetes Mushrooms: Current Perspectives (Review). Int. J. Med. Mushrooms 1999, 1, 31-62. doi:10.1615/IntJMedMushrooms.v1.i1.30.
Al-Obaidi, J.R.; Jambari, N.N.; Ahmad-Kamil, E. Mycopharmaceuticals and Nutraceuticals: Promising Agents to Improve Human Well-Being and Life Quality. J. Fungi 2021, 7, Art. No: 503. doi:10.3390/jof7070503.
Ferreira, I.C.F.R.; Vaz, J.A.; Vasconcelos, M.H.; Martins, A. Compounds from Wild Mushrooms with Antitumor Potential. Anticancer Agents Med. Chem. 2010, 10, 424–436. doi:10.2174/1871520611009050424.
Rathee, S.; Rathee, D.; Rathee, D.; Kumar, V.; Rathee, P. Mushrooms as Therapeutic Agents. Rev. Bras. Farmacogn. 2012, 22, 459–474. doi:10.1590/S0102-695X2011005000195.
Kozarski, M.; Klaus, A.; Niksic, M.; Jakovljevic, D.; Helsper, J.P.F.G.; Van Griensven, L.J.L.D. Antioxidative and Immunomodulating Activities of Polysaccharide Extracts of the Medicinal Mushrooms Agaricus Bisporus, Agaricus Brasiliensis, Ganoderma Lucidum and Phellinus Linteus. Food Chem. 2011, 129, 1667–1675. doi:10.1016/j.foodchem.2011.06.029.
Sułkowska-Ziaja, K.; Kała, K.; Lazur, J.; Muszyńska, B. Chemical and Bioactive Profiling of Wild Edible Mushrooms. In Biology of Macrofungi; Singh, B.P., Lallawmsanga, Passari, A.K., Eds.; Fungal Biology; Springer International Publishing: Cham, 2018; pp. 129–157. ISBN 978-3-030-02622-6.
Waszczuk, U.; Zapora, E. Arboreal Fungi in Biological Control against Soil Fungi. Environ. Sci. Proc. 2021, 9, Art. No: 31. doi:10.3390/environsciproc2021009031.
Bonneville, S.; Delpomdor, F.; Préat, A.; Chevalier, C.; Araki, T.; Kazemian, M.; Steele, A.; Schreiber, A.; Wirth, R.; Benning, L.G. Molecular Identification of Fungi Microfossils in a Neoproterozoic Shale Rock. Sci. Adv. 2020, 6(4), Art. No: eaax7599, doi:10.1126/sciadv.aax7599.
Szczepkowski, A. Grzyby nadrzewne w innym świetle - użytkowanie owocników. Stud. Mater. Cent. Eduk. Przyr.-Leśn. 2012, 14, 171-189.
Włodarczyk, A.; Fijałkowska, A.; Jędrejko, K.; Zięba, P.; Lazur, J.; Sułkowska–Ziaja, K.; Muszyńska, B. Edible and Medicinal Mushroom Hericium Erinaceus as a Potential Natural Material with Influence on Brain Functions. Med. Int. Rev. 2020, 29, 4–10.
Sułkowska-Ziaja, K. Autoreferat przedstawiający opis osiągnięć naukowych w języku polskim. https://radydyscyplin.cm-uj.krakow.pl/cm/uploads/2019/12/Katarzyna-Su%C5%82kawska-Ziaja-Autoreferat.pdf, (dostęp: 28.08.2024)
Bennett, J.W. Mycotechnology: The Role of Fungi in Biotechnology. J. Biotechnol. 1998, 66, 101–107. doi:10.1016/S0168-1656(98)00133-3.
Sharma, S.S.S. Mycotechnology: A Review. Int. J. Indig. Herbs Drugs 2017, 25–28.
Rathore, H.; Prasad, S.; Kapri, M.; Tiwari, A.; Sharma, S. Medicinal Importance of Mushroom Mycelium: Mechanisms and Applications. J. Funct. Food. 2019, 56, 182–193. doi:10.1016/j.jff.2019.03.016.
