1. Liang, J.; Huang, X.; Ma, G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv. 2022, 12, 29197-29213. DOI: 10.1039/D2RA02389J
DOI: https://doi.org/10.1039/D2RA02389J
2. Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21(5), Art. No: 559. DOI: 10.3390/molecules21050559
DOI: https://doi.org/10.3390/molecules21050559
3. Keskin, C. Medicinal plants and their traditional uses. JAPB 2018, 1(2), 8-12. DOI: 10.14302/issn.2638-4469.japb-18-2423
DOI: https://doi.org/10.14302/issn.2638-4469.japb-18-2423
4. Khumalo, G.P.; Van Wyk, B.E.; Feng, Y.; Cock, I.E. A review of the traditional use of southern African medicinal plants for the treatment of inflammation and inflammatory pain. J. Ethnopharmacol. 2022, 283, Art. No: 114436. DOI: 10.1016/j.jep.2021.114436
DOI: https://doi.org/10.1016/j.jep.2021.114436
5. Marković, M.S.; Pljevljakušić, D.S.; Matejić, J.S.; Nikolić, B.M.; Zlatković, B.K.; Rakonjac, L.B., et al. Traditional uses of medicinal plants in Pirot District (southeastern Serbia). Genet. Resour. Crop Evol. 2024, 71, 1201-1220. DOI: 10.1007/s10722-023-01685-7
DOI: https://doi.org/10.1007/s10722-023-01685-7
6. Niazi, P.; Monib, A.W. The role of plants in traditional and modern medicine. J. Pharmacogn. Phytochem. 2024, 13(2), 643-647. DOI: 10.22271/phyto.2024.v13.i2d.14905
DOI: https://doi.org/10.22271/phyto.2024.v13.i2d.14905
7. Morse, S.S. Factors in the Emergence of Infectious Diseases. In Plagues and Politics: Infectious Disease and International Policy, 1st ed,; Price-Smith, A., Eds.; Palgrave Macmillan: London, UK, 2001; pp. 8-26.
DOI: https://doi.org/10.1057/9780230524248_2
8. Janeway, C.; Travers, P.; Walport, M.; Shlomchik, M. Immunobiology: the immune system in health and disease. 5th ed.; Garland Science: New York, USA, 2001; p. 154.
9. Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361-366. DOI: 10.1016/j.sjbs.2017.02.004
DOI: https://doi.org/10.1016/j.sjbs.2017.02.004
10. Cherrada, N.; Elkhalifa Chemsa, A.; Gheraissa, N.; Zaater, A.; Benamor, B.; Ghania, A., et al. Antidiabetic medicinal plants from the Chenopodiaceae family: A comprehensive overview. Int. J. Food Prop. 2024, 27, 194-213. DOI: 10.1080/10942912.2023.2301576
DOI: https://doi.org/10.1080/10942912.2023.2301576
11. Mehraj, N.; Alam, M. Karafs (Apium graveolens Linn) An in-depth review of its historical context, therapeutic properties, ethno pharmacological applications, and scientific research. J. Pharmacogn. Phytochem. 2024, 13, 401-405. DOI: 10.22271/phyto.2024.v13.i3e.14981
DOI: https://doi.org/10.22271/phyto.2024.v13.i3e.14981
12. Bagheri, R.; Bohlouli, S.; Maleki Dizaj, S.; Shahi, S.; Memar, M.Y.; Salatin, S. The antimicrobial and anti-biofilm effects of Hypericum perforatum oil on common pathogens of periodontitis: an in vitro study. Clin. Pract. 2022, 12, 1009-1019. DOI: 10.3390/clinpract12060104
DOI: https://doi.org/10.3390/clinpract12060104
13. Wang, L.; Ibi, A.; Chang, C.; Solnier, J. A new UHPLC analytical method for St. John’s Wort (Hypericum perforatum) extracts. Separations 2023, 10(5), Art. No: 280. DOI: 10.3390/separations10050280
DOI: https://doi.org/10.3390/separations10050280
14. Rode, S.B.; Dadmal, A.; Salankar, H.V. Nature’s gold (Moringa oleifera): miracle properties. Cureus 2022, 14, Art. No: e26640. DOI: 10.7759/cureus.26640
DOI: https://doi.org/10.7759/cureus.26640
15. Milla, P.G.; Peñalver, R.; Nieto, G. Health benefits of uses and applications of Moringa oleifera in bakery products. Plants 2021, 10(2), Art. No: 318. DOI: 10.3390/plants10020318
DOI: https://doi.org/10.3390/plants10020318
16. Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-inflammatory and antimicrobial properties of thyme oil and its main constituents. Int. J. Mol. Sci. 2023, 24(8), Art. No: 6936. DOI: 10.3390/ijms24086936
DOI: https://doi.org/10.3390/ijms24086936
17. Aleem, M.; Khan, M.I.; Shakshaz, F.A.; Akbari, N.; Anwar, D. Botany, phytochemistry and antimicrobial activity of ginger (Zingiber officinale): A review. Int. J. Herb Med. 2020, 8(6), 36-49. DOI: 10.22271/flora.2020.v8.i6a.705
DOI: https://doi.org/10.22271/flora.2020.v8.i6a.705
18. Abdalla, W.E.; Abdallah, E.M. Antibacterial activity of ginger (Zingiber Officinale Rosc.) rhizome: A mini review. Int. J. Pharmacogn. Chinese Med. 2018, 2(4), Art. No: 000142. DOI: 10.23880/ipcm-16000142
DOI: https://doi.org/10.23880/ipcm-16000142
19. Yadav, N.; Singh, P.K.; Harijan, D.K.; Nayeem, M.; Kashyap, S.; Kumar, S.N., et al. A comprehensive review on therapeutic potentials of Matricaria chamomilla (chamomile) against inflammation-mediated chronic diseases. J. Pharma. Insight Res. 2024, 2, 226-235.
