Fang, Y.; Cheng, Y.; Qi, Z.; Jiaming, X.; Zhuangzhuang, L.;, Jin, G.; Hanjian, Z.; Zhujiang, D.; Daorong, W.; Dong, T. The roles of microbial products in the development of colorectal cancer: a review. Bioengineered, 2021, 12(1), 720–735. DOI: 10.1080/21655979.2021.1889109
DOI: https://doi.org/10.1080/21655979.2021.1889109
Zhang, Z.; Huan, Z.; Tian, C.; Lin, S.; Daorong, W.; Dong, T. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun Signal., 2022, 20, Art. No: 64. DOI: 10.1186/s12964-022-00869-5
DOI: https://doi.org/10.1186/s12964-022-00869-5
Hamer H. M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review Article: The Role of Butyrate on Colonic Function. Aliment. Pharmacol. Ther. 27(2), 2008, 27(2), 104–119. DOI: 10.1111/j.1365-2036.2007.03562.x
DOI: https://doi.org/10.1111/j.1365-2036.2007.03562.x
Nogal, A.; Valdes, A.M.; Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 2021, 1(1), 1-24. DOI: 10.1080/19490976.2021.1897212
DOI: https://doi.org/10.1080/19490976.2021.1897212
Lawrence, K.C.; Blauwiekel, R.; Bunn, J.Y.; Jetton, T.L.; Frankel, W.L.; Holst, J.J. Cecal Infusion of Butyrate Increases Intestinal Cell Proliferation in Piglets. J. Nutr. 2007, 137(4), 916–922. DOI: 10.1093/jn/137.4.916.
DOI: https://doi.org/10.1093/jn/137.4.916
Liu, H.; Ji W.; Ting, H.; Sage, B.; Guolong, Z.; Defa, L.; Xi, M. Butyrate: A Double-Edged Sword for Health?. Adv. Nutr., 2018, 9(1), 21–29. DOI: 10.1093/advances/nmx009
DOI: https://doi.org/10.1093/advances/nmx009
Facchin, S.; Vitulo, N.; Calgaro, M.; Buda, A.; Romualdi, C.; Pohl, D.; Perini, B. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol. Motil., 2020, 32(10), Art. No: e13914. DOI: 10.1111/nmo.13914
DOI: https://doi.org/10.1111/nmo.13914
Fu, X.; Liu, Z.; Zhu, C.; Mou, H.; Kong, Q. Nondigestible Carbohydrates, Butyrate, and Butyrate-Producing Bacteria. Crit. Rev. Food Sci. Nutr. 2019, 59(1), 130–152. DOI: 10.1080/10408398.2018.1542587
DOI: https://doi.org/10.1080/10408398.2018.1542587
Wu, X.; Wu, Y.; He, L.; Wu, L.; Wang, X.; Liu, Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer, 2018, 9(14), 2510–2517. DOI: 10.7150/jca.25324
DOI: https://doi.org/10.7150/jca.25324
Siddiqui, M.T.; Cresci, G.A.M. The Immunomodulatory Functions of Butyrate. J. Inflamm. Res. 2021, 14(1), 6025–6041. DOI: 10.2147/JIR.S300989
DOI: https://doi.org/10.2147/JIR.S300989
Petra, L.; Flint, H.J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ. Microbiol. 2017, 19(1), 29–41. DOI: 10.1111/1462-2920.13589
DOI: https://doi.org/10.1111/1462-2920.13589
Kaźmierczak-Siedlecka, K.; Skonieczna-Żydecka, K.; Hupp, T.; Duchnowska, R.; Marek-Trzonkowska, N.; Połom, K. Next-generation probiotics – do they open new therapeutic strategies for cancer patients? Gut Microbes, 2022, 14(1), Art. No: 2035659. DOI: 10.1080/19490976.2022.2035659
DOI: https://doi.org/10.1080/19490976.2022.2035659
