Priyashantha, A.K.H.; Dai, D.-Q.; Bhat, D.J.; Stephenson, S.L.; Promputtha, I.; Kaushik, P.; Tibpromma, S.; Karunarathna, S.C. Plant–Fungi Interactions: Where It Goes? Biology 2023, 12, Art. No: 809, doi:10.3390/biology12060809.
DOI: https://doi.org/10.3390/biology12060809
Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J. Fungal Symbiosis from Mutualism to Parasitism: Who Controls the Outcome, Host or Invader? New Phytol. 2001, 151, 705–716. doi:10.1046/j.0028-646x.2001.00210.x.
DOI: https://doi.org/10.1046/j.0028-646x.2001.00210.x
Bael, V.; A, S. Fungal Diversity. Diversity 2020, 12, Art. No: 437. doi:10.3390/d12110437.
DOI: https://doi.org/10.3390/d12110437
Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017, 5(4), Art. No: 10.1128/microbiolspec.funk-0052-2016. doi:10.1128/microbiolspec.FUNK-0052-2016.
DOI: https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
Baxi, S.N.; Portnoy, J.M.; Larenas-Linnemann, D.; Phipatanakul, W.; Barnes, C.; Baxi, S.; Grimes, C.; Horner, W.E.; Kennedy, K.; Larenas-Linnemann, D.; et al. Exposure and Health Effects of Fungi on Humans. J. Allergy Clin. Immunol. Pract. 2016, 4, 396–404. doi:10.1016/j.jaip.2016.01.008.
DOI: https://doi.org/10.1016/j.jaip.2016.01.008
Arslan, N.P.; Dawar, P.; Albayrak, S.; Doymus, M.; Azad, F.; Esim, N.; Taskin, M. Fungi-Derived Natural Antioxidants. Crit. Rev. Food Sci. Nutr. 2023, 1–24. doi:10.1080/10408398.2023.2298770.
DOI: https://doi.org/10.1080/10408398.2023.2298770
Pohleven, J.; Korošec, T.; Gregori, A. Medicinal Mashrooms; MycoMedica, d. o. o.; ISBN 978-961-93889-1-4.
Sułkowska-Ziaja, K.; Muszyńska, B.; Gawalska, A.; Sałaciak, K. Laetiporus sulphureus - chemical composition and medicinal value. ACTA SCI. POL-HORTORU. 2018, 17, 87–96.
DOI: https://doi.org/10.24326/asphc.2018.1.8
Jasicka-Misiak, I. Grzyby wielkoowocnikowe jako źródło substancji bioaktywnych. Wiadomości Chemiczne 2020, 74, 71–87.
Wasser, S.P.; Weis, A.L. Medicinal Properties of Substances Occurring in Higher Basidiomycetes Mushrooms: Current Perspectives (Review). Int. J. Med. Mushrooms 1999, 1, 31-62. doi:10.1615/IntJMedMushrooms.v1.i1.30.
DOI: https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30
Al-Obaidi, J.R.; Jambari, N.N.; Ahmad-Kamil, E. Mycopharmaceuticals and Nutraceuticals: Promising Agents to Improve Human Well-Being and Life Quality. J. Fungi 2021, 7, Art. No: 503. doi:10.3390/jof7070503.
DOI: https://doi.org/10.3390/jof7070503
Ferreira, I.C.F.R.; Vaz, J.A.; Vasconcelos, M.H.; Martins, A. Compounds from Wild Mushrooms with Antitumor Potential. Anticancer Agents Med. Chem. 2010, 10, 424–436. doi:10.2174/1871520611009050424.
DOI: https://doi.org/10.2174/1871520611009050424
Rathee, S.; Rathee, D.; Rathee, D.; Kumar, V.; Rathee, P. Mushrooms as Therapeutic Agents. Rev. Bras. Farmacogn. 2012, 22, 459–474. doi:10.1590/S0102-695X2011005000195.
DOI: https://doi.org/10.1590/S0102-695X2011005000195
Kozarski, M.; Klaus, A.; Niksic, M.; Jakovljevic, D.; Helsper, J.P.F.G.; Van Griensven, L.J.L.D. Antioxidative and Immunomodulating Activities of Polysaccharide Extracts of the Medicinal Mushrooms Agaricus Bisporus, Agaricus Brasiliensis, Ganoderma Lucidum and Phellinus Linteus. Food Chem. 2011, 129, 1667–1675. doi:10.1016/j.foodchem.2011.06.029.
