. Calisto V, Domingues MRM, Esteves VI, Photodegradation of psychiatric pharmaceuticals in aquatic environments - Kinetics and photodegradation products, Water Res, 2011, 45, 6097-6106.
DOI: https://doi.org/10.1016/j.watres.2011.09.008
Caupos E, Mazellier P, Croue J-P, Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight, Water Res, 2011, 45, 3341-3350.
DOI: https://doi.org/10.1016/j.watres.2011.03.047
Chen Y, Li H, Wang Z, Tao T, Hu Ch, Photoproducts of tetracycline and oxytetracycline involving self-sensitized oxidation in aqueous solutions: Effects of Ca2+ and Mg2+, J Environ Sci, 2011, 23(10), 1634-1639.
DOI: https://doi.org/10.1016/S1001-0742(10)60625-0
Kwon J-W, Armbrust KL, Hydrolysis and photolysis of paroxetine, a selective serotonin reuptake inhibitor, in aqueous solutions, Environ Toxicol Chem, 2004, 23(6), 1394-1399.
DOI: https://doi.org/10.1897/03-319
Kwon J-W, Armbrust KL, Degradation of citalopram by simulated sunlight, Environ Toxicol Chem, 2005, 24(7), 1618-1623.
DOI: https://doi.org/10.1897/04-522R.1
Kwon J-W, Armbrust KL, Laboratory persistence and fate of fluoxetine in aquatic environments, Environ Toxicol Chem, 2006, 25(10), 2561-2568.
DOI: https://doi.org/10.1897/05-613R.1
Liu Q-T, Williams HE, Kinetics and degradation products for direct photolysis of β-blockers in water, Environ Sci Technol, 2007, 41, 803-810.
DOI: https://doi.org/10.1021/es0616130
Petrovic M, Barcelo D, LC-MS for identifying photodegradation products of pharmaceuticals in the environment, Trend Anal Chem, 2007, 26(6), 486-493.
DOI: https://doi.org/10.1016/j.trac.2007.02.010
Piram A, Salvador A, Verne C, Herbreteau B, Faure R, Photolysis of β-blockers in environmental waters, Chemosphere, 2008, 73, 1265-1271.
DOI: https://doi.org/10.1016/j.chemosphere.2008.07.018
Razavi B, Abdelmelek SB, Song W, O’Shea K, Cooper WJ, Photochemical fate of atorvastatin (lipitor) in simulated natural waters, Water Res, 2011, 45, 625-631.
DOI: https://doi.org/10.1016/j.watres.2010.08.012
Ryan ChC, Tan DT, Arnold WA, Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent, Water Res, 2011, 45, 1280-1286.
DOI: https://doi.org/10.1016/j.watres.2010.10.005
Skibiński R, Komsta Ł, Application of curve resolution algorithms in the study of drug photodegradation kinetics - the example of moclobemide, J AOAC Int, 2012, 95(3), 708-712.
DOI: https://doi.org/10.5740/jaoacint.SGE_Skibinski
Tong L, Perez S, Goncalves C, Alpendurada F, Wang Y, Barcelo D, Kinetic and mechanistic studies of the photolysis of metronidazole in simulated aqueous environmental matrices using a mass spectrometric approach, Anal Bioanal Chem, 2011, 399, 421-428.
DOI: https://doi.org/10.1007/s00216-010-4320-5
Tonnesen HH, Formulation and stability testing of photolabile drugs, Int J Pharm, 2001, 225, 1-14.
DOI: https://doi.org/10.1016/S0378-5173(01)00746-3
Trawiński J, Skibiński R, Studies on photodegradation process of psychotropic drugs: a review, Environ Sci Pollut Res, 2017, 24, 1152–1199.
DOI: https://doi.org/10.1007/s11356-016-7727-5
Vogna D, Marotta R, Andreozzi R, Napolitano A, d’Ischia M, Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine, Chemosphere, 2004, 54, 497-505.
DOI: https://doi.org/10.1016/S0045-6535(03)00757-4
Walash MI, El-Brashy A, El-Enany N, Wahba ME, High performance liquid chromatographic determination of sertraline in presence of its degradation product, Anal Lett, 2010, 43, 1434-1447.