Korecka, A.; Velmurugesan, A. The gut microbiome: scourge, sentinel or spectator? J. Oral Microbiol. 2012, 4(1), Art. No: 10.3402/jom.v4i0.9367. DOI: 10.3402/jom.v4i0.9367
DOI: https://doi.org/10.3402/jom.v4i0.9367
Topping, D.L.; Clifton, P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol. Rev. 2001, 81(3), 1031–1064. DOI: 10.1152/physrev.2001.81.3.1031
DOI: https://doi.org/10.1152/physrev.2001.81.3.1031
Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and Functional Importance in the Gut. Proc. Nutr. Soc. 2021, 80(1), 37–49. DOI: 10.1017/S0029665120006916
DOI: https://doi.org/10.1017/S0029665120006916
Henningsson, A.M.; Björck, I.M.E.; Nyman, E.M.G.L. Combinations of Indigestible Carbohydrates Affect Short-Chain Fatty Acid Formation in the Hindgut of Rats. J. Nutr. 2002, 132(10), 3098–3104. DOI: 10.1093/jn/131.10.3098
DOI: https://doi.org/10.1093/jn/131.10.3098
Bergman, E.N. Energy Contributions of Volatile Fatty Acids from the Gastrointestinal Tract in Various Species. Physiol. Rev. 1990, 70(2), 567–590. DOI: 10.1152/physrev.1990.70.2.567
DOI: https://doi.org/10.1152/physrev.1990.70.2.567
Darzi, J.; Frost, G.S.; Robertson, M.D. Do SCFA Have a Role in Appetite Regulation? Proc. Nutr. Soc. 2011, 70(1), 119–128. DOI: 10.1017/S0029665110004039
DOI: https://doi.org/10.1017/S0029665110004039
Gurav, A.; Sivaprakasam, S.; Bhutia, Y.D.; Boettger, T.; Singh, N.; Ganapathy, V. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumor suppressor in colon that protects against colitis and colon cancer under low-fiber dietary conditions. Biochem. J. 2015, 469(2), 267–278. DOI: 10.1042/BJ20150242
DOI: https://doi.org/10.1042/BJ20150242
Dolan, K.T.; Chang, E.B. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Mol. Nutr. Food Res. 2017, 61(1), Art. No: 10.1002/mnfr.201600129. DOI: 10.1002/mnfr.201600129
DOI: https://doi.org/10.1002/mnfr.201600129
Alipour, M.; Zaidi, D.; Valcheva, R.; Jovel, J.; Martínez, I.; Sergi, C.; Walter, J. Mucosal Barrier Depletion and Loss of Bacterial Diversity are Primary Abnormalities in Paediatric Ulcerative Colitis. J. Crohns Colitis. 2016, 10(4), 462–471. DOI: 10.1093/ecco-jcc/jjv223
DOI: https://doi.org/10.1093/ecco-jcc/jjv223
Zhou, S.-Y.; Gillilland, M.; Wu, X.; Leelasinjaroen, P.; Zhang, G.; Zhou, H.; Ye, B.; Lu, Y.; Owyang, C. FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. J. Clin. Invest. 2018, 1(1), 267–280. DOI: 10.1172/JCI92390
DOI: https://doi.org/10.1172/JCI92390
Banasiewicz, T.; Krokowicz, Ł.; Stojcev, Z.; Kaczmarek, B.F.; Kaczmarek, E.; Maik, J.; Marciniak, R.; Krokowicz, P.; Walkowiak, J.; Drews, M. Microencapsulated Sodium Butyrate Reduces the Frequency of Abdominal Pain in Patients with Irritable Bowel Syndrome. ACPGBI – Official Journal 2013, 2(2), 204–209. DOI: 10.1111/j.1463-1318.2012.03152.x
DOI: https://doi.org/10.1111/j.1463-1318.2012.03152.x