DOI: https://doi.org/10.1016/j.foodchem.2011.06.029
Sułkowska-Ziaja, K.; Kała, K.; Lazur, J.; Muszyńska, B. Chemical and Bioactive Profiling of Wild Edible Mushrooms. In Biology of Macrofungi; Singh, B.P., Lallawmsanga, Passari, A.K., Eds.; Fungal Biology; Springer International Publishing: Cham, 2018; pp. 129–157. ISBN 978-3-030-02622-6.
DOI: https://doi.org/10.1007/978-3-030-02622-6_6
Waszczuk, U.; Zapora, E. Arboreal Fungi in Biological Control against Soil Fungi. Environ. Sci. Proc. 2021, 9, Art. No: 31. doi:10.3390/environsciproc2021009031.
DOI: https://doi.org/10.3390/environsciproc2021009031
Bonneville, S.; Delpomdor, F.; Préat, A.; Chevalier, C.; Araki, T.; Kazemian, M.; Steele, A.; Schreiber, A.; Wirth, R.; Benning, L.G. Molecular Identification of Fungi Microfossils in a Neoproterozoic Shale Rock. Sci. Adv. 2020, 6(4), Art. No: eaax7599, doi:10.1126/sciadv.aax7599.
DOI: https://doi.org/10.1126/sciadv.aax7599
Szczepkowski, A. Grzyby nadrzewne w innym świetle - użytkowanie owocników. Stud. Mater. Cent. Eduk. Przyr.-Leśn. 2012, 14, 171-189.
Włodarczyk, A.; Fijałkowska, A.; Jędrejko, K.; Zięba, P.; Lazur, J.; Sułkowska–Ziaja, K.; Muszyńska, B. Edible and Medicinal Mushroom Hericium Erinaceus as a Potential Natural Material with Influence on Brain Functions. Med. Int. Rev. 2020, 29, 4–10.
Sułkowska-Ziaja, K. Autoreferat przedstawiający opis osiągnięć naukowych w języku polskim. https://radydyscyplin.cm-uj.krakow.pl/cm/uploads/2019/12/Katarzyna-Su%C5%82kawska-Ziaja-Autoreferat.pdf, (dostęp: 28.08.2024)
Bennett, J.W. Mycotechnology: The Role of Fungi in Biotechnology. J. Biotechnol. 1998, 66, 101–107. doi:10.1016/S0168-1656(98)00133-3.
DOI: https://doi.org/10.1016/S0168-1656(98)00133-3
Sharma, S.S.S. Mycotechnology: A Review. Int. J. Indig. Herbs Drugs 2017, 25–28.
Rathore, H.; Prasad, S.; Kapri, M.; Tiwari, A.; Sharma, S. Medicinal Importance of Mushroom Mycelium: Mechanisms and Applications. J. Funct. Food. 2019, 56, 182–193. doi:10.1016/j.jff.2019.03.016.
DOI: https://doi.org/10.1016/j.jff.2019.03.016
Sydor, M.; Cofta, G.; Doczekalska, B.; Bonenberg, A. Fungi in Mycelium-Based Composites: Usage and Recommendations. Materials 2022, 15, Art. No: 6283. doi:10.3390/ma15186283.
DOI: https://doi.org/10.3390/ma15186283
Berger, R.G.; Bordewick, S.; Krahe, N.-K.; Ersoy, F. Mycelium vs. Fruiting Bodies of Edible Fungi — A Comparison of Metabolites. Microorganisms 2022, 10, Art. No: 1379. doi:10.3390/microorganisms10071379.
DOI: https://doi.org/10.3390/microorganisms10071379
Friedman, M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium Erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. J. Agric. Food Chem. 2015, 63, 7108–7123. doi:10.1021/acs.jafc.5b02914.
DOI: https://doi.org/10.1021/acs.jafc.5b02914
Souza, P.M.D.; Bittencourt, M.L.D.A.; Caprara, C.C.; Freitas, M.D.; Almeida, R.P.C.D.; Silveira, D.; Fonseca, Y.M.; Ferreira Filho, E.X.; Pessoa Junior, A.; Magalhães, P.O. A Biotechnology Perspective of Fungal Proteases. Braz. J. Microbiol. 2015, 46, 337–346. doi:10.1590/S1517-838246220140359.
