1. Aronson, J.K. Lopinavir. In Meyler's Side Effects of Drugs (Sixteenth Edition), Elsevier, 2016; pp. 669-675.
2. Eckhardt, B.J.; Gulick, R.M. Drugs for HIV Infection. In Opal, Infectious Diseases, 4th ed.; Jonathan, C., William, G.; Eds.; Elsevier, 2017: pp.1293-1308.
3. Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M. M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J. Biomol. Struct. Dyn. 2021, 39(7), 2673-2678.
4. Eche, S.; Kumar, A.; Sonela, N.; Gordon, M.L. Acquired HIV-1 protease conformational flexibility associated with lopinavir failure may shape the outcome of darunavir therapy after antiretroviral therapy switch. Biomolecules 2021, 11(4), Art. No: 489. DOI: 10.3390/biom11040489
5. Mahdi, M.; Mótyán, J.A.; Szojka, Z.I.; Golda, M.; Miczi, M.; Tőzsér, J. Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2′ s main protease. Virol. J. 2020, 17(190), 1-8. DOI: 10.1186/s12985-020-01457-0
6. Ghosh, A.K.; Osswald, H.L.; Prato, G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J. Med. Chem. 2016, 59(11), 5172-5208. DOI: 10.1021/acs.jmedchem.5b01697
7. Von der Helm, K. Retroviral proteases: Structure, function and inhibition-from a non-anticipated viral enzyme to the target of a most promising HIV therapy. Biol. Chem. 1996, 377(12), 765-774. DOI: 10.1515/bchm3.1996.377.12.765
8. Ho, W.S.; Zhang, R.; Tan, Y.L.; Chai, C.L. COVID-19 and the promise of small molecule therapeutics: Are there lessons to be learnt? Pharmacol. Res. 2022, 179, Art. No: 106201. DOI: 10.1016/j.phrs.2022.106201
9. Marin, R.C.; Behl, T.; Negrut, N.; Bungau, S. Management of antiretroviral therapy with boosted protease inhibitors—darunavir/ritonavir or darunavir/cobicistat. Biomedicines 2021, 9(3), Art. No: 313. DOI: 10.3390/biomedicines9030313
10. ter Heine, R.; Van Waterschoot, R.A.; Keizer, R.J.; Beijnen, J.H.; Schinkel, A.H.; Huitema, A.D. An integrated pharmacokinetic model for the influence of CYP3A4 expression on the in vivo disposition of lopinavir and its modulation by ritonavir. J. Pharm. Sci. 2011, 100(6), 2508-2515. DOI: 10.1002/jps.22457
11. Kandel, S.E.; Lampe, J.N. Inhibition of CYP3A7 DHEA-S oxidation by lopinavir and ritonavir: an alternative mechanism for adrenal impairment in HIV antiretroviral-treated neonates. Chem. Res. Toxicol. 2021, 34(4), 1150-1160. DOI: 10.1021/acs.chemrestox.1c00028
12. Hul, M.W.; Montaner, J.S. Ritonavir-boosted protease inhibitors in HIV therapy. Ann. Med. 2011, 43(5), 375-388. DOI: 10.3109/07853890.2011.572905
13. Juan, C.; Jiang, X.; Qiang, Z. Side effects and tolerability of post-exposure prophylaxis with zidovudine, lamivudine, and lopinavir/ritonavir: a comparative study with HIV/AIDS patients. Chin. Med. J. 2014, 127(14), 2632-2636. DOI: 10.3760/cma.j.issn.0366-6999.20140538
14. Lepage, M.A.; Rozza, N.; Kremer, R.; Grunbaum, A. Safety and effectiveness concerns of lopinavir/ritonavir in COVID-19 affected patients: A retrospective series. Clin. Toxicol. 2021, 59(7), 644-647. DOI: 10.1080/15563650.2020.1842882
15. Badowski, M.E.; Burton, B.; Shaeer, K.M.; Dicristofano, J. Oral oncolytic and antiretroviral therapy administration: dose adjustments, drug interactions, and other considerations for clinical use. Drugs. Context. 2019, 8, 1-31. DOI: 10.7573/dic.212550
16. Giacomelli, A.; Pezzati, L.; Rusconi, S. The crosstalk between antiretrovirals pharmacology and HIV drug resistance. Expert. Rev. Clin. Pharmacol. 2020, 13(7), 739-760. DOI: 10.1080/17512433.2020.1782737