Skrzydło-Radomańska, B.; Prozorow-Król, B.; Cichoż-Lach, H.; Majsiak, E.; Bierła, J.B.; Kosikowski, W.; Szczerbiński, M.; Gantzel, J.; Cukrowska, B. The Effectiveness of Synbiotic Preparation Containing Lactobacillus and Bifidobacterium Probiotic Strains and Short Chain Fructooligosaccharides in Patients with Diarrhea Predominant Irritable Bowel Syndrome—A Randomized Double-Blind, Placebo-Controlled Study. Nutrients 2020, 12(7), 1999. DOI: 10.3390/nu12071999
DOI: https://doi.org/10.3390/nu12071999
Ford, A.C.; Harris, L.A.; Lacy, B.E.; Quigley, E.M.M.; Moayyedi, P. Systematic Review with Meta-Analysis: The Efficacy of Prebiotics, Probiotics, Synbiotics and Antibiotics in Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2018, 47(10), 1044–1060. DOI: 10.1111/apt.15001
DOI: https://doi.org/10.1111/apt.15001
Li, B.; Liang, L.; Deng, H.; Guo, J.; Shu, H.; Zhang, L. Efficacy and Safety of Probiotics in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2020, 11, Art. No: 332. DOI: 10.3389/fphar.2020.00332
DOI: https://doi.org/10.3389/fphar.2020.00332
Coppola, S.; Avagliano, C.; Calignano, A.; Berni Canani, R. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules 2021, 26(3), 682. DOI: 10.3390/molecules26030682
DOI: https://doi.org/10.3390/molecules26030682
Kushwaha, V.; Rai, P.; Varshney, S.; Gupta, S.; Khandelwal, N.; Kumar, D.; Gaikwad, A.N. Sodium Butyrate Reduces Endoplasmic Reticulum Stress by Modulating CHOP and Empowers Favorable Anti-Inflammatory Adipose Tissue Immune-Metabolism in HFD Fed Mice Model of Obesity. Food Chem. (Oxf) 2022, 4, Art. No: 100079. DOI: 10.1016/j.fochms.2022.100079
DOI: https://doi.org/10.1016/j.fochms.2022.100079
Moon, H.-R.; Yun, J.-M. Sodium Butyrate Inhibits High Glucose-Induced Inflammation by Controlling the Acetylation of NF-κB P65 in Human Monocytes. Nutr. Res. Pract. 2023, 17(1), 164–173. DOI: 10.4162/nrp.2023.17.1.164
DOI: https://doi.org/10.4162/nrp.2023.17.1.164
Matheus, V.A.; Oliveira, R.B.; Maschio, D.A.; Tada, S.F.S.; Soares, G.M.; Mousovich-Neto, F.; Costa, R.G.; Mori, M.A.; Barbosa, H.C.L.; Collares-Buzato, C. Butyrate Restores the Fat/Lean Mass Ratio Balance and Energy Metabolism and Reinforces the Tight Junction-Mediated Intestinal Epithelial Barrier in Prediabetic Mice Independently of Its Anti-Inflammatory and Epigenetic Actions. J. Nutr. Biochem. 2023, 120, Art. No: 109409. DOI: 10.1016/j.jnutbio.2023.109409
DOI: https://doi.org/10.1016/j.jnutbio.2023.109409
Zhu, W.; Peng, K.; Zhao, Y.; Xu, C.; Tao, X.; Liu, Y.; Huang, Y.; Yang, X. Sodium Butyrate Attenuated Diet-Induced Obesity, Insulin Resistance and Inflammation Partly by Promoting Fat Thermogenesis via Intro-Adipose Sympathetic Innervation. Front. Pharmacol. 2022, 13, Art. No: 938760. DOI: 10.3389/fphar.2022.938760
DOI: https://doi.org/10.3389/fphar.2022.938760