DOI: https://doi.org/10.1590/S1517-838246220140359
Roth, M.G.; Westrick, N.M.; Baldwin, T.T. Fungal Biotechnology: From Yesterday to Tomorrow. Front. Fungal Biol. 2023, 4, Art. No: 1135263.
DOI: https://doi.org/10.3389/ffunb.2023.1135263
lsacker, E.; Vandelook, S.; Peeters, E. Recent Technological Innovations in Mycelium Materials as Leather Substitutes: A Patent Review. Front. Bioeng. Biotechnol. 2023, 11, Art. No: 1204861, doi:10.3389/fbioe.2023.1204861
DOI: https://doi.org/10.3389/fbioe.2023.1204861
Turło, J. The Biotechnology of Higher Fungi - Current State and Perspectives. Acta Univ. Lodz., Folia Biol. Oecol. (Online) 2014, 10, 49–65. doi:10.2478/fobio-2014-0010.
DOI: https://doi.org/10.2478/fobio-2014-0010
Tang, Y.-J.; Zhong, J.-J. Fed-Batch Fermentation of Ganoderma Lucidum for Hyperproduction of Polysaccharide and Ganoderic Acid. Enzyme Microb. Technol. 2002, 31, 20–28. doi:10.1016/S0141-0229(02)00066-2.
DOI: https://doi.org/10.1016/S0141-0229(02)00066-2
Kobori, M.; Yoshida, M.; Ohnishi-Kameyama, M.; Shinmoto, H. Ergosterol Peroxide from an Edible Mushroom Suppresses Inflammatory Responses in RAW264.7 Macrophages and Growth of HT29 Colon Adenocarcinoma Cells. Br. J. Pharmacol. 2007, 150, 209–219. doi:10.1038/sj.bjp.0706972.
DOI: https://doi.org/10.1038/sj.bjp.0706972
Duchesne, E. (1874-1942) A. du texte Contribution à l’étude de la concurrence vitale chez les microorganismes, antagonisme entre les moisissures et les microbes : thèse présentée à la Faculté de médecine... / par Ernest Duchesne,...; 1897; https://gallica.bnf.fr/ark:/12148/bpt6k9766202j/f7.item.texteImage, (dostęp: 28.08.2024)
Szafrańska, K.; Marcinkowska, M.; Fajkis-Zajączkowska, N.; Kołaczkowski, M. Przełomowe odkrycia w historii farmacji - dziełem przypadku. Kosmos 2021, 70, 637–649. doi:10.36921/kos.2022_2751.
DOI: https://doi.org/10.36921/kos.2022_2751
Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to Their Use in the Isolation of B. Influenzæ. Br. J. Exp. Pathol. 1929, 10, Art. No: 226.
Thom, C. Mycology Presents Penicillin. Mycologia 1945, 37, 460–475. doi:10.2307/3754632.
DOI: https://doi.org/10.1080/00275514.1945.12024006
Serreau, R.; Amirouche, A.; Benyamina, A.; Berteina-Raboin, S. A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe. Pharmaceuticals 2023, 16, Art. No: 40. doi:10.3390/ph16010040.
DOI: https://doi.org/10.3390/ph16010040
Strauss, D.; Ghosh, S.; Murray, Z.; Gryzenhout, M. An Overview on the Taxonomy, Phylogenetics and Ecology of the Psychedelic Genera Psilocybe, Panaeolus, Pluteus and Gymnopilus. Front. For. Glob. Change 2022, 5, Art. No: 813998, doi:10.3389/ffgc.2022.813998
DOI: https://doi.org/10.3389/ffgc.2022.813998
Pepe, M.; Hesami, M.; de la Cerda, K.A.; Perreault, M.L.; Hsiang, T.; Jones, A.M.P. A Journey with Psychedelic Mushrooms: From Historical Relevance to Biology, Cultivation, Medicinal Uses, Biotechnology, and Beyond. Biotechnol. Adv. 2023, 69, Art. No: 108247. doi:10.1016/j.biotechadv.2023.108247.
DOI: https://doi.org/10.1016/j.biotechadv.2023.108247
Trepa, M.; Sułkowska-Ziaja, K.J.; Kała, K.; Muszyńska, B. Mycelial Cultures as a Model to Study the Accumulation of Medicinal Compounds – Historical Perspective. Med. Int. Rev. 2022, 30, 50–63.
