1. Elmagd, M. A. Common sports injuries. Int. J. Phys. Educ. Sports Health. 2016, 3 (5), 142-148.
2. Rahim, S.; Rahim, F.; Shirbandi, K.; Haghighi, B. B.; Arjmand, B. Sports Injuries: Diagnosis Prevention Stem Cell Therapy and Medical Sport Strategy. Tissue Eng. Regen. Med. 2018, 1084, 129–144. DOI: 10.1007/5584_2018_298
3. Finnoff, J.; Awan, T.; Borg-Stein, J.; Harmon, K.; Herman, D.; Malanga, G.; Master, Z.; Mautner, K.; Shapiro, S. American Medical Society for Sports Medicine Position Statement: Principles for the Responsible Use of Regenerative Medicine in Sports Medicine. Clin. J. Sport Med. 2021, 31 (6), 530-541. DOI: 10.1097/JSM.0000000000000973
4. Moradi, S. Z.; Jalili, F.; Hoseinkhani, Z.; Mansouri, K. Regenerative Medicine and Angiogenesis; Focused on Cardiovascular Disease. Adv. Pharm. Bull. 2022, 12 (4), 686-699. DOI: 10.34172/apb.2022.072
5. Trohatou, O.; Roubelakis, M. G. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Past Present and Future. Cell Reprogram. 2017, 19 (4), 217-224. DOI: 10.1089/cell.2016.0062
6. Ángel, M. G.; Pedroza-Gonzalez, A.; Romo, G.; Stella, G.; Alvarez, M.; Olimpia, K.; Aparicio, H.; Aram, A. Advances in the Therapeutic Use of Mesenchymal Stromal Cells in Regenerative Medicine. Int. J. Educ. & Sci. Methods 2023, 11 (9), 542-549.
7. Yu, H.; Habibi, M.; Motamedi, K.; Semirumi, D. T.; Ghorbani, A. Utilizing stem cells in reconstructive treatments for sports injuries: An innovative approach. Tissue Cell. 2023, 83, Art. No: 102152. DOI: 10.1016/j.tice.2023.102152
8. Zumwalt, M.; Reddy, A. P. Stem Cells for Treatment of Musculoskeletal Conditions - Orthopaedic/Sports Medicine Applications. BBA - Mol. Basis Dis. 2020, 1866 (4), Art. No: 165624. DOI: 10.1016/j.bbadis.2019.165624
9. Ning, C.; Li, M.; Ge, L. The preventive effect of PNF stretching exercise on sports injuries in physical education based on IoT data monitoring. Prev. Med. 2023, 173, Art. No: 107591. DOI: 10.1016/j.ypmed.2023.107591
10. Cui, J.; Du, H.; Wu, X. Data analysis of physical recovery and injury prevention in sports teaching based on wearable devices. Prev. Med. 2023, 173, Art. No: 107589. DOI: 10.1016/j.ypmed.2023.107589
11. Kwon, J.; Jang, J. Factors Influencing Injury Severity and Frequency among Korean Sports Participants in Their 20s and 30s. Healthcare 2024, 12, Art. No: 664. DOI: 10.3390/healthcare12060664
12. Trebinjac, S.; Gharairi, M. Mesenchymal Stem Cells for Treatment of Tendon and Ligament Injuries-Clinical Evidence. Med. Arch. 2020, 74 (5), 387-390. DOI: 10.5455/medarh.2020.74.387-390
13. Liu, H.; Ding, H.; Xuan, J.; Gao, X.; Huang, X. The functional movement screen predicts sports injuries in Chinese college students at different levels of physical activity and sports performance. Heliyon 2023, 9 (6), Art. No: e16454. DOI: 10.1016/j.heliyon.2023.e16454
14. Sommerfield, L. M.; Harrison, C. B.; Whatman, C. S.; Maulder, P. S. A prospective study of sport injuries in youth females. Phys. Ther. Sport. 2020, 44, 24-32. DOI: 10.1016/j.ptsp.2020.04.005
15. Sharma, S.; Killedar, R.; Bagewadi, D.; Shindhe, P. Protocol based management of common sports injuries by integrated approach of Sandhi Marmabhighata - An open labeled clinical trial. J. Ayurveda Integr. Med. 2021, 12 (1), 119-125. DOI: 10.1016/j.jaim.2020.12.009
16. Beelen, P. E.; van Dieën, J. H.; Prins, M. R.; Nolte, P. A.; Kingma, I. The effect of cryotherapy on postural stabilization assessed by standardized horizontal perturbations of a movable platform. Gait Posture 2022, 94, 32-38. DOI: 10.1016/j.gaitpost.2022.02.022