Majka, Z.; Zapala, B.; Krawczyk, A.; Czamara, K.; Mazurkiewicz, J.; Stanek, E.; Czyzynska-Cichon, I. Direct Oral and Fiber-Derived Butyrate Supplementation as an Anti-Obesity Treatment via Different Targets. Clin. Nutr. 2024, 43(3), 869–880. DOI: 10.1016/j.clnu.2024.02.009
DOI: https://doi.org/10.1016/j.clnu.2024.02.009
Wang, X.; Duan, C.; Li, Y.; Lu, H.; Guo, K.; Ge, X.; Chen, T.; Shang, Y.; Liu, H.; Zhang, D. Sodium Butyrate Reduces Overnutrition-Induced Microglial Activation and Hypothalamic Inflammation. Int. Immunopharmacol. 2022, 111, Art. No: 109083. DOI: 10.1016/j.intimp.2022.109083
DOI: https://doi.org/10.1016/j.intimp.2022.109083
Eslick, S.; Williams, E.J.; Berthon, B.S.; Wright, T.; Karihaloo, C.; Gately, M.; Wood, L.G. Weight Loss and Short-Chain Fatty Acids Reduce Systemic Inflammation in Monocytes and Adipose Tissue Macrophages from Obese Subjects. Nutrients 2022, 14(4), 765. DOI: 10.3390/nu14040765
DOI: https://doi.org/10.3390/nu14040765
Amiri, P.; Hosseini, S.A.; Roshanravan, N.; Saghafi-Asl, M.; Tootoonchian, M. The Effects of Sodium Butyrate Supplementation on the Expression Levels of PGC-1α, PPARα, and UCP-1 Genes, Serum Level of GLP-1, Metabolic Parameters, and Anthropometric Indices in Obese Individuals on Weight Loss Diet: A Study Protocol for a Triple-Blind, Randomized, Placebo-Controlled Clinical Trial. Trials 2023, 24(1), 489. DOI: 10.1186/s13063-022-06891-9
DOI: https://doi.org/10.1186/s13063-022-06891-9
Śliżewska, K.; Włodarczyk, M.; Sobczak, M.; Barczyńska, R.; Kapuśniak, J.; Socha, P.; Wierzbicka-Rucińska, A.; Kotowska, A. Comparison of the Activity of Fecal Enzymes and Concentration of SCFA in Healthy and Overweight Children. Nutrients 2023, 15(4), 987. DOI: 10.3390/nu15040987
DOI: https://doi.org/10.3390/nu15040987
Coppola, S.; Nocerino, R.; Paparo, L.; Bedogni, G.; Calignano, A.; Di Scala, C.; di Giovanni di Santa Severina, A.F.; De Filippis, F.; Ercolini, D.; Berni Canani, R. Therapeutic Effects of Butyrate on Pediatric Obesity: A Randomized Clinical Trial. JAMA Network Open 2022, 5(12), e2244912. DOI: 10.1001/jamanetworkopen.2022.44912
DOI: https://doi.org/10.1001/jamanetworkopen.2022.44912
Gohir, W.; Whelan, F.J.; Surette, M.G.; Moore, C.; Schertzer, J.D.; Sloboda, D.M. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother’s periconceptional diet. Gut Microbes 2015, 6(5), 310–320. DOI: 10.1080/19490976.2015.1086056
DOI: https://doi.org/10.1080/19490976.2015.1086056
Lima, R.A.; Desoye, G.; Simmons, D.; Devlieger, R.; Galjaard, S.; Corcoy, R.; Adelantado, J.M. The importance of maternal insulin resistance throughout pregnancy on neonatal adiposity. Paediatr. Perinat. Epidemiol. 2021, 35(1), 83–91. DOI: 10.1111/ppe.12682
DOI: https://doi.org/10.1111/ppe.12682
Hasain, Z.; Mohd Mokhtar, N.; Kamaruddin, N.A.; Mohamed Ismail, N.A.; Razalli, N.H.; Gnanou, J.V.; Raja Ali, R.A. Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential. Front. Cell. Infect. Microbiol. 2020, 10, Art. No: 188. DOI: 10.3389/fcimb.2020.00188