20. Alzohairy, M.A. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid. Based Complement. Alternat. Med. 2016, Art. No: 7382506. DOI: 10.1155/2016/7382506
DOI: https://doi.org/10.1155/2016/7382506
21. Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Front. Microbiol. 2021, 12, Art. No: 613077. DOI: 10.3389/fmicb.2021.613077
DOI: https://doi.org/10.3389/fmicb.2021.613077
22. Kumar, M.; Kaur, P.; Garg, R.; Patil, R.; Patil, H. A study on antibacterial property of curcuma longa–herbal and traditional medicine. Adesh Univ. J. Med. Sci. Res. 2020, 2, 103-108. DOI: 10.25259/AUJMSR_11_2020
DOI: https://doi.org/10.25259/AUJMSR_11_2020
23. Muhamed, I.A.; Ahmad, W.A.N.W.; Ramli, N.S.; Ghafar, N.A. Antimicrobial and antioxidant property of Curcuma longa Linn. Int. J. Basic Clin. Pharmacol. 2019, 8, 2383–2388. DOI: 10.18203/2319-2003.ijbcp20194772
DOI: https://doi.org/10.18203/2319-2003.ijbcp20194772
24. Izquierdo-Vega, J.A.; Arteaga-Badillo, D.A.; Sánchez-Gutiérrez, M.; Morales-González, J.A.; Vargas-Mendoza, N.; Gómez-Aldapa, C.A., et al. Organic acids from roselle (Hibiscus sabdariffa L.)—A brief review of its pharmacological effects. Biomedicines 2020, 8(5), Art. No: 100. DOI: 10.3390/biomedicines8050100
DOI: https://doi.org/10.3390/biomedicines8050100
25. Lechkova, B.; Karcheva-Bahchevanska, D.; Ivanov, K.; Todorova, V.; Benbassat, N.; Penkova, N., et al. A Study of the chemical composition, acute and subacute toxicity of Bulgarian Tanacetum parthenium essential oil. Molecules 2023, 28(13), Art. No: 4906. DOI: 10.3390/molecules28134906
DOI: https://doi.org/10.3390/molecules28134906
26. Shafaghat, A.; Ghorban-Dadras, O.; Mohammadhosseini, M.; Akhavan, M.; Shafaghatlonbar, M.; Panahi, A. A comparative study on chemical composition and antimicrobial activity of essential oils from Tanacetum parthenium (L.) Schultz. Bip. and Tanacetum punctatum (Desr.) Grierson. leaves from Iran. J. Essent. Oil-Bear. Plants 2017, 20(4), 1143-1150. DOI: 10.1080/0972060X.2017.1383859
DOI: https://doi.org/10.1080/0972060X.2017.1383859
27. Lou, R.; Rottinghaus, G.; Thomas, A.L.; Monroe, D.; Tran, K.; Smith, R.E. Identification of Unknown Compound in Apocynum cannabinum by High Resolution Mass Spectrometry (HRMS) and 600 MHz NMR. J. Regul. Sci. 2016, 4, 14-19. DOI: 10.21423/JRS-V04N03P014
DOI: https://doi.org/10.21423/JRS-V04N03P014
28. Sammaiah, A.; Kaki, S.S.; Manoj, G.N.S.; Poornachandra, Y.; Kumar, C.G.; Prasad, R. Novel fatty acid esters of apocynin oxime exhibit antimicrobial and antioxidant activities. Eur. J. Lipid Sci. Technol. 2015, 117, 692-700. DOI: 10.1002/ejlt.201400471
DOI: https://doi.org/10.1002/ejlt.201400471
29. Burlou-Nagy, C.; Bănică, F.; Negrean, R.A.; Jurca, T.; Vicaș, L.G.; Marian, E., et al. Determination of the bioactive compounds from Echinacea purpurea (L.) Moench leaves extracts in correlation with the antimicrobial activity and the in vitro wound healing potential. Molecules 2023, 28(15), Art. No: 5711. DOI: 10.3390/molecules28155711
DOI: https://doi.org/10.3390/molecules28155711
30. Petkova, N.; Petrova, A.; Ivanov, I.; Hambarlyiska, I.; Tumbarski, Y.; Dincheva, I., et al. Chemical composition of different extracts from Echinacea Purpurea (l.) moench roots and evaluation of their antimicrobial activity. ChemEngineering 2023, 7(5), Art. No: 94. DOI: 10.3390/chemengineering7050094
DOI: https://doi.org/10.3390/chemengineering7050094
31. Coelho, J.; Barros, L.; Dias, M.I.; Finimundy, T.C.; Amaral, J.S.; Alves, M.J., et al. Echinacea purpurea (L.) Moench: chemical characterization and bioactivity of its extracts and fractions. Pharmaceuticals 2020, 13(6), Art. No: 125. DOI: 10.3390/ph13060125
DOI: https://doi.org/10.3390/ph13060125
32. Rahbardar, M.G.; Hosseinzadeh, H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J. Basic Med. Sci. 2020, 23(9), 1100-1112. DOI: 10.22038/ijbms.2020.45269.10541
33. Oualdi, I.; Brahmi, F.; Mokhtari, O.; Abdellaoui, S.; Tahani, A.; Oussaid, A. Rosmarinus officinalis from Morocco, Italy and France: Insight into chemical compositions and biological properties. Mater Today Proc. 2021, 45, 7706-7710. DOI: 10.1016/j.matpr.2021.03.333
DOI: https://doi.org/10.1016/j.matpr.2021.03.333
34. da Silva Bomfim, N.; Kohiyama, C.Y.; Nakasugi, L.P.; Nerilo, S.B.; Mossini, S.A.G.; Romoli, J.C.Z., et al. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Asspergillus flavus. Food Addit. Contam.: Part A 2020, 37(1), 153-161. DOI: 10.1080/19440049.2019.1678771
DOI: https://doi.org/10.1080/19440049.2019.1678771