17. Pannone, E.; Abbott, R. What is known about the health effects of non-steroidal anti-inflammatory drug (NSAID) use in marathon and ultra-endurance running: a scoping review. BMJ Open Sport Exerc. Med. 2024, 10, Art. No: e001846. DOI: 10.1136/bmjsem-2023-001846
18. Vaish, A.; Vaishya, R. Stem cells in orthopaedics and sports injuries: A comprehensive review and future research directions. J. Orthop. Case Rep. 2024, 3 (4), Art. No: 100344. DOI: 10.1016/j.jorep.2024.100344
19. Costa, J. B.; Pereira, H.; Espregueira-Mendes, J.; Khang, G.; Oliveira, J. M.; Reis, R. L. Tissue engineering in orthopaedic sports medicine: current concepts. J. ISAKOS. 2017, 2 (2), 60-66. DOI: 10.1136/jisakos-2016-000080
20. Adel, M.; Keyhanvar, P.; Zare, I.; Tavangari, Z.; Akbarzadeh, A.; Zahmatkeshan, M. Nanodiamonds for tissue engineering and regeneration. J. Drug Deliv. Sci. Technol. 2023, 90, Art. No: 105130. DOI: 10.1016/j.jddst.2023.105130
21. Sharma, P.; Kumar, P.; Sharma, R.; Bhatt, V. D.; Dhot, P. S. Tissue Engineering; Current Status & Futuristic Scope. J. Med. Life 2019, 12 (3), 225-229. DOI: 10.25122/jml-2019-0032
22. Pasculli, R. M.; Kenyon, C. D.; Berrigan, W. A.; Mautner, K.; Hammond, K.; Jayaram, P. Mesenchymal stem cells for subchondral bone marrow lesions: From bench to bedside. Bone Rep. 2022, 17, Art. No: 101630. DOI: 10.1016/j.bonr.2022.101630
23. Viganò, M.; Sansone, V.; d’Agostino, M. C.; Romeo, P.; Orfei, C. P.; Girolamo, L. D. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. J. Orthop. Surg. Res. 2016, 11, Art. No: 163. DOI: 10.1186/s13018-016-0496-5
24. Joujeh, D.; Ghrewaty, A.; Soukkarieh, C.; Almarrawi, A. An optimized protocol for mouse bone marrow mesenchymal stromal cells isolation and culture. Cell Ther. Transplant. 2021, 10 (3-4), 61-70. DOI: 10.18620/ctt-1866-8836-2021-10-3-4-61-70
25. Kouchakian, M. R.; Baghban, N.; Moniri, S. F.; Baghban, M.; Bakhshalizadeh, S.; Najafzadeh, V.; Safaei, Z.; Izanlou, S.; Khoradmehr, A.; Nabipour, I.; Shirazi, R. The Clinical Trials of Mesenchymal Stromal Cells Therapy. Stem Cells Int. 2021, 3, Art. No: 1634782. DOI: 10.1155/2021/1634782
26. Choudhery, M.S.; Mahmood, R.; Harris, D.T.; Ahmad, F.J. Minimum criteria for defining induced mesenchymal stem cells. Cell Biol. Int. 2022, 46(6), 986-989. doi: 10.1002/cbin.11790
27. Malekpour, K.; Hazrati, A.; Zahar, M.; Markov, A.; Zekiy, A. O.; Navashenaq, G.; Roshangar, L.; Ahmadi, M. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes for Orthopedic Diseases Treatment. Stem Cell Rev. Rep. 2022, 18, 933–951. DOI: 10.1007/s12015-021-10185-z
28. Bhat, S.; Viswanathan, P.; Chandanala, S.; Prasanna, S. J.; Seetharam, R. N. Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci. Rep. 2021, 11 (1), Art. No: 3403. DOI: 10.1038/s41598-021-83088-1
29. Li, X.; Guan, Y.; Li, C.; Zhang, T.; Meng, F.; Zhang, J.; Li, J.; Chen, S.; Wang, Q.; Wang, Y.; Peng, J.; Tang, J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res. Ther. 2022, 13(1), Art. No: 18. DOI: 10.1186/s13287-021-02690-2
30. Mannino, G.; Russo, C.; Longo, A.; Anfuso, C. D.; Lupo, G.; Furno, D. L.; Giuffrida, R.; Giurdanella, G. Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World J. Stem Cells. 2021, 13 (6), 632-644. DOI: 10.4252/wjsc. v13.i6.632
31. Bruna, F.; Contador, D.; Conget, P.; Erranz, B.; Sossa, C. L.; Arango-Rodríguez, M. L. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes. Stem Cells Int. 2016, 2016, Art. No: 1461648. DOI: 10.1155/2016/1461648