DOI: https://doi.org/10.3389/fcimb.2020.00188
Wallace, J.G.; Bellissimo, C.J.; Yeo, E.; Xia, Y.F.; Petrik, J.J.; Surette, M.G.; Bowdish, D.M.E.; Sloboda, D.M. Obesity during pregnancy results in maternal intestinal inflammation, placental hypoxia, and alters fetal glucose metabolism at mid-gestation. Sci. Rep. 2019, 9, Art. No: 17621. DOI: 10.1038/s41598-019-54098-x
DOI: https://doi.org/10.1038/s41598-019-54098-x
Broadney, M.M.; Chahal, N.; Michels, K.A.; McLain, A.C.; Ghassabian, A.; Lawrence, D.A.; Yeung, E.H. Impact of Parental Obesity on Neonatal Markers of Inflammation and Immune Response. Int. J. Obes. (Lond) 2017, 41(1), 30–37. DOI: 10.1038/ijo.2016.187
DOI: https://doi.org/10.1038/ijo.2016.187
Gomez-Arango, L.F.; Barrett, H.L.; McIntyre, H.D.; Callaway, L.K.; Morrison, M.; Dekker Nitert, M.; SPRING Trial Group. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension 2016, 68(4), 974–981. DOI: 10.1161/HYPERTENSIONAHA.116.07910
DOI: https://doi.org/10.1161/HYPERTENSIONAHA.116.07910
Chang, Y.; Chen, Y.; Zhou, Q.; Wang, C.; Chen, L.; Di, W.; Zhang, Y. Short-Chain Fatty Acids Accompanying Changes in the Gut Microbiome Contribute to the Development of Hypertension in Patients with Preeclampsia. Clin. Sci. 2020, 134(3), 289–302. DOI: 10.1042/CS20191253
DOI: https://doi.org/10.1042/CS20191253
Chen, Y.-S.; Shen, L.; Mai, R.-Q.; Wang, Y. Levels of microRNA-181b and plasminogen activator inhibitor-1 are associated with hypertensive disorders complicating pregnancy. Exp. Ther. Med. 2014, 7(6), 1523–1527. DOI: 10.3892/etm.2014.1946
DOI: https://doi.org/10.3892/etm.2014.1946
Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Marulanda Carvajal, J.; Zadeh, M. Gut Microbiota Dysbiosis is Linked to Hypertension. Hypertension 2015, 65(6), 1331–1340. DOI: 10.1161/HYPERTENSIONAHA.115.05315
DOI: https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21(17), Art. No: 6356. DOI: 10.3390/ijms21176356
DOI: https://doi.org/10.3390/ijms21176356
Lee, M.; Chang, E.B. Inflammatory Bowel Diseases and the Microbiome: Searching the Crime Scene for Clues. Gastroenterology 2021, 160(2), 524–537. DOI: 10.1053/j.gastro.2020.09.056
DOI: https://doi.org/10.1053/j.gastro.2020.09.056
Russo, E.; Giudici, F.; Fiorindi, C.; Ficari, F.; Scaringi, S.; Amedei, A. Immunomodulating Activity and Therapeutic Effects of Short Chain Fatty Acids and Tryptophan Post-biotics in Inflammatory Bowel Disease. Front. Immunol. 2019, 10, Art. No: 2754. DOI: 10.3389/fimmu.2019.02754
DOI: https://doi.org/10.3389/fimmu.2019.02754
Salem, F.; Kindt, N.; Marchesi, J.R.; Netter, P.; Lopez, A.; Kokten, T.; Danese, S.; Jouzeau, J.-Y.; Peyrin-Biroulet, L.; Moulin, D. Gut microbiome in chronic rheumatic and inflammatory bowel diseases: Similarities and differences. United European Gastroenterol J. 2019, 8(8), 1008–1032. DOI: 10.1177/2050640619867555
DOI: https://doi.org/10.1177/2050640619867555