35. Carbone, K.; Gervasi, F. An updated review of the genus humulus: A valuable source of bioactive compounds for health and disease prevention. Plants 2022, 11(24), Art. No: 3434. DOI: 10.3390/plants11243434
DOI: https://doi.org/10.3390/plants11243434
36. Olsovska, J.; Bostikova, V.; Dusek, M.; Jandovska, V.; Bogdanova, K.; Cermak, P., et al. Humulus lupulus L.(hops)–a valuable source of compounds with bioactive effects for future therapies. Military Med. Sci. Lett. 2016, 85, 19-30. DOI: 10.31482/mmsl.2016.004
DOI: https://doi.org/10.31482/mmsl.2016.004
37. Gortzi, O.; Rovoli, M.; Katsoulis, K.; Graikou, K.; Karagkini, D.-A.; Stagos, D., et al. Study of stability, cytotoxic and antimicrobial activity of chios mastic gum fractions (neutral, acidic) after encapsulation in liposomes. Foods 2022, 11(3), Art. No: 271. DOI: 10.3390/foods11030271
DOI: https://doi.org/10.3390/foods11030271
38. Soulaidopoulos, S.; Tsiogka, A.; Chrysohoou, C.; Lazarou, E.; Aznaouridis, K.; Doundoulakis, I., et al. Overview of chios mastic gum (Pistacia lentiscus) effects on human health. Nutrients 2022, 14(3), Art. No: 590. DOI: 10.3390/nu14030590
DOI: https://doi.org/10.3390/nu14030590
39. Paluch, Z.; Biriczova, L.; Pallag, G.; Marques, E.C.; Vargova, N.; Kmoníčková, E. The therapeutic effects of Agrimonia eupatoria L. Physiol. Res. 2020, 69(Suppl 4), S555-S571. DOI: 10.33549/physiolres.934641
DOI: https://doi.org/10.33549/physiolres.934641
40. He, L.; Cheng, H.; Chen, F.; Song, S.; Zhang, H.; Sun, W., et al. Oxidative stress-mediated antibacterial activity of the total flavonoid extracted from the Agrimonia pilosa ledeb. in methicillin-resistant Staphylococcus aureus (MRSA). Vet. Sci. 2022, 9(2), Art. No: 71. DOI: 10.3390/vetsci9020071
DOI: https://doi.org/10.3390/vetsci9020071
41. Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; Calabrese, K.d.S.; Abreu-Silva, A.L.; Marinho, S.C., et al. Aniba rosaeodora (Var. amazonica Ducke) essential oil: Chemical composition, antibacterial, antioxidant and antitrypanosomal activity. Antibiotics 2020, 10(1), Art. No: 24. DOI: 10.3390/antibiotics10010024
DOI: https://doi.org/10.3390/antibiotics10010024
42. Batiha, G.E.-S.; Wasef, L.; Teibo, J.O.; Shaheen, H.M.; Zakariya, A.M.; Akinfe, O.A., et al. Commiphora myrrh: A phytochemical and pharmacological update. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396(3), 405-420. DOI: 10.1007/s00210-022-02325-0
DOI: https://doi.org/10.1007/s00210-022-02325-0
43. Häkkinen, S.T.; Soković, M.; Nohynek, L.; Ćirić, A.; Ivanov, M.; Stojković, D., et al. Chicory extracts and sesquiterpene lactones show potent activity against bacterial and fungal pathogens. Pharmaceuticals 2021, 14(9), Art. No: 941. DOI: 10.3390/ph14090941
DOI: https://doi.org/10.3390/ph14090941
44. Demmers, A.; Mes, J.J.; Elbers, R.G.; Pieters, R.H. Harms of Momordica charantia L. in humans; A systematic review. Fortune J. Health. Sci. 2023, 6(2), 222-236. DOI: 10.1101/2022.10.22.22281390
DOI: https://doi.org/10.1101/2022.10.22.22281390
45. Damiani, E.; Aloia, A.; Priore, M.; Pastore, A.; Lovecchio, A.; Errico, M., et al. IgE-mediated reaction induced by arugula (Eruca sativa) ingestion compared with a spectrum of brassicaceae proteins. Allergol. Immunopathol. 2014, 42(5), 501-503. DOI: 10.1016/j.aller.2013.05.003
DOI: https://doi.org/10.1016/j.aller.2013.05.003
46. Shang, Y.-x.; Shen, C.; Stub, T.; Zhu, S.-j.; Qiao, S.-y.; Li, Y.-q., et al. Adverse effects of andrographolide derivative medications compared to the safe use of herbal preparations of Andrographis paniculata: results of a systematic review and meta-analysis of clinical studies. Front. Pharmacol. 2022, 13, Art. No: 773282. DOI: 10.3389/fphar.2022.773282
DOI: https://doi.org/10.3389/fphar.2022.773282
47. Miu, B.A.; Dinischiotu, A. New green approaches in nanoparticles synthesis: An overview. Molecules 2022, 27(19), Art. No: 6472. DOI: 10.3390/molecules27196472
DOI: https://doi.org/10.3390/molecules27196472
48. Verma, A.; Gautam, S.P.; Bansal, K.K.; Prabhakar, N.; Rosenholm, J.M. Green nanotechnology: Advancement in phytoformulation research. Medicines 2019, 6(1), Art. No: 39. DOI: 10.3390/medicines6010039
DOI: https://doi.org/10.3390/medicines6010039
49. Neupane, N.P.; Kushwaha, A.K.; Karn, A.K.; Khalilullah, H.; Khan, M.M.U.; Kaushik, A., et al. Anti-bacterial efficacy of bio-fabricated silver nanoparticles of aerial part of Moringa oleifera lam: Rapid green synthesis, in-vitro and in-silico screening. Biocatal. Agric. Biotechnol. 2022, 39, Art. No: 102229. DOI: 10.1016/j.bcab.2021.102229.