Sydor, M.; Cofta, G.; Doczekalska, B.; Bonenberg, A. Fungi in Mycelium-Based Composites: Usage and Recommendations. Materials 2022, 15, Art. No: 6283. doi:10.3390/ma15186283.
Berger, R.G.; Bordewick, S.; Krahe, N.-K.; Ersoy, F. Mycelium vs. Fruiting Bodies of Edible Fungi — A Comparison of Metabolites. Microorganisms 2022, 10, Art. No: 1379. doi:10.3390/microorganisms10071379.
Friedman, M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium Erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. J. Agric. Food Chem. 2015, 63, 7108–7123. doi:10.1021/acs.jafc.5b02914.
Souza, P.M.D.; Bittencourt, M.L.D.A.; Caprara, C.C.; Freitas, M.D.; Almeida, R.P.C.D.; Silveira, D.; Fonseca, Y.M.; Ferreira Filho, E.X.; Pessoa Junior, A.; Magalhães, P.O. A Biotechnology Perspective of Fungal Proteases. Braz. J. Microbiol. 2015, 46, 337–346. doi:10.1590/S1517-838246220140359.
Roth, M.G.; Westrick, N.M.; Baldwin, T.T. Fungal Biotechnology: From Yesterday to Tomorrow. Front. Fungal Biol. 2023, 4, Art. No: 1135263.
lsacker, E.; Vandelook, S.; Peeters, E. Recent Technological Innovations in Mycelium Materials as Leather Substitutes: A Patent Review. Front. Bioeng. Biotechnol. 2023, 11, Art. No: 1204861, doi:10.3389/fbioe.2023.1204861
Turło, J. The Biotechnology of Higher Fungi - Current State and Perspectives. Acta Univ. Lodz., Folia Biol. Oecol. (Online) 2014, 10, 49–65. doi:10.2478/fobio-2014-0010.
Tang, Y.-J.; Zhong, J.-J. Fed-Batch Fermentation of Ganoderma Lucidum for Hyperproduction of Polysaccharide and Ganoderic Acid. Enzyme Microb. Technol. 2002, 31, 20–28. doi:10.1016/S0141-0229(02)00066-2.
Kobori, M.; Yoshida, M.; Ohnishi-Kameyama, M.; Shinmoto, H. Ergosterol Peroxide from an Edible Mushroom Suppresses Inflammatory Responses in RAW264.7 Macrophages and Growth of HT29 Colon Adenocarcinoma Cells. Br. J. Pharmacol. 2007, 150, 209–219. doi:10.1038/sj.bjp.0706972.
Duchesne, E. (1874-1942) A. du texte Contribution à l’étude de la concurrence vitale chez les microorganismes, antagonisme entre les moisissures et les microbes : thèse présentée à la Faculté de médecine... / par Ernest Duchesne,...; 1897; https://gallica.bnf.fr/ark:/12148/bpt6k9766202j/f7.item.texteImage, (dostęp: 28.08.2024)
Szafrańska, K.; Marcinkowska, M.; Fajkis-Zajączkowska, N.; Kołaczkowski, M. Przełomowe odkrycia w historii farmacji - dziełem przypadku. Kosmos 2021, 70, 637–649. doi:10.36921/kos.2022_2751.
Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to Their Use in the Isolation of B. Influenzæ. Br. J. Exp. Pathol. 1929, 10, Art. No: 226.
Thom, C. Mycology Presents Penicillin. Mycologia 1945, 37, 460–475. doi:10.2307/3754632.
Serreau, R.; Amirouche, A.; Benyamina, A.; Berteina-Raboin, S. A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe. Pharmaceuticals 2023, 16, Art. No: 40. doi:10.3390/ph16010040.