32. Joujeh, D.; Ghrewaty, J.; Almarrawi, A.; Soukkarieh, C.; Darwicha, J. A. Therapeutic potential of conditioned medium derived from bone marrow mesenchymal stromal cells cocultured with hepatocytes in alleviation of CCl4-induced liver damage in mice. Cell Ther. Transplant. 2022, 11 (2), 84-92. DOI: 10.18620/ctt-1866-8836-2022-11-2-84-92
33. Mabotuwana, S.; Rech, L.; Lim, J.; Hardy, J.; Murtha, L.; Peter, P.; Rainer, P.; Boyle, A. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and their Effects in Cardiovascular Disease: A Systematic Review of Pre-Clinical Studies. Stem Cell Rev. Rep. 2022, 18, 2606–2628. DOI: 10.1007/s12015-022-10429-6
34. Sandonà, M.; Pietro, L. D.; Esposito, F.; Ventura, A.; Silini, A. R.; Parolini, O.; Saccone, V. Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. Front. Bioeng. Biotechnol. 2021, 9, Art. No: 652970. DOI: 10.3389/fbioe.2021.652970
35. Giacomini, C.; Granéli, C.; Hicks, R.; Dazzi, F. The critical role of apoptosis in mesenchymal stromal cell therapeutics and implications in homeostasis and normal tissue repair. Cell. Mol. Immunol. 2023, 20, 570–582. DOI:10.1038/s41423-023-01018-9
36. Kurte M.; Vega-Letter A.M.; Luz-Crawford P.; Djouad F.; Noël D.; Khoury M.; Carrión F.Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE. Stem Cell Res. Ther. 2020, 11, Art. No: 416. DOI: 10.1186/s13287-020-01840-2
37. Gao F.; Chiu S.; Motan D.; Zhang Z.; Chen L.; Ji H.; Fu Q.; Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016, 7, Art. No: e2062. DOI: 10.1038/cddis.2015.327
38. Hladkykh, F. Mesenchymal Stem Cells: Exosomes and Conditioned Media as Innovative Strategies in the Treatment of Patients with Autoimmune Diseases. Biomed. Res. Int. 2023, 6, 121-130. DOI: 10.31612/2616-4868.6.2023.15
39. Zeng, Q. L.; Liu, D. W. Mesenchymal stem cell-derived exosomes: An emerging therapeutic strategy for normal and chronic wound healing. World J. Clin. Cases 2021, 9 (22), 6218-6233. DOI: 10.12998/wjcc. v9. i22.6218
40. Tan, X.; Xiao, H.; Yan, A.; Li, M.; Wang, L. Effect of Exosomes from Bone Marrow–Derived Mesenchymal Stromal Cells and Adipose-Derived Stromal Cells on Bone-Tendon Healing in a Murine Rotator Cuff Injury Model. Orthop. J. Sports Med. 2024, 12 (1), Art. No: 23259671231210304. DOI: 10.1177/23259671231210304
41. Smolinská, V.; Bohac, M.; Danišovič, L. Current Status of the Applications of Conditioned Media Derived from Mesenchymal Stem Cells for Regenerative Medicine. Physiol. Res. 2023, 72 (S3), S233-S245. DOI: 10.33549/physiolres.935186
42. Szabłowska-Gadomska, I.; Rudzinski, S.; Dymowska, M. Secretome of Mesenchymal Stromal Cells as a Possible Innovative Therapeutic Tool in Facial Nerve Injury Treatment. Biomed. Res. Int. 2023, 2, 1-7. DOI: 10.1155/2023/8427200
43. Teixeira, F.; Salgado, A. Mesenchymal stem cells secretome: current trends and future challenges. Neural Regen. Res. 2020, 15 (1), 75-77. DOI: 10.4103/1673-5374.264455
44. Sandonà, M.; Di Pietro, L.; Esposito, F.; Ventura, A.; Silini, A. R.; Parolini, O.; & Saccone, V. Mesenchymal stromal cells and their secretome: new therapeutic perspectives for skeletal muscle regeneration. Front. Bioeng. Biotechnol. 2021, 9, Art. No: 652970. DOI: 10.3389/fbioe.2021.652970
45. Li, Q.; Zhang, F.; Fu, X.; & Han, N. Therapeutic potential of mesenchymal stem cell-derived exosomes as nanomedicine for peripheral nerve injury. Int. J. Mol. Sci. 2024, 25(14), Art. No: 7882. Doi.org/10.3390/ijms25147882.
46. Welsh, J. A.; Goberdhan, D. C.; O'Driscoll, L.; Buzas, E. I.; Blenkiron, C.; Bussolati, B.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13(2), Art. No: e12404. Doi: 10.1002/jev2.12404.