DOI: https://doi.org/10.1016/j.bcab.2021.102229
50. Abdellah, A.M.; Sliem, M.A.; Bakr, M.; Amin, R.M. Green synthesis and biological activity of silver–curcumin nanoconjugates. Future Med. Chem. 2018, 10(22), 2577-2588. DOI: 10.4155/fmc-2018-0152
DOI: https://doi.org/10.4155/fmc-2018-0152
51. Fierascu, I.C.; Fierascu, I.; Baroi, A.M.; Ungureanu, C.; Ortan, A.; Avramescu, S.M., et al. Phytosynthesis of biological active silver nanoparticles using Echinacea purpurea L. extracts. Materials 2022, 15(20), Art. No: 7327. DOI: 10.3390/ma15207327
DOI: https://doi.org/10.3390/ma15207327
52. Sarwar, M.F.; Zahra, A.; Awan, M.F.; Ali, S.; Shafiq, M.; Muzammil, K. Assessing the efficacy of cinnamon compounds against H. pylori through molecular docking, MD Simulations and ADMET analyses. Plos One 2024, 19(3), Art. No: e0299378. DOI: 10.1371/journal.pone.0299378
DOI: https://doi.org/10.1371/journal.pone.0299378
53. Elfaky, M.A.; Okairy, H.M.; Abdallah, H.M.; Koshak, A.E.; Mohamed, G.A.; Ibrahim, S.R., et al. Assessing the antibacterial potential of 6-gingerol: combined experimental and computational approaches. Saudi Pharm. J. 2024, 32(5), Art. No: 102041. DOI: 10.1016/j.jsps.2024.102041
DOI: https://doi.org/10.1016/j.jsps.2024.102041
54. Lahiri, D.; Nag, M.; Dey, S.; Dutta, B.; Dash, S.; Ray, R.R. Phytocompounds of Curcuma longa extract are more effective against bacterial biofilm than pure curcumin only: An in-vitro and in-silico analysis. Kuwait J. Sci. 2021, 48(2), 1-14. DOI: 10.48129/kjs.v48i2.8310
DOI: https://doi.org/10.48129/kjs.v48i2.8310
55. Seddoqi, S.; Aouinti, F.; Conte, R.; Elhachlafi, N.; Gseyra, N. Exploring phytochemical composition, antioxidant, antibacterial properties, and in-silico study of aqueous leaf extract of Pistacia lentiscus L. from the eastern region of Morocco. Trop. J. Nat. Prod. Res. 2024, 8, 6891-6900. DOI: 10.26538/tjnpr/v8i4.20
DOI: https://doi.org/10.26538/tjnpr/v8i4.20
56. Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PloS one 2021, 16(3), Art. No: e0249253. DOI: 10.1371/journal.pone.0249253
DOI: https://doi.org/10.1371/journal.pone.0249253
57. Huang, W.; Wang, Y.; Tian, W.; Cui, X.; Tu, P.; Li, J., et al. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics 2022, 11(10), Art. No: 1380. DOI: 10.3390/antibiotics11101380
DOI: https://doi.org/10.3390/antibiotics11101380
58. Alemu, M.; Lulekal, E.; Asfaw, Z.; Warkineh, B.; Debella, A.; Abebe, A., et al. Antibacterial activity and phytochemical screening of traditional medicinal plants most preferred for treating infectious diseases in Habru District, North Wollo Zone, Amhara Region, Ethiopia. Plos one 2024, 19(3), Art. No: e0300060. DOI: 10.1371/journal.pone.0300060
DOI: https://doi.org/10.1371/journal.pone.0300060
59. Angelini, P. Plant-derived antimicrobials and their crucial role in combating antimicrobial resistance. Antibiotics 2024, 13(8), Art. No: 746. DOI: 10.3390/antibiotics13080746
DOI: https://doi.org/10.3390/antibiotics13080746
60. Ullah, B.; Esa, M.; Kamal, Z.; Khan, K.A.; Shafique, M. Plant Secondary Metabolites: A Comprehensive Review of Their Role in Combating Antimicrobial and Multidrug-Resistant Bacteria. Heliyon, 2024, (Preprint). DOI: 10.2139/ssrn.4830805
DOI: https://doi.org/10.2139/ssrn.4830805
61. El-Aziz, A.; El Sheikh, S.; Galal, A.; Refky, Y. Possible Alternative Strategies to Combat Antimicrobial Resistance. Zagazig Vet. J. 2024, 52(1), 1-24. DOI: 10.21608/zvjz.2024.241916.1222
DOI: https://doi.org/10.21608/zvjz.2024.241916.1222
62. Iyer, D.; Soni, M.; Mulchandani, V.; Siddiqui, N. Pharmacognostical Investigation on Fruits of Apium graveolens L.: An ayurvedic herb. J. Ayu. Herb. Med. 2021, 7, 232-236. DOI: 10.31254/jahm.2021.7404
DOI: https://doi.org/10.31254/jahm.2021.7404
63. Al-Aboody, M.S. Cytotoxic, antioxidant, and antimicrobial activities of celery (Apium graveolens L.). Bioinformation 2021, 17, 147-156. DOI: 10.6026/97320630017147
DOI: https://doi.org/10.6026/97320630017147
64. Jiang, L.; Liu, Z.; Cui, Y.; Shao, Y.; Tao, Y.; Mei, L. Apigenin from daily vegetable celery can accelerate bone defects healing. J. Funct. Foods 2019, 54, 412-421. DOI: 10.1016/j.jff.2019.01.043
DOI: https://doi.org/10.1016/j.jff.2019.01.043
65. Illes, J.D. Blood pressure change after celery juice ingestion in a hypertensive elderly male. J. Chiropr. Med. 2021, 20, 90-94. DOI: 10.1016/j.jcm.2021.04.001