DOI: https://doi.org/10.1080/00032710903502108
Wang X-H, Lin AY-Ch, Is the phototransformation of pharmaceuticals a natural purification process that decreases ecological and human health risks?, Environ Pollut, 2014, 186, 203-215.
DOI: https://doi.org/10.1016/j.envpol.2013.12.007
Wols BA, Hofman-Caris CHM, Harmsen DJH, Beerendonk EF, Degradation of 40 selected pharmaceuticals by UV/H2O2, Water Res, 2013, 47, 5876-5888.
DOI: https://doi.org/10.1016/j.watres.2013.07.008
Santos LHMLM, Araújo AN, Fachini A, Pena A, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, J Hazard Mater, 2010, 175, 45-95.
DOI: https://doi.org/10.1016/j.jhazmat.2009.10.100
Lam MW, Mabury SA, Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters, Aquat Sci, 2005, 67, 177-188.
DOI: https://doi.org/10.1007/s00027-004-0768-8
Kummerer K, The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges, J Environ Menage, 2009, 90, 2354-2366.
DOI: https://doi.org/10.1016/j.jenvman.2009.01.023
Gros M, Williams M, Llorca M, Rodriguez-Mozaz S, Barceló D, Kookana RS, Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate, Sci Total Environ, 2015, 530-531, 434-444.
DOI: https://doi.org/10.1016/j.scitotenv.2015.05.135
Grung M, Kallqvist T, Sakshaug S, Skurtveit S, Thomas KV, Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline, Ecotox Environ Safe, 2008, 71, 328-340.
DOI: https://doi.org/10.1016/j.ecoenv.2007.10.015
La Farre M, Perez S, Kantani L, Barceló D, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, Trend Anal Chem, 2008, 27(11), 991-1007.
DOI: https://doi.org/10.1016/j.trac.2008.09.010
Trovó AG, Nogueira RFP, Aguera A, Fernandez-Alba AR, Malato S, Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species, Water Res, 2012, 46, 5374-5380.
DOI: https://doi.org/10.1016/j.watres.2012.07.015
Trawiński J, Skibiński R, Photolytic and photocatalytic degradation of the antipsychotic agent tiapride: Kinetics, transformation pathways and computational toxicity assessment, J Hazard Mater, 2017, 321, 841-858.
DOI: https://doi.org/10.1016/j.jhazmat.2016.10.001
DellaGreca M, Fiorentino A, Iesce MR, Isidori M, Nardelli A, Previtera L, Temussi F, Identification of phototransformation products of prednisone by sunlight: toxicity of the drug and its derivatives on aquatic organisms, Environ Toxicol Chem, 2003, 22(3), 534-539.
DOI: https://doi.org/10.1002/etc.5620220310
Wang X-H, Lin AY-Ch, Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity, Environ Scie Technol, 2012, 46, 12417-12426.
DOI: https://doi.org/10.1021/es301929e
Challis JK, Hanson ML, Friesen KJ, Wong ChS, A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps, Environ Sci-Proc Imp, 2014, 16, 672-696.
DOI: https://doi.org/10.1039/c3em00615h
Ma D, Liu G, Lv W, Yao K, Zhang X, Xiao H, Photodegradation of naproxen in water under simulated solar radiation: mechanism, kinetics, and toxicity variation, Environ Sci Pollut Res, 2014, 21, 7797–7804.
DOI: https://doi.org/10.1007/s11356-014-2721-2
Wawryniuk M, Pietrzak A, Nałęcz-Jawecki G, Evaluation of direct and indirect photodegradation of mianserin with high-performance liquid chromatography and short-term bioassays, Ecotox Environ Saf, 2015, 115, 144-151.
DOI: https://doi.org/10.1016/j.ecoenv.2015.02.014
Chiron S, Minero C, Vione D, Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters, Environ Sci Technol, 2006, 40(19), 5977-5983.
DOI: https://doi.org/10.1021/es060502y
United States Environmental Protection Agency, Fate, transport and transformation test guidelines – OPPTS 835.2210, Direct photolysis rate in water by sunlight, EPA712-C-98-060, 1998, Washington, DC.
United States Environmental Protection Agency, Fate, transport and transformation test guidelines – OPPTS 835.5270, Indirect photolysis screening test, EPA712-C-98-099, 1998, Washington, DC.