47. Khan, T.; Khan, T.; Khan, W. S.; Malik, A. A. Clinical Application of Stem Cells to Include Muscle Bone and Tendon Pathology. Bone Cartilage Regen. 2017, 2, 77–87. DOI: 10.1007/978-3-319-40144-7_4
48. von Roth, P.; Duda, G.; Radojewski, P.; Preininger, B.; Perka, C.; Winkler, T. Mesenchymal Stem Cell Therapy Following Muscle Trauma Leads to Improved Muscular Regeneration in Both Male and Female Rats. Gender Med. 2012, 9 (2), 129-136. DOI: 10.1016/j.genm.2012.01.007
49. Quertainmont, R.; Cantinieaux, D.; Botman, O.; Sid, S.; Schoenen, J.; Franzen, R. Mesenchymal Stem Cell Graft Improves Recovery after Spinal Cord Injury in Adult Rats through Neurotrophic and Pro-Angiogenic Actions. PLoS ONE 2012, 7 (6), Art. No: e39500. DOI: 10.1371/journal.pone.0039500
50. Matthes, S.; Reimers, K.; Janssen, I.; Liebsch, C.; Kocsis, J.; Vogt, P.; Radtke, C. Intravenous Transplantation of Mesenchymal Stromal Cells to Enhance Peripheral Nerve Regeneration. Biomed. Res. Int. 2013, 2013, Art. No: 573169. DOI: 10.1155/2013/573169
51. von Roth, P.; Winkler, T.; Rechenbach, K.; Radojewski, P.; Perka, C.; Duda, G. N. Improvement of Contraction Force in Injured Skeletal Muscle after Autologous Mesenchymal Stroma Cell Transplantation Is Accompanied by Slow to Fast Fiber Type Shift. Transfus. Med. Hemother. 2013, 40 (6), 425–430. DOI: 10.1159/000354127
52. Kamel, N. S.; Arafa, M. M.; Nadim, A.; Amer, A.; Amin, I. R.; Samir, N.; Salem, A. Effect of intra-articular injection of mesenchymal stem cells in cartilage repair in experimental animals. Egyptian Rheumatologist 2014, 36 (4), 179-186. DOI: 10.1016/j.ejr.2014.03.001
53. Lee, S. Y.; Kim, W.; Lim, C.; Chung, S. G. Treatment of Lateral Epicondylosis by Using Allogeneic Adipose-Derived Mesenchymal Stem Cells: A Pilot Study. Stem Cells 2015, 33 (10), 2995–3005. DOI: 10.1002/stem.2110
54. Chamberlain, C. S.; Saether, E. E.; Aktas, E.; Vanderby, R. Mesenchymal Stem Cell Therapy on Tendon/Ligament Healing. J. Cytokine Biol. 2017, 2 (1), Art. No: 112. DOI: 10.4172/2576-3881.1000112
55. Brickson, S.; Meyer, P.; Saether, E.; Vanderby, R. Mesenchymal Stem Cells Improve Muscle Function Following Single Stretch Injury: A Preliminary Study. J. Funct. Morphol. Kinesiol. 2016, 1 (4), 396-406. DOI: 10.3390/jfmk1040396
56. Feng, C.; Luo, X.; He, N.; Xia, H.; Lv, X.; Zhang, X.; Li, D.; Wang, F.; He, J.; Zhang, L.; Lin, X.; Lin, L.; Yin, H.; He, J.; Wang, J.; Cao, W.; Wang, R.; Zhou, G.; Wang, W. Efficacy and Persistence of Allogeneic Adipose-Derived Mesenchymal Stem Cells Combined with Hyaluronic Acid in Osteoarthritis After Intra-Articular Injection in a Sheep Model. Tissue Eng. Part A. 2018, 24 (3-4), 219-233. DOI: 10.1089/ten.tea.2017.0039
57. Jo, C. H.; Won, Chai, J.; Jeong, E. C.; Oh, S.; Kim, P. S.; Yoon, J. Y.; Yoon, K. S. Intratendinous Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Rotator Cuff Disease: A First-In-Human Trial. Stem Cells 2018, 36 (9), 1441–1450. DOI: 10.1002/stem.2855
58. Lee, Y. C.; Chan, Y. H.; Hsieh, S. C.; Lew, W. Z.; Feng, S. W. Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model. Int. J. Mol. Sci. 2019, 20 (20), Art. No: 5015. DOI: 10.3390/ijms20205015
59. Khoury, M.; Tabben, M.; Rolón, A. U.; Levi, L.; Chamari, K.; D’Hooghe, P. Promising improvement of chronic lateral elbow tendinopathy by using adipose derived mesenchymal stromal cells: a pilot study. J. Exp. Orthop. 2021, 8(1), Art. No: 6. DOI: 10.1186/s40634-020-00320-z
60. Chang, Y.; Ding, D.; Wu, K. Human Umbilical Mesenchymal Stromal Cells Mixed with Hyaluronan Transplantation Decreased Cartilage Destruction in a Rabbit Osteoarthritis Model. Stem Cells Int. 2021, 2021, Art. No: 2989054. DOI: 10.1155/2021/2989054
61. Boulos, A. N.; El-Agawany, A. M.; Awwad, A. E.; Fouad, G. M.; Abd El-Rahman, A. G. The Effect of Bone Marrow Mesenchymal Stem Cells on Experimentally-Induced Gastrocnemius Muscle Injury in Female Albino Rats. Egypt. J. Histol. 2021, 44 (1), 218-235. DOI: 10.21608/ejh.2020.24878.1257