DOI: https://doi.org/10.1016/j.jcm.2021.04.001
66. Pérez-Ruiz, E.; Melero, I.; Kopecka, J.; Sarmento-Ribeiro, A.B.; García-Aranda, M.; De Las Rivas, J. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resist. Updat. 2020, 53, Art. No: 100718. DOI: 10.1016/j.drup.2020.100718
DOI: https://doi.org/10.1016/j.drup.2020.100718
67. Schepetkin, I.A.; Özek, G.; Özek, T.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. Chemical composition and immunomodulatory activity of Hypericum perforatum essential oils. Biomolecules 2020, 10(6), Art. No: 916. DOI: 10.3390/biom10060916
DOI: https://doi.org/10.3390/biom10060916
68. Nobakht, S.Z.; Akaberi, M.; Mohammadpour, A.H.; Moghadam, A.T.; Emami, S.A. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iran J. Basic. Med. Sci. 2022, 25(9), 1045-1058. DOI: 10.22038/IJBMS.2022.65112.14338
69. Alahmad, A.; Alghoraibi, I.; Zein, R.; Kraft, S.; Dräger, G.; Walter, J.-G., et al. Identification of major constituents of Hypericum perforatum L. extracts in Syria by development of a rapid, simple, and reproducible HPLC-ESI-Q-TOF MS analysis and their antioxidant activities. ACS Omega 2022, 7(16), 13475-13493. DOI: 10.1021/acsomega.1c06335
DOI: https://doi.org/10.1021/acsomega.1c06335
70. Nicolussi, S.; Drewe, J.; Butterweck, V.; Meyer zu Schwabedissen, H.E. Clinical relevance of St. John's wort drug interactions revisited. Br. J. Pharmacol. 2020, 177(6), 1212-1226. DOI: 10.1111/bph.14936
DOI: https://doi.org/10.1111/bph.14936
71. Monteiro, M.-d.-C.; Dias, A.C.; Costa, D.; Almeida-Dias, A.; Criado, M.B. Hypericum perforatum and its potential antiplatelet effect. Healthcare 2022, 10(9), Art. No: 1774. DOI: 10.3390/healthcare10091774
DOI: https://doi.org/10.3390/healthcare10091774
72. Ben-Eliezer, D.; Yechiam, E. Hypericum perforatum as a cognitive enhancer in rodents: A meta-analysis. Sci. Rep. 2016, 6(1), Art. No: 35700. DOI: 10.1038/srep35700
DOI: https://doi.org/10.1038/srep35700
73. Ma, Z.; Ahmad, J.; Zhang, H.; Khan, I.; Muhammad, S. Evaluation of phytochemical and medicinal properties of moringa (Moringa oleifera) as a potential functional food. S. Afr. J. Bot. 2020, 129, 40-46. DOI: 10.1016/j.sajb.2018.12.002
DOI: https://doi.org/10.1016/j.sajb.2018.12.002
74. Xiong, Y.; Rajoka, M.S.R.; Mehwish, H.M.; Zhang, M.; Liang, N.; Li, C., et al. Virucidal activity of moringa a from Moringa oleifera seeds against influenza a viruses by regulating TFEB. Int. Immunopharmacol. 2021, 95, Art. No: 107561. DOI: 10.1016/j.intimp.2021.107561
DOI: https://doi.org/10.1016/j.intimp.2021.107561
75. Hammi, K.; Essid, R.; Tabbene, O.; Elkahoui, S.; Majdoub, H.; Ksouri, R. Antileishmanial activity of Moringa oleifera leaf extracts and potential synergy with amphotericin B. S. Afr. J. Bot. 2020, 129, 67-73. DOI: 10.1016/j.sajb.2019.01.008
DOI: https://doi.org/10.1016/j.sajb.2019.01.008
76. Fouad, E.A.; Elnaga, A.S.A.; Kandil, M.M. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess. Vet. World 2019, 12(6), 802-808. DOI: 10.14202/vetworld.2019.802-808
DOI: https://doi.org/10.14202/vetworld.2019.802-808
77. Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T., et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 2019, 8(6), Art. No: 185. DOI: 10.3390/foods8060185
DOI: https://doi.org/10.3390/foods8060185
78. Saleem, S.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytother. Res. 2018, 32, 1241-1272. DOI: 10.1002/ptr.6076
DOI: https://doi.org/10.1002/ptr.6076
79. Khan, M.A.; Yaqoob, S.; Ahmad, S. Antimicrobial activity of Azadirachta indica, against target pathogens and its utility as a disinfectant and floor cleaner. J. Evol. Med. Dent. Sci. 2021, 10(25), 1899-1903. DOI: 10.14260/jemds/2021/392
DOI: https://doi.org/10.14260/jemds/2021/392
80. Yetgin, A.; Canlı, K.; Altuner, E.M. Comparison of antimicrobial activity of Allium sativum cloves from China and Taşköprü, Turkey. Adv. Pharmacol. Pharm. Sci. 2018, 2018, Art. No: 9302840. DOI: 10.1155/2018/9302840
DOI: https://doi.org/10.1155/2018/9302840
81. Dosoky, N.S.; Setzer, W.N. Chemical composition and biological activities of essential oils of curcuma species. Nutrients 2018, 10, Art. No: 1196. DOI: 10.3390/nu10091196
DOI: https://doi.org/10.3390/nu10091196
82. Su, C.-C.; Wang, C.-J.; Huang, K.-H.; Lee, Y.-J.; Chan, W.-M.; Chang, Y.-C. Anthocyanins from Hibiscus sabdariffa calyx attenuate in vitro and in vivo melanoma cancer metastasis. J. Funct. Foods 2018, 48, 614-631. DOI: 10.1016/j.jff.2018.07.032