Andreozzi R, Canterino M, Lo Giudice R, Marotta R, Pinto G, Pollio A, Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation, Water Res, 2006, 40, 630-638.
DOI: https://doi.org/10.1016/j.watres.2005.11.023
Koumaki E, Mamais D, Noutsopoulos C, Nika M-Ch, Bletsou AA, Thomaidis NS, Efaxias A, Stratogianni G, Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products, Chemosphere, 2015, 138, 675-681.
DOI: https://doi.org/10.1016/j.chemosphere.2015.07.033
Rúa-Gómez PC, Püttmann W, Degradation of lidocaine, tramadol, venlafaxine and the metabolites O-desmethyltramadol and O-desmethylvenlafaxine in surface waters, Chemosphere, 2013, 90, 1952-1959.
DOI: https://doi.org/10.1016/j.chemosphere.2012.10.039
Mompelat S, Le Bot B, Thomas O, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environ Int, 2009, 35, 803-814.
DOI: https://doi.org/10.1016/j.envint.2008.10.008
International Conference on Harmonization of Technical Requirements for Registeration of Pharmaceuticals for Human Use, STABILITY TESTING: - Q1B Guideline.pdf. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1B/ Step4/Q1B_Guideline.pdf, 1996.
Committee for Medicinal Products for Human Use (CHMP), European Medicines Agency Pre-Authorisation Evaluation of Medicines for Human Use (Doc. Ref. EMEA/CHMP/SWP/4447/00) Guideline on the environmental risk assessment of medicinal products for human use, 2006, 12pp.
Committee for Medicinal Products for Human Use (CHMP), European Medicines Agency Pre-Authorisation Evaluation of Medicines for Human Use (EMA/CHMP/ICH/752211/2012) Guidance on photosafety evaluation of pharmaceuticals, Step 3, 2012, 15pp.
OECD, Test No. 316: Phototransformation of chemicals in water – Direct Photolysis. OECD Guidelines for the testing of chemicals, Section 3, Environmental fate and behaviour, 2008, Paris (FR).
Almeida A, Calisto V, Domingues MRM, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Freitas R, Comparison of the toxicological impacts of carbamazepine and a mixture of its photodegradation products in Scrobicularia plana, J Hazard Mater, 2017, 323, 220-232.
DOI: https://doi.org/10.1016/j.jhazmat.2016.05.009
Wawryniuk M, Drobniewska A, Sikorska K, Nałęcz-Jawecki G, Influence of photolabile pharmaceuticals on the photodegradation and toxicity of fluoxetine and fluvoxamine, Environ Sci Pollut Res, 2018, 25, 6890-6898.
DOI: https://doi.org/10.1007/s11356-017-0973-3
Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, DeLeo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DGJ, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G, Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?, Environ Health Persp, 2012, 120(9), 1221-1229.
DOI: https://doi.org/10.1289/ehp.1104477
Boreen AL, Arnold WA, McNeill K, Photodegradation of pharmaceuticals in the aquatic environment: A review, Aquat Sci, 2003, 65, 320-341.
DOI: https://doi.org/10.1007/s00027-003-0672-7
Khaleel NDH, Mahmoud WMM, Olsson O, Kummerer K, UV-photodegradation of desipramine: Impact of concentration, pH and temperature on formation of products including their biodegradability and toxicity, Sci Total Environ, 2016, 566-567, 826-840.
DOI: https://doi.org/10.1016/j.scitotenv.2016.05.095
Niu J, Zhang L, Li Y, Zhao J, Lv S, Xiao K, Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism, J Environ Sci, 2013, 25(6), 1089-1106.
DOI: https://doi.org/10.1016/S1001-0742(12)60167-3
Chen Y, Li H, Wang Z, Tao T, Wei D, Hu Ch, Photolysis of chlortetracycline in aqueous solution: Kinetics, toxicity and products, J Environ Sci, 2012, 24(2), 254-260.
DOI: https://doi.org/10.1016/S1001-0742(11)60775-4
Jiao S, Zheng S, Yin D, Wang L, Chen L, Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria, Chemosphere, 2008, 73, 377-382.
DOI: https://doi.org/10.1016/j.chemosphere.2008.05.042
Jiao S, Zheng S, Yin D, Wang L, Chen L, Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process, J Environ Sci, 2008, 20, 806-813.