62. Hirota, R.; Sasaki, M.; Kataoka-Sasaki, Y.; Oshigiri, T.; Kurihara, K.; Fukushi, R.; Oka, S.; Ukai, R.; Yoshimoto, M.; Kocsis, J. D.; Yamashita, T.; Honmou, O. Enhanced Network in Corticospinal Tracts after Infused Mesenchymal Stem Cells in Spinal Cord Injury. J. Neurotrauma 2022, 39 (23-24), 1665-1677. DOI: 10.1089/neu.2022.0106
63. Shosha, A. I.; Tawfik, S. M.; Laag, E. M.; Elshal, A. O. Histological Study of the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Experimentally Induced Skeletal Muscle Injury in Adult Male Albino Rats. Egypt. J. Histol. 2023, 46(3), 1483-1493. DOI: 10.21608/EJH.2022.139384.1688
64. Chen, J.; Zhu, Y.; Gao, H.; Chen, X.; Yi, D.; Li, M.; Wang, L.; Xing, G.; Chen, S.; Tang, J.; Wang, Y. HucMSCs Delay Muscle Atrophy After Peripheral Nerve Injury Through Exosomes by Repressing Muscle-Specific Ubiquitin Ligases. Stem Cells 2024, 42(5), 460–474. DOI: 10.1093/stmcls/sxae017
65. Yuan, Z.; Yu, D.; Wang, Y.; Liu, L.; Wang, J.; Ma, C.; Wu, S. Early Delivery of Human Umbilical Cord Mesenchymal Stem Cells Improves Healing in a Rat Model of Achilles Tendinopathy. Regen. Med. 2023, 19(2), 93–102. DOI: 10.2217/rme-2023-0222
66. Chamberlain, C. S.; Prabahar, A.; Kink, J. A.; Mueller, E.; Li, Y.; Yopp, S.; Capitini, C. M.; Hematti, P.; Murphy, W.; Vanderby, R.; Jiang, P. Modulating the Mesenchymal Stromal Cell Microenvironment Alters Exosome RNA Content and Ligament Healing Capacity. Stem Cells 2024, 42(7), 636-649. DOI: 10.1093/stmcls/sxae028
67. Rhatomy, S.; Pawitan, J. A.; Kurniawati, T.; Fiolin, J.; Dilogo, I. H. Allogeneic Umbilical Cord Mesenchymal Stem Cell Conditioned Medium (Secretome) for Treating Posterior Cruciate Ligament Rupture: A Prospective Single-Arm Study. Eur. J. Orthop. Surg. Traumatol. 2023, 33(3), 669-675. DOI: 10.1007/s00590-022-03278-z
68. Cai, J.; Xu, J.; Ye, Z.; Wang, L.; Zheng, T.; Zhang, T.; Li, Y.; Jiang, J.; Zhao, J. Exosomes Derived from Kartogenin-Preconditioned Mesenchymal Stem Cells Promote Cartilage Formation and Collagen Maturation for Enthesis Regeneration in a Rat Model of Chronic Rotator Cuff Tear. Am. J. Sports Med. 2023, 51(5), 1267-1276. DOI: 10.1177/03635465231155927
69. Gionet-Gonzales, M.; Gresham, R.; Griffin, K.; Casella, A.; Wohlgemuth, R.; Ramos-Rodriguez, D.; Lowen, J.; Smith, L. Mesenchymal Stromal Cell Spheroids in Sulfated Alginate Enhance Muscle Regeneration. Acta Biomaterialia 2023, 155(1), 271-281. DOI: 10.1016/j.actbio.2022.10.054
70. Shen, H.; Lane, R. A. Extracellular Vesicles from Primed Adipose-Derived Stem Cells Enhance Achilles Tendon Repair by Reducing Inflammation and Promoting Intrinsic Healing. Stem Cells 2023, 41(6), 617–627. DOI: 10.1093/stmcls/sxad032
71. Zhu, Z.; Gao, R.; Ye, T.; Feng, K.; Zhang, J.; Chen, Y.; Xie, Z.; Wang, Y. The Therapeutic Effect of iMSC-Derived Small Extracellular Vesicles on Tendinopathy Related Pain Through Alleviating Inflammation: An in vivo and in vitro Study. J. Inflamm. Res. 2022, 15, 1421-1436. DOI: 10.2147/JIR.S345517
72. Luo, Z.; Sun, Y.; Qi, B.; Lin, J.; Chen, Y.; Xu, Y.; Chen, J. Human Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Inhibit Shoulder Stiffness via let-7a/Tgfbr1 Axis. Bioact. Mater. 2022, 17, 344-359. DOI: 10.1016/j.bioactmat.2022.01.016
73. Wu, X.; Kang, L.; Tian, J.; Wu, Y.; Huang, Y.; Liu, J.; Wang, H.; Qiu, G.; Wu, Z. Exosomes Derived from Magnetically Actuated Bone Mesenchymal Stem Cells Promote Tendon-Bone Healing Through the miR-21-5p/SMAD7 Pathway. Materials Today Bio. 2022, 15, Art. No: 100319. DOI: 10.1016/j.mtbio.2022.100319
74. Zhang, T.; Yan, S.; Song, Y.; Chen, C.; Xu, D.; Lu, B.; Xu, Y. Exosomes Secreted by Hypoxia-Stimulated Bone-Marrow Mesenchymal Stem Cells Promote Grafted Tendon-Bone Tunnel Healing in Rat Anterior Cruciate Ligament Reconstruction Model. J. Orthop. Translat. 2022, 36, 152-163. DOI: 10.1016/j.jot.2022.08.001