Ross, S.; Bossis, A.; Guss, J.; Agin-Liebes, G.; Malone, T.; Cohen, B.; Mennenga, S.E.; Belser, A.; Kalliontzi, K.; Babb, J.; et al. Rapid and Sustained Symptom Reduction Following Psilocybin Treatment for Anxiety and Depression in Patients with Life-Threatening Cancer: A Randomized Controlled Trial. J. Psychopharmacol. 2016, 30, 1165–1180, doi:10.1177/0269881116675512.
DOI: https://doi.org/10.1177/0269881116675512
Carhart-Harris, R.L.; Roseman, L.; Bolstridge, M.; Demetriou, L.; Pannekoek, J.N.; Wall, M.B.; Tanner, M.; Kaelen, M.; McGonigle, J.; Murphy, K.; et al. Psilocybin for Treatment-Resistant Depression: fMRI-Measured Brain Mechanisms. Sci. Rep. 2017, 7, Art. No: 13187. doi:10.1038/s41598-017-13282-7.
DOI: https://doi.org/10.1038/s41598-017-13282-7
Turło, J. Grzyby wielkoowocnikowe – niedoceniane źródło substancji leczniczych. Stud. Mater. Cent. Eduk. Przyr.-Leśn. 2015, 17, 138–151.
Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J.L.D. Antioxidative Activities and Chemical Characterization of Polysaccharide Extracts from the Widely Used Mushrooms Ganoderma Applanatum, Ganoderma Lucidum, Lentinus Edodes and Trametes Versicolor. J. Food Compos. Anal. 2012, 26, 144–153. doi:10.1016/j.jfca.2012.02.004.
DOI: https://doi.org/10.1016/j.jfca.2012.02.004
Sułkowska-Ziaja, K.; Muszyńska, B.; Sałaciak, K.; Gawalska, A. Trametes versicolor (L.) Lloyd as a source of biologically active compounds with a wide spectrum of action and application. Postępy Fitoterapii 2016, 17(4), 274-281.
Zong, A.; Cao, H.; Wang, F. Anticancer Polysaccharides from Natural Resources: A Review of Recent Research. Carbohydr. Polym. 2012, 90, 1395–1410. doi:10.1016/j.carbpol.2012.07.026.
DOI: https://doi.org/10.1016/j.carbpol.2012.07.026
Wang, H.X.; Ng, T.B.; Liu, W.K.; Ooi, V.E.C.; Chang, S.T. Polysaccharide—Peptide Complexes from the Cultured Mycelia of the Mushroom Coriolus Versicolor and Their Culture Medium Activate Mouse Lymphocytes and Macrophages. Int. J. Biochem. Cell Biol. 1996, 28, 601–607. doi:10.1016/1357-2725(95)00157-3.
DOI: https://doi.org/10.1016/1357-2725(95)00157-3
Piotrowski, J.; Jędrzejewski, T.; Kozak, W. Immunomodulatory and antitumor properties of polysaccharide peptide (PSP). Postepy Hig. Med. Dosw. 2015, 69, 91–97. doi:10.5604/17322693.1137086.
DOI: https://doi.org/10.5604/17322693.1137086
Leonowicz, A.; Grzywnowicz, K. Kapelusze pelne lekow. Wiedza i Życie 2000, 3, 64–65.
Okazaki, M.; Adachi, Y.; Ohno, N.; Yadomae, T. Structure-Activity Relationship of (1→3)-β-D-Glucans in the Induction of Cytokine Production from Macrophages, in Vitro. Biol. Pharm. Bull. 1995, 18, 1320–1327. doi:10.1248/bpb.18.1320.
DOI: https://doi.org/10.1248/bpb.18.1320
Hilszczańska, D. Właściwości lecznicze grzybów wielkoowocnikowych. Leśne Prace Badawcze 2012, 73(4), 347-353.
Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. The Potential of Ganoderma Lucidum Extracts as Bioactive Ingredients in Topical Formulations, beyond Its Nutritional Benefits. Food Chem. Toxicol. 2017, 108, 139–147. doi:10.1016/j.fct.2017.07.051.
DOI: https://doi.org/10.1016/j.fct.2017.07.051
Zjawiony, J.K. Biologically Active Compounds from Aphyllophorales (Polypore) Fungi. J. Nat. Prod. 2004, 67, 300–310. doi:10.1021/np030372w.