17. Nastri, B.M.; Pagliano, P.; Zannella, C.; Folliero, V.; Masullo, A.; Rinaldi, L.; Galdiero, M.; Franci, G. HIV and drug-resistant subtypes. Microorganisms 2023, 11(1), Art. No: 221. DOI: 10.3390/microorganisms11010221
18. Wensing, A.M.; van Maarseveen, N.M.; Nijhuis, M. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance. Antiviral. Res. 2010, 85(1), 59-74. DOI: 10.1016/j.antiviral.2009.10.003
19. Su, B.; Wang, Y.; Zhou, R.; Jiang, T.; Zhang, H.; Li, Z.; Liu, A.; Shao, Y.; Hua, W.; Zhang, T.; Wu, H. Efficacy and tolerability of lopinavir/ritonavir-and efavirenz-based initial antiretroviral therapy in HIV-1-infected patients in a tertiary care hospital in Beijing, China. Front. Pharmacol. 2019, 10, Art. No: 1472. DOI: 10.3389/fphar.2019.01472
20. Gandhi, R.T.; Bedimo, R.; Hoy, J.F.; Landovitz, R.J.; Smith, D.M.; Eaton, E.F.; Lehmann, C.; Springer, S.A.; Sax, P.E.; Thompson, M.A.; Benson, C.A.; Buchbinder, S.P.; Del Rio, C.; Eron Jr, J.J.; Günthard, H.F.; Molina, J.M.; Jacobsen, D.M.; Saag, M.S. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2022 recommendations of the International Antiviral Society–USA panel. JAMA 2023, 329(1), 63-84. DOI: 10.1001/jama.2022.22246
21. Pasley, M.V.; Martinez, M.; Hermes, A.; d'Amico, R.; Nilius, A. Safety and efficacy of lopinavir/ritonavir during pregnancy: a systematic review. AIDS. Rev. 2013, 15(1), 38-48. DOI: 10.1080/15284336.2018.1459343
22. Eggleton, J.S.; Nagalli, S. Highly Active Antiretroviral Therapy (HAART). In: StatPearls [Internet], Eds.; StatPearls: Treasure Island (FL), 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554533/ (accessed 23 September 2024)
23. Hamers, R.L.; de Wit, T.F.; Holmes, C.B. HIV drug resistance in low-income and middle-income countries. Lancet HIV 2018, 5(10), e588-e596. DOI: 10.1016/S2352-3018(18)30173-5
24. Zi, P.; Zhang, C.; Ju, C.; Su, Z.; Bao, Y.; Gao, J.; Sun, J.; Lu, J.; Zhang, C. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant-Soluplus. Eur. J. Pharm. Sci. 2019, 134, 233-245. DOI: 10.1016/j.ejps.2019.04.022
25. Khan, A.A.; Mudassir, J.; Akhtar, S.; Murugaiyah, V.; Darwis, Y. Freeze-dried lopinavir-loaded nanostructured lipid carriers for enhanced cellular uptake and bioavailability: statistical optimization, in vitro and in vivo evaluations. Pharmaceutics 2019, 11(2), Art. No: 97. DOI: 10.3390/pharmaceutics11020097
26. Angshuman, B.; Bhattacharjee, S.K.; Mahanta, R.; Biswanth, M.; Bandyopadhaya, S.K. Alginate based nanoparticulate drug delivery for anti-HIV drug lopinavir. J. Global. Pharm. Tech. 2010, 2(3), 126-132.
27. Jain, S.; Sharma, J.M.; Jain, A.K.; Mahajan, R.R. Surface-stabilized lopinavir nanoparticles enhance oral bioavailability without coadministration of ritonavir. Nanomedicine 2013, 8(10), 1639-1655. DOI: 10.2217/nnm.12.181
28. Ravi, P.R.; Vats, R.; Balija, J.; Adapa, S.P.; Aditya, N. Modified pullulan nanoparticles for oral delivery of lopinavir: Formulation and pharmacokinetic evaluation. Carbohydr. Polym. 2014, 110, 320-328. DOI: 10.1016/j.carbpol.2014.03.099
29. Ravi, P.R.; Vats, R.; Dalal, V.; Gadekar, N.; Adoitya, N. Design, optimization and evaluation of poly-ɛ-caprolactone (PCL) based polymeric nanoparticles for oral delivery of lopinavir. Drug. Dev. Ind. Pharm. 2015, 41(1), 131-140. DOI: 10.3109/03639045.2013.850710
30. Joshi, G.; Kumar, A.; Sawant, K. Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles. Drug. Deliv. 2016, 23(9), 3492-3504. DOI: 10.1080/10717544.2016.1199605.