75. Hede, K.; Christensen, B.; Olesen, M.; Thomsen, J.; Foldager, C.; Toh, W.; Lim, S.; Lind, M. Mesenchymal Stem Cell Extracellular Vesicles as Adjuvant to Bone Marrow Stimulation in Chondral Defect Repair in a Minipig Model. CARTILAGE 2021, 13(2), 254S-266S. DOI: 10.1177/19476035211029707
76. Huang, Y.; He, B.; Wang, L.; Yuan, B.; Shu, H.; Zhang, F.; Sun, L. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res. Ther. 2020,11, Art. No: 496. DOI: 10.1186/s13287-020-02005-x
77. Shi, Z.; Wang, Q.; Jiang, D. Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing. J. Transl. Med. 2019, 17, Art. No: 211. DOI: 10.1186/s12967-019-1960-x
78. Mitchell, R.; Mellows, B.; Sheard, J.; Antonioli, M.; Kretz, O.; Chambers, D.; Zeuner, M.; Tomkins, J. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res. Ther. 2019, 10, Art. No: 116. DOI: 10.1186/s13287-019-1213-1
79. Kornicka-Garbowska, K.; Pędziwiatr, R.; Woźniak, P.; Kucharczyk, K.; Marycz, K. Microvesicles isolated from 5-azacytidine-and-resveratrol-treated mesenchymal stem cells for the treatment of suspensory ligament injury in horse—a case report. Stem Cell Res. Ther. 2019, 10, Art. No: 394. DOI: 10.1186/s13287-019-1469-5
80. Mao, G.; Zhang, Z.; Hu, S.; Zhang, Z.; Chang, Z.; Huang, Z.; Liao, W.; Kang, Y. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res. Ther. 2018, 9, Art. No: 247. DOI: 10.1186/s13287-018-1004-0
81. Wang, Y.; Yu, D.; Liu, Z.; Zhou, F.; Dai, J.; Wu, B.; Zhou, J.; Heng, B.; Zou, x.; Ouyang, H.; Liu, H. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. Ther. 2017, 8, Art. No: 189. DOI: 10.1186/s13287-017-0632-0
82. Zhang, S.; Chu, WC.; Lai, RC.; Lim, SK.; Hui, JH.; Toh, WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. OARSI 2016, 24(12), P2135-2140. DOI: 10.1016/j.joca.2016.06.022
83. Xu, S.; Liu, H.; Xie, Y.; Sang, L.; Liu, J.; Chen, B. Effect of mesenchymal stromal cells for articular cartilage degeneration treatment: A meta-analysis. Cytotherapy 2015, 17(10), 1342-1352. DOI: 10.1016/j.jcyt.2015.05.005
84. Wang, Y.; Chu, W.; Zhai, J.; Wang, W.; He, Z.; Zhao, Q.; Li, C. High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells. World J. Stem Cells 2024, 16(2), 176-190. DOI: 10.4252/wjsc. v16.i2.176
85. Berounský, K.; Vackova, I.; Vištejnová, L.; Malečková, A.; Havránková, J.; Klein, P.; Kolinko, Y.; Petrenko, Y.; Prazak, S.; Hanák, F.; Přidal, J.; Havlas, V. Autologous Mesenchymal Stromal Cells Immobilized in Plasma-Based Hydrogel for the Repair of Articular Cartilage Defects in a Large Animal Model. Physiol. Bohemoslov. 2023, 72(4), 485-495. DOI: 10.33549/physiolres.935098
86. Xu, T.; Yu, X.; Xu, K.; Lin, Y.; Wang, J.; Pan, Z.; Fang, J.; Wang, S.; Zhou, Z, Song, H.; Zhu, S.; Dai, X. Comparison of the ability of exosomes and ectosomes derived from adipose-derived stromal cells to promote cartilage regeneration in a rat osteochondral defect model. Stem Cell Res. 2024, 15(1), Art. No: 18. DOI: 10.1186/s13287-024-03632-4
87. Wen, S.; Huang, X.; Ma, J.; Zhao, G.; Ma, T.; Chen, K.; Huang, G.; Jie, C.; Shi, J.; Wang, S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front. Biol. 2024, 12, Art. No: 1331218. DOI: 10.3389/fbioe.2024.1331218
88. Amoako, A. O.; Pujalte, G. G. Osteoarthritis in young, active, and athletic individuals. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2014, 7, 27-32. doi: 10.4137/CMAMD.S14386
89. Carbone, A.; Rodeo, S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. J. Orthop. Res. 2016, 35(3), 397-405. DOI: 10.1002/jor.23341
90. Mussin, N.; Tamadon, A.; Kaliyev, A. Unlocking the Potential: The Importance of Mesenchymal Stem Cell Therapy for Knee Osteoarthritis. West Kaz.med. j. 2024, 66(1), 1 – 5. DOI: 10.18502/wkmj. v66i1.15598
91. Bao, C.; He, C. The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch. Biochem. 2021, 710, Art. No: 109002. DOI: 10.1016/j.abb.2021.109002