Strauss, D.; Ghosh, S.; Murray, Z.; Gryzenhout, M. An Overview on the Taxonomy, Phylogenetics and Ecology of the Psychedelic Genera Psilocybe, Panaeolus, Pluteus and Gymnopilus. Front. For. Glob. Change 2022, 5, Art. No: 813998, doi:10.3389/ffgc.2022.813998
Pepe, M.; Hesami, M.; de la Cerda, K.A.; Perreault, M.L.; Hsiang, T.; Jones, A.M.P. A Journey with Psychedelic Mushrooms: From Historical Relevance to Biology, Cultivation, Medicinal Uses, Biotechnology, and Beyond. Biotechnol. Adv. 2023, 69, Art. No: 108247. doi:10.1016/j.biotechadv.2023.108247.
Trepa, M.; Sułkowska-Ziaja, K.J.; Kała, K.; Muszyńska, B. Mycelial Cultures as a Model to Study the Accumulation of Medicinal Compounds – Historical Perspective. Med. Int. Rev. 2022, 30, 50–63.
Ross, S.; Bossis, A.; Guss, J.; Agin-Liebes, G.; Malone, T.; Cohen, B.; Mennenga, S.E.; Belser, A.; Kalliontzi, K.; Babb, J.; et al. Rapid and Sustained Symptom Reduction Following Psilocybin Treatment for Anxiety and Depression in Patients with Life-Threatening Cancer: A Randomized Controlled Trial. J. Psychopharmacol. 2016, 30, 1165–1180, doi:10.1177/0269881116675512.
Carhart-Harris, R.L.; Roseman, L.; Bolstridge, M.; Demetriou, L.; Pannekoek, J.N.; Wall, M.B.; Tanner, M.; Kaelen, M.; McGonigle, J.; Murphy, K.; et al. Psilocybin for Treatment-Resistant Depression: fMRI-Measured Brain Mechanisms. Sci. Rep. 2017, 7, Art. No: 13187. doi:10.1038/s41598-017-13282-7.
Turło, J. Grzyby wielkoowocnikowe – niedoceniane źródło substancji leczniczych. Stud. Mater. Cent. Eduk. Przyr.-Leśn. 2015, 17, 138–151.
Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J.L.D. Antioxidative Activities and Chemical Characterization of Polysaccharide Extracts from the Widely Used Mushrooms Ganoderma Applanatum, Ganoderma Lucidum, Lentinus Edodes and Trametes Versicolor. J. Food Compos. Anal. 2012, 26, 144–153. doi:10.1016/j.jfca.2012.02.004.
Sułkowska-Ziaja, K.; Muszyńska, B.; Sałaciak, K.; Gawalska, A. Trametes versicolor (L.) Lloyd as a source of biologically active compounds with a wide spectrum of action and application. Postępy Fitoterapii 2016, 17(4), 274-281.
Zong, A.; Cao, H.; Wang, F. Anticancer Polysaccharides from Natural Resources: A Review of Recent Research. Carbohydr. Polym. 2012, 90, 1395–1410. doi:10.1016/j.carbpol.2012.07.026.
Wang, H.X.; Ng, T.B.; Liu, W.K.; Ooi, V.E.C.; Chang, S.T. Polysaccharide—Peptide Complexes from the Cultured Mycelia of the Mushroom Coriolus Versicolor and Their Culture Medium Activate Mouse Lymphocytes and Macrophages. Int. J. Biochem. Cell Biol. 1996, 28, 601–607. doi:10.1016/1357-2725(95)00157-3.
Piotrowski, J.; Jędrzejewski, T.; Kozak, W. Immunomodulatory and antitumor properties of polysaccharide peptide (PSP). Postepy Hig. Med. Dosw. 2015, 69, 91–97. doi:10.5604/17322693.1137086.
Leonowicz, A.; Grzywnowicz, K. Kapelusze pelne lekow. Wiedza i Życie 2000, 3, 64–65.
Okazaki, M.; Adachi, Y.; Ohno, N.; Yadomae, T. Structure-Activity Relationship of (1→3)-β-D-Glucans in the Induction of Cytokine Production from Macrophages, in Vitro. Biol. Pharm. Bull. 1995, 18, 1320–1327. doi:10.1248/bpb.18.1320.