DOI: https://doi.org/10.1016/j.jff.2018.07.032
83. Portillo-Torres, L.A.; Bernardino-Nicanor, A.; Gómez-Aldapa, C.A.; González-Montiel, S.; Rangel-Vargas, E.; Villagómez-Ibarra, J.R., et al. Hibiscus acid and chromatographic fractions from Hibiscus sabdariffa calyces: Antimicrobial activity against multidrug-resistant pathogenic bacteria. Antibiotics 2019, 8(4), Art. No: 218. DOI: 10.3390/antibiotics8040218
DOI: https://doi.org/10.3390/antibiotics8040218
84. Abass, A.A.; Al-Magsoosi, M.J.N.; Kadhim, W.A.; Mustafa, R.; Aljdaimi, A.I.; Al-Nasrawi, S.J., et al. Antimicrobial effect of red roselle (Hibiscus Sabdariffa) against different types of oral bacteria. J. Med. Life 2022,15(1), 89-97. DOI: 10.25122/jml-2021-0184
DOI: https://doi.org/10.25122/jml-2021-0184
85. Takeda, Y.; Okuyama, Y.; Nakano, H.; Yaoita, Y.; Machida, K.; Ogawa, H., et al. Antiviral activities of Hibiscus sabdariffa L. tea extract against human influenza A virus rely largely on acidic pH but partially on a low-pH-independent mechanism. Food Environ. Virol. 2020, 12, 9-19. DOI: 10.1007/s12560-019-09408-x
DOI: https://doi.org/10.1007/s12560-019-09408-x
86. de Macedo, L.M.; Santos, É.M.d.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B., et al. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and its topical applications: A review. Plants 2020, 9(5), Art. No: 651. DOI: 10.3390/plants9050651
DOI: https://doi.org/10.3390/plants9050651
87. Saleh, A.; Al Kamaly, O.; Alanazi, A.S.; Noman, O. Phytochemical analysis and antimicrobial activity of Rosmarinus officinalis L. Growing in Saudi Arabia: Experimental and computational approaches. Processes 2022, 10(11), Art. No: 2422. DOI: 10.3390/pr10112422
DOI: https://doi.org/10.3390/pr10112422
88. Bolton, J.L.; Dunlap, T.L.; Hajirahimkhan, A.; Mbachu, O.; Chen, S.-N.; Chadwick, L., et al. The multiple biological targets of hops and bioactive compounds. Chem. Res. Toxicol. 2019, 32(2), 222-233. DOI: 10.1021/acs.chemrestox.8b00345
DOI: https://doi.org/10.1021/acs.chemrestox.8b00345
89. Pachi, V.K.; Mikropoulou, E.V.; Gkiouvetidis, P.; Siafakas, K.; Argyropoulou, A.; Angelis, A., et al. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. J. Ethnopharmacol. 2020, 254, Art. No: 112485. DOI: 10.1016/j.jep.2019.112485
DOI: https://doi.org/10.1016/j.jep.2019.112485
90. Jin, T.; Chi, L.; Ma, C. Agrimonia pilosa: A phytochemical and pharmacological review. Evid. Based Complement. Alternat. Med. 2022, 2022, Art. No: 3742208. DOI: 10.1155/2022/3742208
DOI: https://doi.org/10.1155/2022/3742208
91. da Silva, Y.C.; Silva, E.M.S.; Fernandes, N.d.S.; Lopes, N.L.; Orlandi, P.P.; Nakamura, C.V., et al. Antimicrobial substances from Amazonian Aniba (Lauraceae) species. Nat. Prod. Res. 2021, 35(5), 849-852. DOI: 10.1080/14786419.2019.1603225
DOI: https://doi.org/10.1080/14786419.2019.1603225
92. Mohamed, A.A.; Ali, S.I.; EL-Baz, F.K.; Hegazy, A.K.; Kord, M.A. Chemical composition of essential oil and in vitro antioxidant and antimicrobial activities of crude extracts of Commiphora myrrha resin. Ind. Crops Prod. 2014, 57, 10-16. DOI: 10.1016/j.indcrop.2014.03.017
DOI: https://doi.org/10.1016/j.indcrop.2014.03.017
93. Alhussaini, M.S.; Saadabi, A.; Alghonaim, M.I.; Ibrahim, K.E. An evaluation of the antimicrobial activity of Commiphora myrrha Nees (Engl.) oleo-gum resins from Saudi Arabia. J. Med. Sci. 2015, 15(4), 198-203. DOI: 10.3923/jms.2015.198.203
DOI: https://doi.org/10.3923/jms.2015.198.203
94. Nwafor, I.C.; Shale, K.; Achilonu, M.C. Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. Sci. World J. 2017, 2017, Art. No: 7343928. DOI: 10.1155/2017/7343928
DOI: https://doi.org/10.1155/2017/7343928
95. Madhavi, N.; Chandu, B.L.; Rithika, G.; Niharika, B.; Rao, T.R. Insight on phytochemical and pharmacognostic review of Cichorium intybus. Pharmacog. Res. 2023, 15(3), 405-409. DOI: 10.5530/pres.15.3.044
96. Saeed, F.; Afzaal, M.; Niaz, B.; Arshad, M.U.; Tufail, T.; Hussain, M.B., et al. Bitter melon (Momordica charantia): A natural healthy vegetable. Int. J. Food Prop. 2018, 21(1), 1270-1290. DOI: 10.1080/10942912.2018.1446023
DOI: https://doi.org/10.1080/10942912.2018.1446023
97. Pagnotta, E.; Ugolini, L.; Matteo, R.; Righetti, L. Bioactive compounds from Eruca sativa seeds. Encyclopedia 2022, 2(4), 1866-1879. DOI: 10.3390/encyclopedia2040129.