DOI: https://doi.org/10.1016/S1001-0742(08)62130-0
Yuan F, Hu Ch, Hu X, Wei D, Chen Y, Qu J, Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process, J Hazard Mater, 2011, 185, 1256-1263.
DOI: https://doi.org/10.1016/j.jhazmat.2010.10.040
Li Y, Niu J, Wang W, Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products, Chemosphere, 2011, 85, 892-897.
DOI: https://doi.org/10.1016/j.chemosphere.2011.07.008
Kawabata K, Sugihara K, Sanoh S, Kitamura S, Ohta S, Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation, J Toxicol Sci, 2013, 38(2), 215-223.
DOI: https://doi.org/10.2131/jts.38.215
Kawabata K, Sugihara K, Sanoh S, Kitamura S, Ohta S, Ultraviolet-photoproduct of acetaminophen: Structure determination and evaluation of ecotoxicological effect, J Photoch Photobio A, 2012, 249, 29-35.
DOI: https://doi.org/10.1016/j.jphotochem.2012.07.018
Li FH, Yao K, Lv WY, Liu GG, Chen P, Huang HP, Kang YP, Photodegradation of Ibuprofen Under UV–Vis Irradiation: Mechanism and Toxicity of Photolysis Products, Bull Environ Contam Toxicol, 2015, 94, 479-483.
DOI: https://doi.org/10.1007/s00128-015-1494-8
Chen P, Wang FL, Yao K, Ma JS, Li FH, Lv WY, Liu GG, Photodegradation of Mefenamic Acid in Aqueous Media: Kinetics, Toxicity and Photolysis Products, Bull Environ Contam Toxicol, 2016, 96, 203-209.
DOI: https://doi.org/10.1007/s00128-015-1680-8
Postigo C, Sirtori C, Oller I, Malato S, Maldonado MI, Lopez de Alba M, Barceló D, Photolytic and photocatalytic transformation of methadone in aqueous solutions under solar irradiation: Kinetics, characterization of major intermediate products and toxicity evaluation, Water Res, 2011, 45, 4815-4826.
DOI: https://doi.org/10.1016/j.watres.2011.06.027
Lin AY-H, Lee W-N, Wang X-H, Ketamine and the metabolite norketamine: Persistence and phototransformation toxicity in hospital wastewater and surface water, Water Res, 2014, 53, 351-360.
DOI: https://doi.org/10.1016/j.watres.2014.01.022
Calza P, Massolino C, Monaco G, Medana C, Baiocchi C, Study of the photolytic and photocatalytic transformation of amiloride in water, J Pharm Biomed, 2008, 48, 315-320.
DOI: https://doi.org/10.1016/j.jpba.2008.01.014
Wilde ML, Menz J, Trautwein Ch, Leder Ch, Kummerer K, Environmental fate and effect assessment of thioridazine and its transformation products formed by photodegradation, Environ Pollut, 2016, 213, 658-670.
DOI: https://doi.org/10.1016/j.envpol.2016.03.018
Jung J, Kim Y, Kim J, Jeong D-H, Choi K, Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna, Ecotoxicology, 2008, 17, 37-45.
DOI: https://doi.org/10.1007/s10646-007-0174-9
Achilleos A, Hapeshi E, Xekoukoulotakis NP., Mantzavinos D, Fatta-Kassinos D, Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J, 2010, 161, 53-59.
DOI: https://doi.org/10.1016/j.cej.2010.04.020
Gomez MJ, Sirtori C, Mezcua M, Fernandez-Alba AR, Aguera A, Photodegradation study of three dipyrone metabolites in various water systems: Identification and toxicity of their photodegradation products, Water Res, 2008, 42, 2698-2706.
DOI: https://doi.org/10.1016/j.watres.2008.01.022
Ji Y, Zeng Ch, Ferronato C, Chovelon J-M, Yang X, Nitrate-induced photodegradation of atenolol in aqueous solution: Kinetics, toxicity and degradation pathways, Chemosphere, 2012, 88, 644-649.
DOI: https://doi.org/10.1016/j.chemosphere.2012.03.050
Schmitt-Jansen M, Bartels P, Adler N, Altenburger R, Phytotoxicity assessment of diclofenac and its phototransformation products, Anal Bioanal Chem, 2007, 387, 1389-1396.