31. Abou-El-Naga, I.F.; El Kerdany, E.D.; Mady, R.F.; Shalaby, T.I.; Zaytoun, E.M. The effect of lopinavir/ritonavir and lopinavir/ritonavir loaded PLGA nanoparticles on experimental toxoplasmosis. Parasitol. Int. 2017, 66(6), 735-747. DOI: 10.1016/j.parint.2017.08.007
32. Liptrott, N.J.; Giardiello, M.; McDonald, T.O.; Rannard, S.P.; Owen, A. Lack of interaction of lopinavir solid drug nanoparticles with cells of the immune system. Nanomedicine 2017, 12(17), 2043-2054. DOI: 10.2217/nnm-2017-0095
33. Nassar, T.; Rohald, A.; Naraykin, N.; Barasch, D.; Amsalem, O.; Prabhu, P.; Kotler, M.; Benita, S. Nanocapsules embedded in microparticles for enhanced oral bioavailability and efficacy of Lopinavir as an anti-AIDS drug. J. Drug. Target. 2019, 27(5-6), 590-600. DOI: 10.1080/1061186X.2018.1552275
34. Katata-Seru, L.; Ojo, B.M.; Okubanjo, O.; Soremekun, R.; Aremu, O.S. Nanoformulated Eudragit lopinavir and preliminary release of its loaded suppositories. Heliyon 2020, 6(5), Art. No: e03890. DOI: 10.1016/j.heliyon.2020.e03890
35. Patel, G.; Shelat, P.; Lalwani, A. Statistical modeling, optimization and characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment. Drug. Deliv. 2016, 23(8), 3027-3042. DOI: 10.3109/10717544.2016.1141260
36. Khan, A.A.; Akhtar, S.; Yadav, Y.; Atiya, A.; Alelwani, W.; Bannunah, A.M.; Mahmood, S. Lopinavir-Loaded Self-Nanoemulsifying Drug Delivery System for Enhanced Solubility: Development, Characterisation and Caco-2 Cell Uptake. Curr. Drug. Deliv. 2023, 20(10), 1474-1486. DOI: 10.2174/1567201819666220817111054
37. Garg, B.; Katare, O.P.; Beg, S.; Lohan, S.; Singh, B. Systematic development of solid self-nanoemulsifying oily formulations (S-SNEOFs) for enhancing the oral bioavailability and intestinal lymphatic uptake of Lopinavir. Colloids. Surf. B: Biointerfaces 2016, 141, 611-622. DOI: 10.1016/j.colsurfb.2016.02.012
38. Maniyar, M.G.; Kokare, C.R. Formulation and evaluation of spray dried liposomes of lopinavir for topical application. J. Pharm. Investig. 2019, 49, 259-270. DOI: 10.1007/s40005-018-0403-7
39. Patel, K.K.; Kumar, P.; Thakkar, H.P. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS. Pharm. Sci. Tech. 2012, 13, 1502-1510. DOI: 10.1208/s12249-012-9871-7
40. Fayed, N.D.; Essa, E.A.; El Maghraby, G.M. Menthol augmented niosomes for enhanced intestinal absorption of lopinavir. Pharm. Dev. Technol. 2022, 27(9), 956-964. DOI: 10.1080/10837450.2022.2136195
41. Alex, M.A.; Chacko, A.J.; Jose, S.; Souto, E.B. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur. J. Pharm. Sci. 2011, 42(1-2), 11-18. DOI:10.1016/j.ejps.2010.10.002
42. Alex, A.; Paul, W.; Chacko, A.J.; Sharma, C.P. Enhanced delivery of lopinavir to the CNS using Compritol®-based solid lipid nanoparticles. Ther. Deliv. 2011, 2(1), 25-35. Doi: 10.4155/tde.10.96
43. Negi, J.S.; Chattopadhyay, P.; Sharma, A.K.; Ram, V. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur. J. Pharm. Sci. 2013, 48(1-2), 231-239. DOI: 10.1016/j.ejps.2012.10.022
44. Ravi, P.R.; Vats, R.; Dalal, V.; Murthy, A.N. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. J. Pharm. Pharmacol. 2014, 66(7), 912-926. DOI: 10.1111/jphp.12217
45. Ravi, P.R.; Vats, R. Comparative pharmacokinetic evaluation of lopinavir and lopinavir-loaded solid lipid nanoparticles in hepatic impaired rat model. J. Pharm. Pharmacol. 2017, 69(7), 823-833. DOI: 10.1111/jphp.12716
46. Ansari, H.; Singh, P. Formulation and in-vivo evaluation of novel topical gel of lopinavir for targeting HIV. Curr. HIV. Res. 2018, 16(4), 270-279. DOI: 10.2174/1570162X16666180924101650