DOI: https://doi.org/10.3390/encyclopedia2040129
98. Qaddoumi, S.; El-Banna, N. Antimicrobial activity of arugula (Eruca sativa) leaves on some pathogenic bacteria. Int. J. Biol. 2019, 11(3), 10-15. DOI: 10.5539/ijb.v11n3p10
DOI: https://doi.org/10.5539/ijb.v11n3p10
99. Septiani, D.A.; Hakim, A.; Patech, L.R.; Zulhalifah, Z.; Siswadi, S. Isolation and identification of andrographolide compounds from the leaves of sambiloto plant (Andrographis paniculata Ness). Acta Chimica Asiana 2021, 4(1), 108-113. DOI: 10.29303/aca.v4i1.65
DOI: https://doi.org/10.29303/aca.v4i1.65
100. Raman, S.; Murugaiyah, V.; Parumasivam, T. Andrographis paniculata dosage forms and advances in nanoparticulate delivery systems: An overview. Molecules 2022, 27(19), Art. No: 6164. DOI: 10.3390/molecules27196164
DOI: https://doi.org/10.3390/molecules27196164
101. Kim, S.; Woo, E.R.; Lee, D.G. Apigenin promotes antibacterial activity via regulation of nitric oxide and superoxide anion production. J. Basic Microbiol. 2020, 60, 862-872. DOI: 10.1002/jobm.202000432
DOI: https://doi.org/10.1002/jobm.202000432
102. Lyles, J.T.; Kim, A.; Nelson, K.; Bullard-Roberts, A.L.; Hajdari, A.; Mustafa, B., et al. The chemical and antibacterial evaluation of St. John's Wort oil macerates used in Kosovar traditional medicine. Front. Microbiol. 2017, 8, Art. No: 1639. DOI: 10.3389/fmicb.2017.01639
DOI: https://doi.org/10.3389/fmicb.2017.01639
103. Chen, H.; Muhammad, I.; Zhang, Y.; Ren, Y.; Zhang, R.; Huang, X., et al. Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. Front. Pharmacol. 2019, 10, Art. No: 1272. DOI: 10.3389/fphar.2019.01272
DOI: https://doi.org/10.3389/fphar.2019.01272
104. Kakouri, E.; Daferera, D.; Trigas, P.; Charalambous, D.; Pantelidou, M.; Tarantilis, P.A., et al. Comparative study of the antibacterial activity, total phenolic and total flavonoid content of nine hypericum species grown in Greece. Appl. Sci. 2023, 13(5), Art. No: 3305. DOI: 10.3390/app13053305
DOI: https://doi.org/10.3390/app13053305
105. van den Berg, J.; Kuipers, S. The antibacterial action of Moringa oleifera: A systematic review. S. Afr. J. Bot. 2022, 151, 224-233. DOI: 10.1016/j.sajb.2022.09.034
DOI: https://doi.org/10.1016/j.sajb.2022.09.034
106. Diniz, A.; Santos, B.; Nóbrega, L.; Santos, V.; Mariz, W.; Cruz, P., et al. Antibacterial activity of Thymus vulgaris (thyme) essential oil against strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus saprophyticus isolated from meat product. Braz. J. Biol. 2023, 83, 1-9. DOI: 10.1590/1519-6984.275306
DOI: https://doi.org/10.1590/1519-6984.275306
107. Mehrishi, P.; Agarwal, P.; Broor, S.; Sharma, A. Antibacterial and antibiofilm properties of Azadirachta indica (Neem), Aloe vera (Aloe vera), and Mentha piperita (Peppermint) against multidrug-resistant clinical isolates. Biomed. Biotechnol. Res. J. 2022, 6(1), 98-104. DOI: 10.4103/bbrj.bbrj_178_21
DOI: https://doi.org/10.4103/bbrj.bbrj_178_21
108. Petropoulos, S.; Fernandes, Â.; Barros, L.; Ciric, A.; Sokovic, M.; Ferreira, I.C. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chem. 2018, 245, 7-12. DOI: 10.1016/j.foodchem.2017.10.078
DOI: https://doi.org/10.1016/j.foodchem.2017.10.078
109. Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol. 2021, 203, 2257-2268. DOI: 10.1007/s00203-021-02248-z
DOI: https://doi.org/10.1007/s00203-021-02248-z
110. Choo, S.; Chin, V.K.; Wong, E.H.; Madhavan, P.; Tay, S.T.; Yong, P.V.C., et al. Antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiol. 2020, 65, 451-465. DOI: 10.1007/s12223-020-00786-5
DOI: https://doi.org/10.1007/s12223-020-00786-5
111. Fufa, B.K. Anti-bacterial and anti-fungal properties of garlic extract (Allium sativum): A review. Microb. Res. J. Int. 2019, 28(3), 1-5. DOI: 10.9734/mrji/2019/v28i330133
DOI: https://doi.org/10.9734/mrji/2019/v28i330133
112. Marathe, S.A.; Kumar, R.; Ajitkumar, P.; Nagaraja, V.; Chakravortty, D. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella Typhimurium and Salmonella Typhi. J. Antimicrob.Chemother 2013, 68(1), 139-152. DOI: 10.1093/jac/dks375
DOI: https://doi.org/10.1093/jac/dks375
113. Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PloS One 2015, 10(3), Art. No: e0121313. DOI: 10.1371/journal.pone.0121313
DOI: https://doi.org/10.1371/journal.pone.0121313
114. Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H., et al. Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics 2022, 11(3), Art. No: 322. DOI: 10.3390/antibiotics11030322
DOI: https://doi.org/10.3390/antibiotics11030322
115. Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines 2018, 5(3), Art. No: 98. DOI: 10.3390/medicines5030098.