DOI: https://doi.org/10.1021/np030372w
Price, L.A.; Wenner, C.A.; Sloper, D.T.; Slaton, J.W.; Novack, J.P. Role for Toll-like Receptor 4 in TNF-Alpha Secretion by Murine Macrophages in Response to Polysaccharide Krestin, a Trametes Versicolor Mushroom Extract. Fitoterapia 2010, 81, 914–919. doi:10.1016/j.fitote.2010.06.002.
DOI: https://doi.org/10.1016/j.fitote.2010.06.002
Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic, Polysaccharidic, and Lipidic Fractions of Mushrooms from Northeastern Portugal: Chemical Compounds with Antioxidant Properties. J. Agric. Food Chem. 2012, 60, 4634–4640. doi:10.1021/jf300739m.
DOI: https://doi.org/10.1021/jf300739m
Wu, M.-J.; Cheng, T.-L.; Cheng, S.-Y.; Lian, T.-W.; Wang, L.; Chiou, S.-Y. Immunomodulatory Properties of Grifola Frondosa in Submerged Culture. J. Agric. Food Chem. 2006, 54, 2906–2914. doi:10.1021/jf052893q.
DOI: https://doi.org/10.1021/jf052893q
Huang, S.-J.; Tsai, S.-Y.; Lin, S.-Y.; Liang, C.-H.; Mau, J.-L. Nonvolatile Taste Components of Culinary-Medicinal Maitake Mushroom, Grifola Frondosa (Dicks.:Fr.) S.F. Gray. Int. J. Med. Mushrooms 2011, 13, 265–272. doi:10.1615/intjmedmushr.v13.i3.60.
DOI: https://doi.org/10.1615/IntJMedMushr.v13.i3.60
Konno, N.; Nakade, K.; Nishitani, Y.; Mizuno, M.; Sakamoto, Y. Lentinan Degradation in the Lentinula Edodes Fruiting Body during Postharvest Preservation Is Reduced by Downregulation of the Exo-β-1,3-Glucanase EXG2. J. Agric. Food Chem. 2014, 62, 8153–8157. doi:10.1021/jf501578w.
DOI: https://doi.org/10.1021/jf501578w
Wasser, S. Medicinal Mushrooms as a Source of Antitumor and Immunomodulating Polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. doi:10.1007/s00253-002-1076-7.
DOI: https://doi.org/10.1007/s00253-002-1076-7
Muszyńska, B.; Fijałkowska, A.; Sułkowska-Ziaja, K.; Włodarczyk, A.; Kaczmarczyk, P.; Nogaj, E.; Piętka, J. Fomitopsis Officinalis: A Species of Arboreal Mushroom with Promising Biological and Medicinal Properties. Chem. Biodivers. 2020, 17, Art. No: e2000213. doi:10.1002/cbdv.202000213.
DOI: https://doi.org/10.1002/cbdv.202000213
Stamets, P.E. Antiviral and Antibacterial Activity from Medicinal Mushrooms, U.S. Patent No 8,765,138, 2014.
Grienke, U.; Zöll, M.; Peintner, U.; Rollinger, J.M. European Medicinal Polypores – A Modern View on Traditional Uses. J. Ethnopharmacol. 2014, 154, 564–583. doi:10.1016/j.jep.2014.04.030.
DOI: https://doi.org/10.1016/j.jep.2014.04.030
Naranmandakh, S.; Murata, T.; Odonbayar, B.; Suganuma, K.; Batkhuu, J.; Sasaki, K. Lanostane Triterpenoids from Fomitopsis Officinalis and Their Trypanocidal Activity. J. Nat. Med. 2018, 72, 523–529. doi:10.1007/s11418-018-1182-1.
DOI: https://doi.org/10.1007/s11418-018-1182-1
Girometta, C. Antimicrobial Properties of Fomitopsis Officinalis in the Light of Its Bioactive Metabolites: A Review. Mycology 2019, 10, 32–39. doi:10.1080/21501203.2018.1536680.
DOI: https://doi.org/10.1080/21501203.2018.1536680
Fijałkowska, A.; Muszyńska, B.; Sułkowska-Ziaja, K.; Kała, K.; Pawlik, A.; Stefaniuk, D.; Matuszewska, A.; Piska, K.; Pękala, E.; Kaczmarczyk, P.; et al. Medicinal Potential of Mycelium and Fruiting Bodies of an Arboreal Mushroom Fomitopsis Officinalis in Therapy of Lifestyle Diseases. Sci. Rep. 2020, 10, Art. No: 20081. doi:10.1038/s41598-020-76899-1.