47. Garg, B.; Beg, S.; Kumar, R.; Katare, O.P.; Singh, B. Nanostructured lipidic carriers of lopinavir for effective management of HIV-associated neurocognitive disorder. J. Drug. Deliv. Sci. Tech. 2019, 53, Art. No: 101220. DOI: 10.1016/j.jddst.2019.101220
48. Moura, R.B.; Andrade, L.M.; Alonso, L.; Alonso, A.; Marreto, R.N.; Taveira, S.F. Combination of lipid nanoparticles and iontophoresis for enhanced lopinavir skin permeation: Impact of electric current on lipid dynamics. Eur. J. Pharm. Sci. 2022, 168, Art. No: 106048. DOI: 10.1016/j.ejps.2021.106048
49. Maniyar, M.; Chandak, A.; Kokare, C. Lopinavir loaded spray dried liposomes with penetration enhancers for cytotoxic activity. Infect. Disord. Drug. Targets 2020, 20(5), 724-736. DOI: 10.2174/1871526519666191008112207
50. Hamed, R.; Mohamed, E.M.; Sediri, K.; Khan, M.A.; Rahman, Z. Development of stable amorphous solid dispersion and quantification of crystalline fraction of lopinavir by spectroscopic-chemometric methods. Int. J. Pharm. 2021, 602, Art. No: 120657. DOI: 10.1016/j.ijpharm.2021.120657
51. Li, N.; Taylor, L.S. Microstructure formation for improved dissolution performance of lopinavir amorphous solid dispersions. Mol. Pharm. 2019, 16(4), 1751-1765. DOI: 10.1021/acs.molpharmaceut.9b00117
52. Kasbaum, F.E.; de Carvalho, D.M.; de Jesus Rodrigues, L.; Cardoso, G.; Pinho, L.A.; Martins, F.T.; Cunha-Filho, M.; Taveira, S.F.; Marreto, R.N. Development of lipid polymer hybrid drug delivery systems prepared by hot-melt extrusion. AAPS. Pharm. Sci. Tech. 2023, 24(6), Art. No: 156. DOI: 10.1208/s12249-023-02610-y
53. Kayalar, C.; Helal, N.; Mohamed, E.M.; Dharani, S.; Khuroo, T.; Kuttolamadom, M.A.; Rahman, Z.; Khan, M.A. In Vitro and In Vivo testing of 3D-Printed Amorphous Lopinavir Printlets by Selective Laser Sinitering: Improved Bioavailability of a Poorly Soluble Drug. AAPS. Pharm. Sci. Tech. 2024, 25(1), Art. No: 20. DOI: 10.1208/s12249-023-02729-y
54. Fayed, N.D.; Arafa, M.F.; Essa, E.A.; El Maghraby, G.M. Lopinavir-menthol co-crystals for enhanced dissolution rate and intestinal absorption. J. Drug. Deliv. Sci. Technol. 2022, 74, Art. No: 103587. DOI: 10.1016/j.jddst.2022.103587
55. Yun, T.S.; Jung, M.; Bang, K.H.; Lee, H.K.; Jin, M.; Yoo, H.; Won, J.H.; Song, B.; Hwang, Y.R.; Baek, J.S.; Cho, C.W. An economically advantageous amorphous solid dispersion of the fixed combination of lopinavir and ritonavir. J. Pharm. Investig. 2023, 53(4), 549-561. DOI: 10.1007/s40005-023-00623-0
56. Pham, K.; Li, D.; Guo, S.; Penzak, S.; Dong, X. Development and in vivo evaluation of child-friendly lopinavir/ritonavir pediatric granules utilizing novel in situ self-assembly nanoparticles. J. Control. Release. 2016, 226, 88-97. DOI: 10.1016/j.jconrel.2016.02.001
57. Else, L.J.; Douglas, M.; Dickinson, L.; Back, D.J.; Khoo, S.H.; Taylor, G.P. Improved oral bioavailability of lopinavir in melt-extruded tablet formulation reduces impact of third trimester on lopinavir plasma concentrations. Antimicrob. Agents Chemother. 2012, 56(2), 816-824. DOI: 10.1128/AAC.05186-11
58. Qin, C.; Chu, Y.; Feng, W.; Fromont, C.; He, S.; Ali, J.; Lee, J.B.; Zgair, A.; Berton, M.; Bettonte, S.; Liu, R. Targeted delivery of lopinavir to HIV reservoirs in the mesenteric lymphatic system by lipophilic ester prodrug approach. J. Control. Release 2021, 329, 1077-1089. DOI: 10.1016/j.jconrel.2020.10.036
59. Patel, G.M.; Shelat, P.K.; Lalwani, A.N. QbD based development of proliposome of lopinavir for improved oral bioavailability. Eur. J. Pharm. Sci. 2017, 108, 50-61. DOI: 10.1016/j.ejps.2016.08.057
60. Madgulkar, A.R.; Bhalekar, M.R.; Kadam, A.A. Improvement of oral bioavailability of lopinavir without co-administration of ritonavir using microspheres of thiolated xyloglucan. AAPS. Pharm. Sci. Tech. 2018, 19(1), 293-302. DOI: 10.1208/s12249-017-0834-x