DOI: https://doi.org/10.3390/medicines5030098
116. Do Nascimento, P.G.; Lemos, T.L.; Bizerra, A.M.; Arriaga, Â.M.; Ferreira, D.A.; Santiago, G.M., et al. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 2014, 19(1), 1317-1327. DOI: 10.3390/molecules19011317
DOI: https://doi.org/10.3390/molecules19011317
117. Yang, Y.; Ma, S.; Li, T.; He, J.; Liu, S.; Liu, H., et al. Discovery of novel ursolic acid derivatives as effective antimicrobial agents through a ROS-mediated apoptosis mechanism. Front. Chem. Sci. Eng. 2023, 17, 2101-2113. DOI: 10.1007/s11705-023-2361-5
DOI: https://doi.org/10.1007/s11705-023-2361-5
118. Phanchana, M.; Harnvoravongchai, P.; Wongkuna, S.; Phetruen, T.; Phothichaisri, W.; Panturat, S., et al. Frontiers in antibiotic alternatives for Clostridioides difficile infection. World J. Gastroenterol. 2021, 27(42), 7210-7232. DOI: 10.3748/wjg.v27.i42.7210
DOI: https://doi.org/10.3748/wjg.v27.i42.7210
119. Mharti, F.Z.; Lyoussi, B.; Abdellaoui, A. Antibacterial activity of the essential oils of Pistacia lentiscus used in Moroccan folkloric medicine. Nat. Prod. Commun. 2011, 6(10), 1505-1506. DOI: 10.1177/1934578X1100601024
DOI: https://doi.org/10.1177/1934578X1100601024
120. Milia, E.P.; Sardellitti, L.; Eick, S. Antimicrobial Efficiency of Pistacia lentiscus L. derivates against oral biofilm-associated diseases—A narrative review. Microorganisms 2023, 11(6), Art. No: 1378. DOI: 10.3390/microorganisms11061378
DOI: https://doi.org/10.3390/microorganisms11061378
121. Al-Zaben, M.; Zaban, M.A.; Naghmouchi, S.; Nasser Alsaloom, A.; Al-Sugiran, N.; Alrokban, A. Comparison of phytochemical composition, antibacterial, and antifungal activities of extracts from three organs of Pistacia lentiscus from Saudi Arabia. Molecules 2023, 28(3), Art. No: 5156. DOI: 10.3390/molecules28135156
DOI: https://doi.org/10.3390/molecules28135156
122. Kim, J.W.; Park, S.; Sung, Y.W.; Song, H.J.; Yang, S.W.; Han, J., et al. Evaluation of antibacterial and antiviral Compounds from Commiphora myrrha (T. Nees) Engl. resin and their promising application with biochar. Appl. Sci. 2023, 13(18), Art. No: 10549. DOI: 10.3390/app131810549
DOI: https://doi.org/10.3390/app131810549
123. Bezerra, M.S.; Zeferino, K.S.; Menezes, L.D.; Bezerra, A.S.; Lopes, L.Q.S.; Marquezan, F.K., et al. Antimicrobial and antibiofilm activities of Cichorium intybus: A review. Res. Soc. Dev. 2022, 11(2), Art. No: e10911225384. DOI: 10.33448/rsd-v11i2.25384
DOI: https://doi.org/10.33448/rsd-v11i2.25384
124. Rahmi, M.; Sari, T. Antibacterial activity of ethanol extract, n-hexan, ethyl acetate and butanol fraction of Momordica charantia L. seed against Staphylococcus epidermidis. J. Phys. Conf. Ser. 2021, 1918, Art. No: 052013. DOI: 10.1088/1742-6596/1918/5/052013
DOI: https://doi.org/10.1088/1742-6596/1918/5/052013
125. Muribeca, A.d.J.B.; Gomes, P.W.P.; Paes, S.S.; da Costa, A.P.A.; Gomes, P.W.P.; Viana, J.d.S., et al. Antibacterial activity from Momordica charantia L. leaves and flavones enriched phase. Pharmaceutics 2022, 14(9), Art. No: 1796. DOI: 10.3390/pharmaceutics14091796
DOI: https://doi.org/10.3390/pharmaceutics14091796
126. Bassyouni, R.H.; Kamel, Z.; Algameel, A.A.; Ismail, G.; Gaber, S.N. In-vitro determination of antimicrobial activities of Eruca sativa seed oil against antibiotic-resistant gram-negative clinical isolates from neonates: A future prospect. BMC Complement. Med. TheR. 2022, 22, Art. No: 229. DOI: 10.1186/s12906-022-03710-1
DOI: https://doi.org/10.1186/s12906-022-03710-1
127. Farhana, S.; Aziz, S.; Rahman, S.; Afrin, S.; Bhuiyan, M.N.I.; Al-Reza, S.M. Chemical composition of fixed oil and in vitro antimicrobial activity of Andrographis paniculata root. J. King Saud. Univ. Sci. 2022, 34(4), Art. No: 101921. DOI: 10.1016/j.jksus.2022.101921
DOI: https://doi.org/10.1016/j.jksus.2022.101921
128. Hossain, S.; Urbi, Z.; Karuniawati, H.; Mohiuddin, R.B.; Moh Qrimida, A.; Allzrag, A.M.M., et al. Andrographis paniculata (burm. F.) wall. Ex nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life 2021, 11(4), Art. No: 348. DOI: 10.3390/life11040348
DOI: https://doi.org/10.3390/life11040348