92. Carneiro, D. C.; Araújo, L. T.; Santos, G. C.; Damasceno, P. K. F.; Vieira, J. L.; Santos, R. R. D.; Barbosa, J. D. V.; Soares, M. B. P. Clinical Trials with Mesenchymal Stem Cell Therapies for Osteoarthritis: Challenges in the Regeneration of Articular Cartilage. Int. J. Mol. Sci. 2023, 24(12), Art. No: 9939. DOI: 10.3390/ijms24129939
93. DiIorio, S. E.; Young, B.; Parker, J. B.; Griffin, M. F.; Longaker, M. T. Understanding Tendon Fibroblast Biology and Heterogeneity. Biomedicines 2024, 12(4), Art. No: 859. DOI: 10.3390/biomedicines12040859
94. Burk, J. Mechanisms of Action of Multipotent Mesenchymal Stromal Cells in Tendon Disease. 2019, DOI: 10.5772/intechopen.83745
95. Koch, D.; Schnabel, L. Mesenchymal stem cell licensing: enhancing MSC function as a translational approach for the treatment of tendon injury. Am. J. Vet. Res. 2023, 84(10), 1-8. DOI: 10.2460/ajvr.23.07.0154
96. Tan, X.; Xiao, H.; Yan, A.; Li, M.; Wang, L. Effect of Exosomes from Bone Marrow–Derived Mesenchymal Stromal Cells and Adipose-Derived Stromal Cells on Bone-Tendon Healing in a Murine Rotator Cuff Injury Model. Orthop. J. Sports Med. 2024, 12(1), Art. No: 23259671231210304. DOI: 10.1177/23259671231210304
97. Volkova, N. Comparative study of the effect of bFGF and plasma rich in growth factors on cryopreserved multipotent mesenchymal stromal cells from bone marrow and tendon of rats. Cell Transplant. 2017, 5(2),170-175. DOI: 10.22494/cot.v5i2.75
98. Melzer, M.; Schubert, S.; Müller, S.; Geyer, J.; Hagen, A.; Niebert, S.; Burk, J. Rho/ROCK Inhibition Promotes TGF-β3-Induced Tenogenic Differentiation in Mesenchymal Stromal Cells. Stem Cells Int. 2021, 2021, Art. No: 8284690. DOI: 10.1155/2021/8284690
99. Liu, H.; Zhang, M.; Shi, M.; Zhang, T.; Lu, W.; Yang, S.; Cui, Q.; Li, Z. Adipose-derived mesenchymal stromal cell-derived exosomes promote tendon healing by activating both SMAD1/5/9 and SMAD2/3. Stem Cell Res. Ther. 2021, 12(1), Art. No: 338. DOI: 10.1186/s13287-021-02410-w
100. Quintero, D.; Orfei, C.; Kaplan, L.; Girolamo, L.; Best, T.; Kouroupis, D. The roles and therapeutic potentialof mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front. Bioeng. Biotechnol. 2023, 11, Art. No: 1040762. DOI: 10.3389/fbioe.2023.1040762
101. M'Cloud, W.; Guzmán, K.; Panek, C.; Colbath, A. Stem cells and platelet-rich plasma for the treatment of naturally occurring equine tendon and ligament injuries: a systematic review and meta-analysis. Am. J. Vet. Med. Res. 2024, 262(S1), S50-S60. DOI: 10.2460/javma.23.12.0723
102. Bi, F.; Chen, Y.; Liu, J.; Hu, W.; Tian, K. Bone Mesenchymal Stem Cells Contribute to Ligament Regeneration and Graft–Bone Healing after Anterior Cruciate Ligament Reconstruction with Silk–Collagen Scaffold. Stem Cells Int. 2021, 2021, Art. No: 6697969. DOI: 10.1155/2021/6697969
103. Moon, S. W.; Park, S.; Oh, M.; Wang, J. H. Outcomes of human umbilical cord blood-derived mesenchymal stem cells in enhancing tendon-graft healing in anterior cruciate ligament reconstruction: an exploratory study. Knee Surg. Relat. Res. 2021, 33(1), Art. No: 32. DOI: 10.1186/s43019-021-00104-4
104. Jang, K.; Lim, H.; Hoon, B. Mesenchymal Stem Cells for Enhancing Biologic Healing after Anterior Cruciate Ligament Injuries. Curr. Stem. Cell Res. Ther. 2015, 10(6), 535-547. DOI: 10.2174/1574888x10666150528153025
105. Lui, P.; Leung, L. Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022, 14(8), Art. No: 1684. DOI: 10.3390/pharmaceutics14081684
106. Zhou T.; Yuan Z.; Weng J.; Pei D.; Du X.; He C.; Lai, P. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 2021, 14, 1-24.
107. Tsai A.C.; Jeske R.; Chen X.; Yuan X.; Li Y. Influence of microenvironment on mesenchymal stem cell therapeutic potency: from planar culture to microcarriers. Front. Bioeng. Biotechnol. 2020, 8, Art. No: 640. DOI: 10.3389/fbioe.2020.00640.