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, Art. No: 277. DOI: 10.3389/fimmu.2019.00277
DOI: https://doi.org/10.3389/fimmu.2019.01486
Bajer, L.; Kverka, M.; Kostovcik, M.; Macinga, P.; Dvorak, J.; Stehlikova, Z.; Brezina, J.; Wohl, P.; Spicak, J.; Drastich, P. Distinct Gut Microbiota Profiles in Patients with Primary Sclerosing Cholangitis and Ulcerative Colitis. World J. Gastroenterol. 2017, 23(25), 4548–4558. DOI: 10.3748/wjg.v23.i25.4548
DOI: https://doi.org/10.3748/wjg.v23.i25.4548
Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V. A Decrease of the Butyrate-Producing Species Roseburia Hominis and Faecalibacterium Prausnitzii Defines Dysbiosis in Patients with Ulcerative Colitis. Gut 2014, 63(8), 1275–1283. DOI: 10.1136/gutjnl-2013-304833
DOI: https://doi.org/10.1136/gutjnl-2013-304833
Schreiner, P.; Neurath, M.F.; Ng, S.C.; El-Omar, E.; Sharara, A.I.; Kobayashi, T.; Hisamatsu, T.; Hibi, T.; Rogler, G. Mechanism-Based Treatment Strategies for IBD: Cytokines, Cell Adhesion Molecules, JAK Inhibitors, Gut Flora, and More. Inflamm. Intest. Dis. 2019, 3(2), 79–96. DOI: 10.1159/000500721
DOI: https://doi.org/10.1159/000500721
El Hage, R.; Hernandez-Sanabria, E.; Van de Wiele, T. Emerging Trends in “Smart Probiotics”: Functional Consideration for the Development of Novel Health and Industrial Applications. Front. Microbiol. 2017, 8, Art. No: 1889. DOI: 10.3389/fmicb.2017.01889
DOI: https://doi.org/10.3389/fmicb.2017.01889
Candido, E.P.; Reeves, R.; Davie, J.R. Sodium Butyrate Inhibits Histone Deacetylation in Cultured Cells. Cell 1978, 14(1), 105–113. DOI: 10.1016/0092-8674(78)90305-7
DOI: https://doi.org/10.1016/0092-8674(78)90305-7
Meijer, K.; de Vos, P.; Priebe, M.G. Butyrate and Other Short-Chain Fatty Acids as Modulators of Immunity: What Relevance for Health? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13(6), 715–721. DOI: 10.1097/MCO.0b013e32833eebe5
DOI: https://doi.org/10.1097/MCO.0b013e32833eebe5
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; et al. Activation of the receptor (Gpr109a) for niacin and the commensal metabolite butyrate suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40(1), 128–139. DOI: 10.1016/j.immuni.2013.12.007
DOI: https://doi.org/10.1016/j.immuni.2013.12.007
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16(8), 461–478. DOI: 10.1038/s41575-019-0157-3
DOI: https://doi.org/10.1038/s41575-019-0157-3
Liang, L.; Liu, L.; Zhou, W.; Yang, C.; Mai, G.; Li, H.; Chen, Y. Gut Microbiota-Derived Butyrate Regulates Gut Mucus Barrier Repair by Activating the Macrophage/WNT/ERK Signaling Pathway. Clin. Sci. 2022, 136(4), 291–307. DOI: 10.1042/CS20210778
DOI: https://doi.org/10.1042/CS20210778
Wlodarska, M.; Thaiss, C.A.; Nowarski, R.; Henao-Mejia, J.; Zhang, J.-P.; Brown, E.M.; Frankel, G.; et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014, 156(5), 1045–1059. DOI: 10.1016/j.cell.2014.01.026