61. Patel, D.; Kumar, P.; Thakkar, H.P. Lopinavir metered-dose transdermal spray through microporated skin: Permeation enhancement to achieve therapeutic needs. J. Drug. Deliv. Sci. Tech. 2015, 29, 173-180. DOI: 10.1016/j.jddst.2015.07.004
62. Adeoye, O.; Conceição, J.; Serra, P.A.; da Silva, A.B.; Duarte, N.; Guedes, R.C.; Corvo, M.C.; Aguiar-Ricardo, A.; Jicsinszky, L.; Casimiro, T.; Cabral-Marques, H. Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method. Carbohydr. Polym. 2020, 227, Art. No: 115287. DOI: 10.1016/j.carbpol.2019.115287
63. Adeoye, O.; Bártolo, I.; Conceição, J.; da Silva, A.B.; Duarte, N.; Francisco, A.P.; Taveira, N.; Cabral-Marques, H. Pyromellitic dianhydride crosslinked soluble cyclodextrin polymers: Synthesis, lopinavir release from sub-micron sized particles and anti-HIV-1 activity. Int. J. Pharm. 2020, 583, Art. No: 119356. DOI: 10.1016/j.ijpharm.2020.119356
64. Mahajan, H.S.; Patil, P.H. Central composite design-based optimization of lopinavir vitamin E-TPGS micelle: In vitro characterization and in vivo pharmacokinetic study. Colloids. Surf. B. Biointerfaces 2020, 194, Art. No: 111149. DOI: 10.1016/j.colsurfb.2020.111149
65. Chaudhari, S.P.; Handge, N.M. Formulation, development and evaluation of lopinavir loaded polymeric micelles. J. Sci. Tech. 2020, 5(4), 173-187. DOI: 10.46243/jst.2020.v5.i4.pp173-187
66. Aremu, O.S.; Katata-Seru, L.; Mkhize, Z.; Botha, T.L.; Wepener, V. Polyethylene glycol (5,000) succinate conjugate of lopinavir and its associated toxicity using Danio rerio as a model organism. Sci. Rep. 2020, 10(1), Art. No: 11789. DOI: 10.1038/s41598-020-68666-z
67. Salim, M.; Ramirez, G.; Clulow, A.J.; Hawley, A.; Boyd, B.J. Implications of the Digestion of Milk-Based Formulations for the Solubilization of Lopinavir/Ritonavir in a Combination Therapy. Mol. Pharmaceutics 2023, 20(4), 2256-2265. DOI: 10.1021/acs.molpharmaceut.3c00072
68. Tanaudommongkon, I.; Tanaudommongkon, A.; Dong, X. Development of in situ self-assembly nanoparticles to encapsulate lopinavir and ritonavir for long-acting subcutaneous injection. Pharmaceutics 2021, 13(6), Art. No: 904. DOI: 10.3390/pharmaceutics13060904
69. Cattaneo, D.; Perno, C.F.; Rizzardini, G. A three-in-one, long-acting, nanosuspension reformulation of off-patent antiretrovirals for low-income and middle-income countries. AIDS 2018, 32(17), 2625-2627. DOI:10.1097/QAD.0000000000002011
70. McConnachie, L.A.; Kinman, L.M.; Koehn, J.; Kraft, J.C.; Lane, S.; Lee, W.; Collier, A.C.; Ho, R.J. Long-acting profile of 4 drugs in 1 anti-HIV nanosuspension in nonhuman primates for 5 weeks after a single subcutaneous injection. J. Pharm. Sci. 2018, 107(7), 1787-1790. DOI: 10.1016/j.xphs.2018.03.005
71. Koehn, J.; Iwamoto, J.F.; Kraft, J.C.; McConnachie, L.A.; Collier, A.C.; Ho, R.J. Extended cell and plasma drug levels after one dose of a three-in-one nanosuspension containing lopinavir, efavirenz, and tenofovir in nonhuman primates. AIDS 2018, 32(17), 2463-2467. DOI: 10.1097/QAD.0000000000001969
72. Perazzolo, S.; Shen, D.D.; Scott, A.M.; Ho, R.J. Physiologically based pharmacokinetic model validated to enable predictions of multiple drugs in a long-acting drug-combination nano-particles (DCNP): confirmation with 3 HIV drugs, lopinavir, ritonavir, and tenofovir in DCNP products. J. Pharm. Sci. 2024, 113(6), 1653-1663. DOI: 10.1016/j.xphs.2024.02.018
73. Dominique, M.; Konstantin, H. (2016). Dosage form comprising lopinavir and ritonavir. U.S. Patent No. 9,370,578 B2. Washington, DC: U.S. Patent and Trademark Office.