DOI: https://doi.org/10.1038/s41598-020-76899-1
Malinowska, M.; Bielawska, K. Metabolizm i własciwości antyoksydacyjne kumaryn. Bromat. Chem. Toksykol. 2013, XLVI, 393–403.
Bielawska, K.; Malinowska, M.; Cyuńczyk, M. Wpływ kumaryn na organizm człowieka. Bromat. Chem. Toksykol. 2014, XLVII, 213 – 221.
Basanagouda, M.; Kulkarni, M.V.; Sharma, D.; Gupta, V.K.; Pranesha; Sandhyarani, P.; Rasal, V.P. Synthesis of Some New 4-Aryloxmethylcoumarins and Examination of Their Antibacterial and Antifungal Activities. J. Chem. Sci. 2009, 121, 485–495. doi:10.1007/s12039-009-0058-z.
DOI: https://doi.org/10.1007/s12039-009-0058-z
Hwang, C.H.; Jaki, B.U.; Klein, L.L.; Lankin, D.C.; McAlpine, J.B.; Napolitano, J.G.; Fryling, N.A.; Franzblau, S.G.; Cho, S.H.; Stamets, P.E.; et al. Chlorinated Coumarins from the Polypore Mushroom Fomitopsis Officinalis and Their Activity against Mycobacterium Tuberculosis. J. Nat. Prod. 2013, 76, 1916–1922. doi:10.1021/np400497f.
DOI: https://doi.org/10.1021/np400497f
Furmaga, S. Choroby pasożytnicze zwierząt domowych; Państwowe Wydawnictwo Rolnicze i Leśne, 1983; ISBN 83-09-00671-3.
Seweryn, E.; Ziała, A.; Gamian, A. Właściwości triterpenów z lakownicy lśniącej – Ganoderma lucidum (Fr.) Karst. Postepy Hig. Med. Dosw. 2019, 73, 345–352. doi:10.5604/01.3001.0013.2790.
DOI: https://doi.org/10.5604/01.3001.0013.2790
Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.K.S.; Bisen, P.S. Ganoderma Lucidum: A Potent Pharmacological Macrofungus. Curr. Pharm. Biotechnol. 10, 717–742. doi: 10.2174/138920109789978757
DOI: https://doi.org/10.2174/138920109789978757
Han, J.; Li, L.; Zhong, J.; Tohtaton, Z.; Ren, Q.; Han, L.; Huang, X.; Yuan, T. Officimalonic Acids A−H, Lanostane Triterpenes from the Fruiting Bodies of Fomes Officinalis. Phytochem. 2016, 130, 193–200. doi:10.1016/j.phytochem.2016.05.004.
DOI: https://doi.org/10.1016/j.phytochem.2016.05.004
Matsunaga, Y.; , W.; Machmudah, S.; Askin, R.; Quitain, A.T.; Sasaki, M.; Goto, M. Hydrothermal Extraction and Micronization of Polysaccharides from Ganoderma Lucidum in a One-Step Process. BioResources 2012, 8, 461–471. doi:10.15376/biores.8.1.461-471.
DOI: https://doi.org/10.15376/biores.8.1.461-471
Boh, B.; Berovic, M.; Zhang, J.; Zhi-Bin, L. Ganoderma Lucidum and Its Pharmaceutically Active Compounds. In Biotechnology Annual Review; El-Gewely, M.R., Ed.; Elsevier, 2007; Vol. 13, pp. 265–301.
DOI: https://doi.org/10.1016/S1387-2656(07)13010-6
Sasaki, T.; Arai, Y.; Ikekawa, T.; Chihara, G.; Fukuoka, F. Antitumor Polysaccharides from Some Polyporaceae, Ganoderma Applanatum (Pers.) Pat and Phellinus Linteus (Berk. et Curt) Aoshima. Chem. Pharm. Bull. (Tokyo) 1971, 19, 821–826. doi:10.1248/cpb.19.821.
DOI: https://doi.org/10.1248/cpb.19.821
Luo, J.; Lin, Z. [Advances of pharmacological effects of triterpenes from Ganoderma lucidum]. Yao Xue Xue Bao 2002, 37, 574–578.