108. Rodas, G.; Soler-Rich, R.; Rius-Tarruella, J.; Alomar, X.; Balius, R.; Orozco, L.; Masci, L.; Maffulli, N. Effect of Autologous Expanded Bone Marrow Mesenchymal Stem Cells or Leukocyte-Poor Platelet-Rich Plasma in Chronic Patellar Tendinopathy (With Gap >3 mm): Preliminary Outcomes After 6 Months of a Double-Blind, Randomized, Prospective Study. Am. J. Sports Med. 2021, 49(6), 1492-1504. DOI: 10.1177/0363546521998725
109. Chun, S. W.; Kim, W.; Lee, S. Y.; Lim, C. Y.; Kim, K.; Kim, J. G.; Park, C. H.; Hong, S. H.; Yoo, H. J.; Chung, S. G. A randomized controlled trial of stem cell injection for tendon tear. Sci Rep. 2022, 12(1), Art. No: 818. DOI: 10.1038/s41598-021-04656-z
110. Lee, D. H.; Park, K. S.; Shin, H. E.; Kim, S. B.; Choi, H.; An, S. B.; Choi, H.; Kim, J. P.; Han, I. Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial. Int. J. Mol. Sci. 2023, 24(23), Art. No: 16827. DOI: 10.3390/ijms242316827
111. Kumar, H.; Ha, D. H.; Lee, E.J.; Park, J. H.; Shim, J. H.; Ahn, T. K.; Kim, K. T.; Ropper, A. E. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res. Ther. 2017, 8(1), Art. No: 262. DOI: 10.1186/s13287-017-0710-3
112. Kim, J. H.; Kim, K. I.; Yoon, W. K.; Song, S. J.; Jin, W. Intra-articular Injection of Mesenchymal Stem Cells After High Tibial Osteotomy in Osteoarthritic Knee: Two-Year Follow-up of Randomized Control Trial. Stem Cells Transl. Med. 2022, 11(6), 572-585. DOI: 10.1093/stcltm/szac023
113. Kim, K. I.; Lee, M. C.; Lee, J. H.; Moon, Y. W.; Lee, W. S.; Lee, H. J.; Hwang, S. C.; In, Y.; Shon, O. J.; Bae, K. C.; Song, S. J.; Park, K. K.; Kim, J. H. Clinical Efficacy and Safety of the Intra-Articular Injection of Autologous Adipose-Derived Mesenchymal Stem Cells for Knee Osteoarthritis: A Phase III, Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Sports Med. 2023, 51(9), 2243-2253. DOI: 10.1177/03635465231179223
114. Sadri, B.; Hassanzadeh, M.; Bagherifard, A.; Mohammadi, J.; Alikhani, M.; Moeinabadi-Bidgoli, K.; Madani, H.; Diaz-Solano, D.; Karimi, S. Cartilage regeneration and inflammation modulation in knee osteoarthritis following injection of allogeneic adipose-derived mesenchymal stromal cells: a phase II, triple-blinded, placebo controlled, randomized trial. Stem Cell Res. Ther. 2023, 14(1), Art. No: 162. DOI: 10.1186/s13287-023-03359-8
115. Matas, J.; Orrego, M.; Amenabar, D.; Infante, C.; Tapia-Limonchi, R.; Cadiz, M. I.; Alcayaga-Miranda, F.; González, P. L. Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial. Stem Cells Transl. Med. 2019, 8(3), 215–224. DOI: 10.1002/sctm.18-0053
116. Gupta, P. K.; Chullikana, A.; Rengasamy, M.; Shetty, N.; Pandey, V.; Agarwal, V.; Wagh, S. Y.; Vellotare, P. K. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res.Ther. 2016, 18, Art. No: 301. DOI: 10.1186/s13075-016-1195-7
117. Freitag, J.; Bates, D.; Wickham, J.; Shah, K.; Huguenin, L.; Tenen, A.; Paterson, K.; Boyd, R. Adipose-Derived Mesenchymal Stem Cell Therapy in the Treatment of Knee Osteoarthritis: A Randomized Controlled Trial. Regen. Med. 2019, 14(3), 213–230. DOI: 10.2217/rme-2018-0161
118. Lamo-Espinosa, J. M.; Blanco, J. F.; Sánchez, M.; Moreno, V.; Granero-Moltó, F.; Sánchez-Guijo, F.; Crespo-Cullel, I.; Mora, G. Phase II multicenter randomized controlled clinical trial on the efficacy of intra-articular injection of autologous bone marrow mesenchymal stem cells with platelet rich plasma for the treatment of knee osteoarthritis. J. Transl. Med. 2020, 18(1), Art. No: 356. DOI: 10.1186/s12967-020-02530-6
119. Ho, K. K.; Lee, W. Y.; Griffith, J. F.; Ong, M. T.; Li, G. Randomized control trial of mesenchymal stem cells versus hyaluronic acid in patients with knee osteoarthritis - A Hong Kong pilot study. J. Orthop. Translat. 2022, 37, 69-77. DOI: 10.1016/j.jot.2022.07.012
120. Lim, H-C.; Park, Y-B.; Ha, C-W.; Cole, B. J.; Lee, B. K.; Jeong, H. J.; Kim, M. K.; Bin, S. Allogeneic Umbilical Cord Blood–Derived Mesenchymal Stem Cell Implantation Versus Microfracture for Large, Full-Thickness Cartilage Defects in Older Patients: A Multicenter Randomized Clinical Trial and Extended 5-Year Clinical Follow-up. Orthop. J. Sports Med. 2021, 9(1), Art. No: 2325967120973052. DOI: 10.1177/2325967120973052
121. Hashimoto, Y.; Nishida, Y.; Takahashi, S.; Nakamura, H.; Mera, H.; Kashiwa, K.; Yoshiya, S.; Inagaki, Y. Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: A multicenter prospective randomized control clinical trial. Regen. Ther. 2019, 28(11), 106-113. DOI: 10.1016/j.reth.2019.06.002