74. Giardiello, M.N.; McDonald, T.O.; Owen, A.; Rannard, S.P. Compositions of lopinavir and ritonavir. International Publication number WO 2013/034927 A1.
75. Hampson, I.; Hampson, L. Lopinavir and ritonavir for the treatment of cervix disoprders. International Publication number WO 2019/224779 A1.
76. Pham, S.H; Choi, Y.; Choi, J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020, 12(7), Art. No: 630. DOI: 10.3390/pharmaceutics12070630
77. Koh, H.B.; Kim, H.J.; Kang, S.W.; Yoo, T.H. Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics 2023, 15(8), Art. No: 2042. DOI: 10.3390/pharmaceutics15082042
78. Asmamaw, M.; Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021, 15, 353-361. DOI: 10.2147/BTT.S326422
79. Kovarova, M.; Benhabbour, S.R.; Massud, I.; Spagnuolo, R.A.; Skinner, B.; Baker, C.E.; Sykes, C.; Mollan, K.R.; Kashuba, A. D. M.; García-Lerma, J. G.; Mumper, R. J.; Garcia, J. V. Ultra-long-acting removable drug delivery system for HIV treatment and prevention. Nat. Commun. 2018, 9(1), Art. No: 4156. DOI: 10.1038/s41467-018-06490-w
80. Khairkhah, N.; Namvar, A.; Bolhassani, A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol. Biotechnol. 2023, 65(9), 1387-1402. DOI: 10.1007/s12033-023-00679-1
81. Kevadiya, B.D.; Ottemann, B.; Mukadam, I. Z.; Castellanos, L.; Sikora, K.; Hilaire, J. R.; Machhi, J.; Herskovitz, J.; Soni, D.; Hasan, M.; Zhang, W.; Anandakumar, S.; Garrison, J.; McMillan, J.; Edagwa, B.; Mosley, R. L.; Vachet, R. W.; Gendelman, H. E. Rod-shape theranostic nanoparticles facilitate antiretroviral drug biodistribution and activity in human immunodeficiency virus susceptible cells and tissues. Theranostics 2020, 10(2), 630-656. DOI: 10.7150/thno.39847
82. Jiang, J.; Ma, X.; Ouyang, D.; Williams, R. O. 3rd. Emerging Artificial Intelligence (AI) Technologies Used in the Development of Solid Dosage Forms. Pharmaceutics 2022, 14(11), Art. No: 2257. DOI: 10.3390/pharmaceutics14112257.
83. Hama, R.; Ulziibayar, A.; Reinhardt, J.W.; Watanabe, T.; Kelly. J.; Shinoka. T. Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications. Biomolecules 2023, 13(2), Art. No: 280. DOI: 10.3390/biom13020280
84. Hu, M.; Ge, X.; Chen, X.; Mao, W.; Qian, X.; Yuan, W. E. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics. 2020, 12(7), Art. No: 665. DOI: 10.3390/pharmaceutics12070665
85. Pan, X.; Veroniaina, H.; Su, N.; Sha, K.; Jiang, F.; Wu, Z.; Qi, X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J. Pharm Sci. 2021, 16(6), 687-703. DOI: 10.1016/j.ajps.2021.05.003