Hilszczańska, D. Właściwości lecznicze grzybów wielkoowocnikowych. Leśne Prace Badawcze 2012, 73(4), 347-353.
Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. The Potential of Ganoderma Lucidum Extracts as Bioactive Ingredients in Topical Formulations, beyond Its Nutritional Benefits. Food Chem. Toxicol. 2017, 108, 139–147. doi:10.1016/j.fct.2017.07.051.
Zjawiony, J.K. Biologically Active Compounds from Aphyllophorales (Polypore) Fungi. J. Nat. Prod. 2004, 67, 300–310. doi:10.1021/np030372w.
Price, L.A.; Wenner, C.A.; Sloper, D.T.; Slaton, J.W.; Novack, J.P. Role for Toll-like Receptor 4 in TNF-Alpha Secretion by Murine Macrophages in Response to Polysaccharide Krestin, a Trametes Versicolor Mushroom Extract. Fitoterapia 2010, 81, 914–919. doi:10.1016/j.fitote.2010.06.002.
Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic, Polysaccharidic, and Lipidic Fractions of Mushrooms from Northeastern Portugal: Chemical Compounds with Antioxidant Properties. J. Agric. Food Chem. 2012, 60, 4634–4640. doi:10.1021/jf300739m.
Wu, M.-J.; Cheng, T.-L.; Cheng, S.-Y.; Lian, T.-W.; Wang, L.; Chiou, S.-Y. Immunomodulatory Properties of Grifola Frondosa in Submerged Culture. J. Agric. Food Chem. 2006, 54, 2906–2914. doi:10.1021/jf052893q.
Huang, S.-J.; Tsai, S.-Y.; Lin, S.-Y.; Liang, C.-H.; Mau, J.-L. Nonvolatile Taste Components of Culinary-Medicinal Maitake Mushroom, Grifola Frondosa (Dicks.:Fr.) S.F. Gray. Int. J. Med. Mushrooms 2011, 13, 265–272. doi:10.1615/intjmedmushr.v13.i3.60.
Konno, N.; Nakade, K.; Nishitani, Y.; Mizuno, M.; Sakamoto, Y. Lentinan Degradation in the Lentinula Edodes Fruiting Body during Postharvest Preservation Is Reduced by Downregulation of the Exo-β-1,3-Glucanase EXG2. J. Agric. Food Chem. 2014, 62, 8153–8157. doi:10.1021/jf501578w.
Wasser, S. Medicinal Mushrooms as a Source of Antitumor and Immunomodulating Polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. doi:10.1007/s00253-002-1076-7.
Muszyńska, B.; Fijałkowska, A.; Sułkowska-Ziaja, K.; Włodarczyk, A.; Kaczmarczyk, P.; Nogaj, E.; Piętka, J. Fomitopsis Officinalis: A Species of Arboreal Mushroom with Promising Biological and Medicinal Properties. Chem. Biodivers. 2020, 17, Art. No: e2000213. doi:10.1002/cbdv.202000213.
Stamets, P.E. Antiviral and Antibacterial Activity from Medicinal Mushrooms, U.S. Patent No 8,765,138, 2014.
Grienke, U.; Zöll, M.; Peintner, U.; Rollinger, J.M. European Medicinal Polypores – A Modern View on Traditional Uses. J. Ethnopharmacol. 2014, 154, 564–583. doi:10.1016/j.jep.2014.04.030.
Naranmandakh, S.; Murata, T.; Odonbayar, B.; Suganuma, K.; Batkhuu, J.; Sasaki, K. Lanostane Triterpenoids from Fomitopsis Officinalis and Their Trypanocidal Activity. J. Nat. Med. 2018, 72, 523–529. doi:10.1007/s11418-018-1182-1.
Girometta, C. Antimicrobial Properties of Fomitopsis Officinalis in the Light of Its Bioactive Metabolites: A Review. Mycology 2019, 10, 32–39. doi:10.1080/21501203.2018.1536680.