DOI: https://doi.org/10.1007/s00216-006-0825-3
Diniz MS, Salgado R, Pereira VJ, Carvalho G, Oehmen A, Reis MAM, Noronha JP, Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio), Sci Total Environ, 2015, 505, 282-289.
DOI: https://doi.org/10.1016/j.scitotenv.2014.09.103
Trovo AG, Nogueira RFP, Aguera A, Sirtori C, Fernandez-Alba AR, Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment, Chemosphere, 2009, 77, 1292-1298.
DOI: https://doi.org/10.1016/j.chemosphere.2009.09.065
Nałęcz-Jawecki G, Hajnas A, Sawicki J, Photodegradation and phototoxicity of thioridazine and chlorpromazine evaluated with chemical analysis and aquatic organisms, Ecotoxicology, 2008, 17, 13-20.
DOI: https://doi.org/10.1007/s10646-007-0171-z
Liu Q-T, Williams TD, Cumming RI, Holm G, Hetheridge MJ, Murray-Smith R, Comparative aquatic toxicity of propranolol and its photodegraded mixtures: algae and rotifer screening, Environ Toxicol Chem, 2009, 28(12), 2622-2631.
DOI: https://doi.org/10.1897/09-071.1
Isidori M, Nardelli A, Pascarella L, Rubino M, Parrella A, Toxic and genotoxic impact of fibrates and their photoproducts on non-target organisms, Environ Int, 2007, 33, 635-641.
DOI: https://doi.org/10.1016/j.envint.2007.01.006
Russo D, Siciliano A, Guida M, Galdiero E, Amoresano A, Andreozzi R, Reis NM, Li Puma G, Marotta R, Photodegradation and ecotoxicology of acyclovir in water under UV254 and UV254/H2O2 processes, Water Res, 2017, 122, 591-602.
DOI: https://doi.org/10.1016/j.watres.2017.06.020
Donner E, Kosjek T, Qualmann S, Kusk KO, Heath E, Revitt DM, Ledin A, Andersen HR, Ecotoxicity of carbamazepine and its UV photolysis transformation products, Sci Total Environ, 2013, 443, 870-876.
DOI: https://doi.org/10.1016/j.scitotenv.2012.11.059
DellaGreca M, Iesce MR, Isidori M, Nardelli A, Previtera L, Rubino M, Phototransformation products of tamoxifen by sunlight in water. Toxicity of the drug and its derivatives on aquatic organisms, Chemosphere, 2007, 67, 1933-1939.
DOI: https://doi.org/10.1016/j.chemosphere.2006.12.001
Passananti M, Lavorgna M, Iesce MR, DellaGreca M, Brigante M, Criscuolo E, Cermola F, Isisdori M, Photochemical fate and eco-genotoxicity assessment of the drug etodolac, Sci Total Environ, 2015, 518-519, 258-265.
DOI: https://doi.org/10.1016/j.scitotenv.2015.03.009
Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V, Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays, Water Res, 2009, 43, 979-988.
DOI: https://doi.org/10.1016/j.watres.2008.11.040
Kochevar IE, Hoover KW, Gawienowski M, Benoxaprofen photosensitization of cell membrane disruption, J Invest Dermatol, 1984, 82, 214-218.
DOI: https://doi.org/10.1111/1523-1747.ep12260034
Encinas S, Bosca F, Miranda MA, Photochemistry of 2,6-Dichlorodiphenylamine and 1-Chlorocarbazole, the photoactive chromophores of diclofenac, meclofenamic acid and their major photoproducts, Photochem Photobiol, 1998, 68(5), 640-645.
DOI: https://doi.org/10.1111/j.1751-1097.1998.tb02523.x
Cleuvers M, Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects, Toxicol Lett, 2003, 142, 185-195.
DOI: https://doi.org/10.1016/S0378-4274(03)00068-7
Silva LJG, Lino CM, Meisel LM, Pena A, Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment: An ecopharmacovigilance approach, Sci Total Environ, 2012, 437, 185-195.
DOI: https://doi.org/10.1016/j.scitotenv.2012.08.021
Silva LJG, Pereira AMPT, Meisel LM, Lino CM, Pena A, Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: Uptake, bioaccumulation and ecotoxicology, Environ Pollut, 2015, 197, 127-143.
DOI: https://doi.org/10.1016/j.envpol.2014.12.002