DOI: https://doi.org/10.1016/j.cell.2014.01.026
De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. U.S.A. 2010, 107(33), 14691–14696. DOI: 10.1073/pnas.1005963107
DOI: https://doi.org/10.1073/pnas.1005963107
Agus, A.; Denizot, J.; Thévenot, J.; Martinez-Medina, M.; Massier, S.; Sauvanet, P.; Bernalier-Donadille, A.; et al. Western Diet Induces a Shift in Microbiota Composition Enhancing Susceptibility to Adherent-Invasive E. coli Infection and Intestinal Inflammation. Sci. Rep. 2016, 6, Art. No: 19032. DOI: 10.1038/srep19032
DOI: https://doi.org/10.1038/srep19032
Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; et al. Regulation of Inflammatory Responses by Gut Microbiota and Chemoattractant Receptor GPR43. Nature 2009, 461(7268), 1282–1286. DOI: 10.1038/nature08530
DOI: https://doi.org/10.1038/nature08530
Vernia, P.; Marcheggiano, A.; Caprilli, R.; Frieri, G.; Corrao, G.; Valpiani, D.; Di Paolo, M.C.; Paoluzi, P.; Torsoli, A. Short-Chain Fatty Acid Topical Treatment in Distal Ulcerative Colitis. Aliment. Pharmacol. Ther. 1995, 9(3), 309–313. DOI: 10.1111/j.1365-2036.1995.tb00386.x
DOI: https://doi.org/10.1111/j.1365-2036.1995.tb00386.x
Fearon, E.R. Molecular Genetics of Colorectal Cancer. Annu. Rev. Pathol. 2011, 6, 479–507. DOI: 10.1146/annurev-pathol-011110-130235
DOI: https://doi.org/10.1146/annurev-pathol-011110-130235
Wong, S.H.; Zhao, L.; Zhang, X.; Nakatsu, G.; Han, J.; Xu, W.; Xiao, X.; et al. Gavage of Fecal Samples from Patients with Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology 2017, 152(6), 1621–1633. DOI: 10.1053/j.gastro.2017.08.022
DOI: https://doi.org/10.1053/j.gastro.2017.08.022
Erdman, S.E.; Poutahidis, T.; Tomczak, M.; Rogers, A.B.; Cormier, K.; Plank, B.; Horwitz, B.H.; Fox, J.G. CD4+ CD25+ Regulatory T Lymphocytes Inhibit Microbially Induced Colon Cancer in Rag2-Deficient Mice. Am. J. Pathol. 2003, 162(2), 691–702. DOI: 10.1016/S0002-9440(10)63863-1
DOI: https://doi.org/10.1016/S0002-9440(10)63863-1
Sears, C.L.; Pardoll, D.M. Perspective: Alpha-Bugs, Their Microbial Partners, and the Link to Colon Cancer. J. Infect. Dis. 2011, 203(3), 306–311. DOI: 10.1093/jinfdis/jiq061
DOI: https://doi.org/10.1093/jinfdis/jiq061
Reis, S.A.D.; Lopes da Conceição, L.; Gouveia Peluzio, M.C. Intestinal Microbiota and Colorectal Cancer: Changes in the Intestinal Microenvironment and Their Relation to the Disease. J. Med. Microbiol. 2019, 68(10), 1391–1407. DOI: 10.1099/jmm.0.001049
DOI: https://doi.org/10.1099/jmm.0.001049
Li, J.; Zhang, A.-H.; Wu, F.-F.; Wang, X.-J. Alterations in the Gut Microbiota and Their Metabolites in Colorectal Cancer: Recent Progress and Future Prospects. Front. Oncol. 2022, 12, 841552. DOI: 10.3389/fonc.2022.841552
DOI: https://doi.org/10.3389/fonc.2022.841552
Bordonaro, M. Further Analysis of p300 in Mediating Effects of Butyrate in Colorectal Cancer Cells. J. Cancer 2020, 11(20), 5861–5866. DOI: 10.7150/jca.47160