Fijałkowska, A.; Muszyńska, B.; Sułkowska-Ziaja, K.; Kała, K.; Pawlik, A.; Stefaniuk, D.; Matuszewska, A.; Piska, K.; Pękala, E.; Kaczmarczyk, P.; et al. Medicinal Potential of Mycelium and Fruiting Bodies of an Arboreal Mushroom Fomitopsis Officinalis in Therapy of Lifestyle Diseases. Sci. Rep. 2020, 10, Art. No: 20081. doi:10.1038/s41598-020-76899-1.
Malinowska, M.; Bielawska, K. Metabolizm i własciwości antyoksydacyjne kumaryn. Bromat. Chem. Toksykol. 2013, XLVI, 393–403.
Bielawska, K.; Malinowska, M.; Cyuńczyk, M. Wpływ kumaryn na organizm człowieka. Bromat. Chem. Toksykol. 2014, XLVII, 213 – 221.
Basanagouda, M.; Kulkarni, M.V.; Sharma, D.; Gupta, V.K.; Pranesha; Sandhyarani, P.; Rasal, V.P. Synthesis of Some New 4-Aryloxmethylcoumarins and Examination of Their Antibacterial and Antifungal Activities. J. Chem. Sci. 2009, 121, 485–495. doi:10.1007/s12039-009-0058-z.
Hwang, C.H.; Jaki, B.U.; Klein, L.L.; Lankin, D.C.; McAlpine, J.B.; Napolitano, J.G.; Fryling, N.A.; Franzblau, S.G.; Cho, S.H.; Stamets, P.E.; et al. Chlorinated Coumarins from the Polypore Mushroom Fomitopsis Officinalis and Their Activity against Mycobacterium Tuberculosis. J. Nat. Prod. 2013, 76, 1916–1922. doi:10.1021/np400497f.
Furmaga, S. Choroby pasożytnicze zwierząt domowych; Państwowe Wydawnictwo Rolnicze i Leśne, 1983; ISBN 83-09-00671-3.
Seweryn, E.; Ziała, A.; Gamian, A. Właściwości triterpenów z lakownicy lśniącej – Ganoderma lucidum (Fr.) Karst. Postepy Hig. Med. Dosw. 2019, 73, 345–352. doi:10.5604/01.3001.0013.2790.
Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.K.S.; Bisen, P.S. Ganoderma Lucidum: A Potent Pharmacological Macrofungus. Curr. Pharm. Biotechnol. 10, 717–742. doi: 10.2174/138920109789978757
Han, J.; Li, L.; Zhong, J.; Tohtaton, Z.; Ren, Q.; Han, L.; Huang, X.; Yuan, T. Officimalonic Acids A−H, Lanostane Triterpenes from the Fruiting Bodies of Fomes Officinalis. Phytochem. 2016, 130, 193–200. doi:10.1016/j.phytochem.2016.05.004.
Matsunaga, Y.; , W.; Machmudah, S.; Askin, R.; Quitain, A.T.; Sasaki, M.; Goto, M. Hydrothermal Extraction and Micronization of Polysaccharides from Ganoderma Lucidum in a One-Step Process. BioResources 2012, 8, 461–471. doi:10.15376/biores.8.1.461-471.
Boh, B.; Berovic, M.; Zhang, J.; Zhi-Bin, L. Ganoderma Lucidum and Its Pharmaceutically Active Compounds. In Biotechnology Annual Review; El-Gewely, M.R., Ed.; Elsevier, 2007; Vol. 13, pp. 265–301.
Sasaki, T.; Arai, Y.; Ikekawa, T.; Chihara, G.; Fukuoka, F. Antitumor Polysaccharides from Some Polyporaceae, Ganoderma Applanatum (Pers.) Pat and Phellinus Linteus (Berk. et Curt) Aoshima. Chem. Pharm. Bull. (Tokyo) 1971, 19, 821–826. doi:10.1248/cpb.19.821.