Ye, S.; Zhang, H.; Fei, J.; Wolstenholme, C.H.; Zhang, X. A General Strategy to Control Viscosity Sensitivity of Molecular Rotor-Based Fluorophores. Angew. Chem. Int. Ed. 2021, 60, 1339–1346. doi:10.1002/anie.202011108.
DOI: https://doi.org/10.1002/anie.202011108
O. Toth, J.; Luu, B.; Ourisson, G. Les Acides Ganoderiques Tàz : Triterpenes Cytotoxiques de Ganoderma Lucidum (Polyporacée). Tetrahedron Lett. 1983, 24, 1081–1084. doi:10.1016/S0040-4039(00)81610-X.
DOI: https://doi.org/10.1016/S0040-4039(00)81610-X
Lin, S.-B.; Li, C.-H.; Lee, S.-S.; Kan, L.-S. Triterpene-Enriched Extracts from Ganoderma Lucidum Inhibit Growth of Hepatoma Cells via Suppressing Protein Kinase C, Activating Mitogen-Activated Protein Kinases and G2-Phase Cell Cycle Arrest. Life Sci. 2003, 72, 2381–2390. doi:10.1016/s0024-3205(03)00124-3.
DOI: https://doi.org/10.1016/S0024-3205(03)00124-3
Gao, J.-J.; Min, B.-S.; Ahn, E.-M.; Nakamura, N.; Lee, H.-K.; Hattori, M. New Triterpene Aldehydes, Lucialdehydes A—C, from Ganoderma Lucidum and Their Cytotoxicity against Murine and Human Tumor Cells. Chem. Pharm. Bull. 2002, 50, 837–840. doi:10.1248/cpb.50.837.
DOI: https://doi.org/10.1248/cpb.50.837
Min, B.S.; Gao, J.J.; Nakamura, N.; Hattori, M. Triterpenes from the Spores of Ganoderma Lucidum and Their Cytotoxicity against Meth-A and LLC Tumor Cells. Chem. Pharm. Bull. (Tokyo) 2000, 48, 1026–1033. doi:10.1248/cpb.48.1026.
DOI: https://doi.org/10.1248/cpb.48.1026
Gill, B.S.; Sharma, P.; Kumar, R.; Kumar, S. Misconstrued Versatility of Ganoderma Lucidum: A Key Player in Multi-Targeted Cellular Signaling. Tumor Biol. 2016, 37, 2789–2804. doi:10.1007/s13277-015-4709-z.
DOI: https://doi.org/10.1007/s13277-015-4709-z
Yue, Q.-X.; Cao, Z.-W.; Guan, S.-H.; Liu, X.-H.; Tao, L.; Wu, W.-Y.; Li, Y.-X.; Yang, P.-Y.; Liu, X.; Guo, D.-A. Proteomics Characterization of the Cytotoxicity Mechanism of Ganoderic Acid D and Computer-Automated Estimation of the Possible Drug Target Network *. Mol. Cell. Proteomics 2008, 7, 949–961. doi:10.1074/mcp.M700259-MCP200.
DOI: https://doi.org/10.1074/mcp.M700259-MCP200
Kohda, H.; Tokumoto, W.; Sakamoto, K.; Fujii, M.; Hirai, Y.; Yamasaki, K.; Komoda, Y.; Nakamura, H.; Ishihara, S.; Uchida, M. The Biologically Active Constituents of Ganoderma Lucidum (FR.) KARST. Histamine Release-Inhibitory Triterpenes. Chem. Pharm. Bull. 1985, 33, 1367–1374. doi:10.1248/cpb.33.1367.
DOI: https://doi.org/10.1248/cpb.33.1367
Tang, W.; Liu, J.-W.; Zhao, W.-M.; Wei, D.-Z.; Zhong, J.-J. Ganoderic Acid T from Ganoderma Lucidum Mycelia Induces Mitochondria Mediated Apoptosis in Lung Cancer Cells. Life Sciences 2006, 80, 205–211. doi:10.1016/j.lfs.2006.09.001.87.
DOI: https://doi.org/10.1016/j.lfs.2006.09.001
Chang, U.-M.; Li, C.-H.; Lin, L.-I.; Huang, C.-P.; Kan, L.-S.; Lin, S.-B. Ganoderiol F, a Ganoderma Triterpene, Induces Senescence in Hepatoma HepG2 Cells. Life Sci. 2006, 79, 1129–1139. doi:10.1016/j.lfs.2006.03.027.3.027.
DOI: https://doi.org/10.1016/j.lfs.2006.03.027