DOI: https://doi.org/10.7150/jca.47160
Xiao, M.; Liu, Y.G.; Zou, M.C.; Zou, F. Sodium Butyrate Induces Apoptosis of Human Colon Cancer Cells by Modulating ERK and Sphingosine Kinase 2. Biol. Eng. Sci. 2014, 3(3), 197–203. DOI: 10.3967/bes2014.040
Elimrani, I.; Dionne, S.; Saragosti, D.; Qureshi, I.; Levy, E.; Delvin, E.; Seidman, E.G. Acetylcarnitine Potentiates the Anticarcinogenic Effects of Butyrate on SW480 Colon Cancer Cells. Int. J. Oncol. 2015, 46(2), 755–763. DOI: 10.3892/ijo.2015.3029
DOI: https://doi.org/10.3892/ijo.2015.3029
Roy, M.-J.; Dionne, S.; Marx, G.; Qureshi, I.; Sarma, D.; Levy, E.; Seidman, E.G. In Vitro Studies on the Inhibition of Colon Cancer by Butyrate and Carnitine. Nutrition 2009, 25(11–12), 1193–1201. DOI: 10.1016/j.nut.2009.04.008
DOI: https://doi.org/10.1016/j.nut.2009.04.008
Park, M.; Kwon, J.; Shin, H.-J.; Moon, S.M.; Kim, S.B.; Shin, U.S.; Han, Y.-H.; Kim, Y. Butyrate Enhances the Efficacy of Radiotherapy via FOXO3A in Colorectal Cancer Patient-Derived Organoids. Int. J. Oncol. 2020, 57(6), 1307–1318. DOI: 10.3892/ijo.2020.5132
DOI: https://doi.org/10.3892/ijo.2020.5132
Encarnação, J.C.; Pires, A.S.; Amaral, R.A.; Gonçalves, T.J.; Laranjo, M.; Casalta-Lopes, J.E.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Abrantes, A.M.; Botelho, M.F. Butyrate, a Dietary Fiber Derivative That Improves Irinotecan Effect in Colon Cancer Cells. J. Nutr. Biochem. 2018, 62, 183–192. DOI: 10.1016/j.jnutbio.2018.02.018
DOI: https://doi.org/10.1016/j.jnutbio.2018.02.018
Geng, H.-W.; Yin, F.-Y.; Zhang, Z.-F.; Gong, X.; Yang, Y. Butyrate Suppresses Glucose Metabolism of Colorectal Cancer Cells via GPR109a-AKT Signaling Pathway and Enhances Chemotherapy. Front. Mol. Biosci. 2021, 8, Art. No: 634874. DOI: 10.3389/fmolb.2021.634874
DOI: https://doi.org/10.3389/fmolb.2021.634874
Ferreira, T.M.; Leonel, A.J.; Melo, M.A.; Santos, R.R.G.; Cara, D.C.; Cardoso, V.N.; Correia, M.I.T.D.; Alvarez-Leite, J.I. Oral Supplementation of Butyrate Reduces Mucositis and Intestinal Permeability Associated with 5-Fluorouracil Administration. Lipids 2012, 47(7), 669–678. DOI: 10.1007/s11745-012-3680-3
DOI: https://doi.org/10.1007/s11745-012-3680-3
Ma, X.; Zhou, Z.; Zhang, X.; Fan, M.; Hong, Y.; Feng, Y.; Dong, Q.; Diao, H.; Wang, G. Sodium Butyrate Modulates Gut Microbiota and Immune Response in Colorectal Cancer Liver Metastatic Mice. Cell Biol. Toxicol. 2020, 36(5), 509–515. DOI: 10.1007/s10565-020-09518-4
DOI: https://doi.org/10.1007/s10565-020-09518-4
D’Ignazio, A.; Kabata, P.; Ambrosio, M.R.; Polom, K.; Marano, L.; Spagnoli, L.; Ongaro, A.; et al. Preoperative Oral Immunonutrition in Gastrointestinal Surgical Patients: How the Tumour Microenvironment Can Be Modified. Clin. Nutr. ESPEN 2020, 40, 153–159. DOI: 10.1016/j.clnesp.2020.05.012
DOI: https://doi.org/10.1016/j.clnesp.2020.05.012