Luo, J.; Lin, Z. [Advances of pharmacological effects of triterpenes from Ganoderma lucidum]. Yao Xue Xue Bao 2002, 37, 574–578.
Ye, S.; Zhang, H.; Fei, J.; Wolstenholme, C.H.; Zhang, X. A General Strategy to Control Viscosity Sensitivity of Molecular Rotor-Based Fluorophores. Angew. Chem. Int. Ed. 2021, 60, 1339–1346. doi:10.1002/anie.202011108.
O. Toth, J.; Luu, B.; Ourisson, G. Les Acides Ganoderiques Tàz : Triterpenes Cytotoxiques de Ganoderma Lucidum (Polyporacée). Tetrahedron Lett. 1983, 24, 1081–1084. doi:10.1016/S0040-4039(00)81610-X.
Lin, S.-B.; Li, C.-H.; Lee, S.-S.; Kan, L.-S. Triterpene-Enriched Extracts from Ganoderma Lucidum Inhibit Growth of Hepatoma Cells via Suppressing Protein Kinase C, Activating Mitogen-Activated Protein Kinases and G2-Phase Cell Cycle Arrest. Life Sci. 2003, 72, 2381–2390. doi:10.1016/s0024-3205(03)00124-3.
Gao, J.-J.; Min, B.-S.; Ahn, E.-M.; Nakamura, N.; Lee, H.-K.; Hattori, M. New Triterpene Aldehydes, Lucialdehydes A—C, from Ganoderma Lucidum and Their Cytotoxicity against Murine and Human Tumor Cells. Chem. Pharm. Bull. 2002, 50, 837–840. doi:10.1248/cpb.50.837.
Min, B.S.; Gao, J.J.; Nakamura, N.; Hattori, M. Triterpenes from the Spores of Ganoderma Lucidum and Their Cytotoxicity against Meth-A and LLC Tumor Cells. Chem. Pharm. Bull. (Tokyo) 2000, 48, 1026–1033. doi:10.1248/cpb.48.1026.
Gill, B.S.; Sharma, P.; Kumar, R.; Kumar, S. Misconstrued Versatility of Ganoderma Lucidum: A Key Player in Multi-Targeted Cellular Signaling. Tumor Biol. 2016, 37, 2789–2804. doi:10.1007/s13277-015-4709-z.
Yue, Q.-X.; Cao, Z.-W.; Guan, S.-H.; Liu, X.-H.; Tao, L.; Wu, W.-Y.; Li, Y.-X.; Yang, P.-Y.; Liu, X.; Guo, D.-A. Proteomics Characterization of the Cytotoxicity Mechanism of Ganoderic Acid D and Computer-Automated Estimation of the Possible Drug Target Network *. Mol. Cell. Proteomics 2008, 7, 949–961. doi:10.1074/mcp.M700259-MCP200.
Kohda, H.; Tokumoto, W.; Sakamoto, K.; Fujii, M.; Hirai, Y.; Yamasaki, K.; Komoda, Y.; Nakamura, H.; Ishihara, S.; Uchida, M. The Biologically Active Constituents of Ganoderma Lucidum (FR.) KARST. Histamine Release-Inhibitory Triterpenes. Chem. Pharm. Bull. 1985, 33, 1367–1374. doi:10.1248/cpb.33.1367.
Tang, W.; Liu, J.-W.; Zhao, W.-M.; Wei, D.-Z.; Zhong, J.-J. Ganoderic Acid T from Ganoderma Lucidum Mycelia Induces Mitochondria Mediated Apoptosis in Lung Cancer Cells. Life Sciences 2006, 80, 205–211. doi:10.1016/j.lfs.2006.09.001.87.
Chang, U.-M.; Li, C.-H.; Lin, L.-I.; Huang, C.-P.; Kan, L.-S.; Lin, S.-B. Ganoderiol F, a Ganoderma Triterpene, Induces Senescence in Hepatoma HepG2 Cells. Life Sci. 2006, 79, 1129–1139. doi:10.1016/j.lfs.2006.03.027.3.027.