Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003, 9(6), 653-660.
DOI: https://doi.org/10.1038/nm0603-653
Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012, 320(2), 130-137.
DOI: https://doi.org/10.1016/j.canlet.2012.03.008
Rajabi M, Mousa SA. The Role of Angiogenesis in Cancer Treatment. Biomedicines. 2017, 5(2).
DOI: https://doi.org/10.3390/biomedicines5020034
Szala S, Jarosz M. [Tumor blood vessels]. Postepy Hig Med Dosw(Online). 2011, 65, 437-446.
DOI: https://doi.org/10.5604/17322693.951193
Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002, 29(6 Suppl 16), 15-18.
DOI: https://doi.org/10.1053/sonc.2002.37263
Sivridis E, Giatromanolaki A, Koukourakis MI. The vascular network of tumours--what is it not for? J Pathol. 2003, 201(2), 173-180.
DOI: https://doi.org/10.1002/path.1355
Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008, 66(1), 1-9.
DOI: https://doi.org/10.1016/j.critrevonc.2007.07.004
Szala S. [Angiogenesis and immune suppression: yin and yang of tumor progression?]. Postepy Hig Med Dosw (Online). 2009, 63, 598-612.
Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009, 19(5), 329-337.
DOI: https://doi.org/10.1016/j.semcancer.2009.05.003
Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002, 420(6917), 860-867.
DOI: https://doi.org/10.1038/nature01322
Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med. 2010, 10(4), 369-373.
DOI: https://doi.org/10.2174/156652410791316968
Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006, 16(1), 3-15.
DOI: https://doi.org/10.1016/j.semcancer.2005.07.008
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23(11), 549-555.
DOI: https://doi.org/10.1016/S1471-4906(02)02302-5
Jarosz-Biej M, Kaminska N, Matuszczak S, Cichon T, Pamula-Pilat J, Czapla J, Smolarczyk R, Skwarzynska D, Kulik K, Szala S. M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One. 2018, 13(1), e0191012.
DOI: https://doi.org/10.1371/journal.pone.0191012
Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. Arch Immunol Ther Exp (Warsz). 2005, 53(6), 505-517.
Liang W, Ferrara N. The Complex Role of Neutrophils in Tumor Angiogenesis and Metastasis. Cancer Immunol Res. 2016, 4(2), 83-91.
DOI: https://doi.org/10.1158/2326-6066.CIR-15-0313
Rosales C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front Physiol. 2018, 9, 113.
DOI: https://doi.org/10.3389/fphys.2018.00113
Tazzyman S, Lewis CE, Murdoch C. Neutrophils: key mediators of tumour angiogenesis. Int J Exp Pathol. 2009, 90(3), 222-231.
DOI: https://doi.org/10.1111/j.1365-2613.2009.00641.x
Roy R, Morad G, Jedinak A, Moses MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken). 2019.
DOI: https://doi.org/10.1002/ar.24188
Simon SCS, Utikal J, Umansky V. Opposing roles of eosinophils in cancer. Cancer Immunol Immunother. 2019, 68(5), 823-833.
DOI: https://doi.org/10.1007/s00262-018-2255-4
Xing Y, Tian Y, Kurosawa T, Matsui S, Touma M, Yanai T, Wu Q, Sugimoto K. CCL11-induced eosinophils inhibit the formation of blood vessels and cause tumor necrosis. Genes Cells. 2016, 21(6), 624-638.
DOI: https://doi.org/10.1111/gtc.12371
Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008, 8(8), 618-631.
DOI: https://doi.org/10.1038/nrc2444
Maciel TT, Moura IC, Hermine O. The role of mast cells in cancers. F1000Prime Rep. 2015, 7, 09.
DOI: https://doi.org/10.12703/P7-09
Ribatti D, Tamma R, Vacca A. Mast Cells and Angiogenesis in Human Plasma Cell Malignancies. Int J Mol Sci. 2019, 20(3).
DOI: https://doi.org/10.3390/ijms20030481
Conejo-Garcia JR, Benencia F, Courreges MC, Kang E, Mohamed-Hadley A, Buckanovich RJ, Holtz DO, Jenkins A, Na H, Zhang L, Wagner DS, Katsaros D, Caroll R, Coukos G. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med. 2004, 10(9), 950-958.
DOI: https://doi.org/10.1038/nm1097
Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol. 2017, 45, 43-51.
DOI: https://doi.org/10.1016/j.coi.2017.01.002
Albini A, Bruno A, Noonan DM, Mortara L. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy. Front Immunol. 2018, 9, 527.
DOI: https://doi.org/10.3389/fimmu.2018.00527
Bosisio D, Ronca R, Salvi V, Presta M, Sozzani S. Dendritic cells in inflammatory angiogenesis and lymphangiogenesis. Curr Opin Immunol. 2018, 53, 180-186.
DOI: https://doi.org/10.1016/j.coi.2018.05.011
Shen Z, Gu X, Mao W, Cao H, Zhang R, Zhou Y, Liu K, Wang L, Zhang Z, Yin L. Dendritic cells fused with endothelial progenitor cells play immunosuppressive effects on angiogenesis in acute myeloid leukemia mice. Am J Transl Res. 2019, 11(5), 2816-2829.
Mishra PJ, Mishra PJ, Glod JW, Banerjee D. Mesenchymal stem cells: flip side of the coin. Cancer Res. 2009, 69(4), 1255-1258.
DOI: https://doi.org/10.1158/0008-5472.CAN-08-3562
Muerkoster SS, Werbing V, Koch D, Sipos B, Ammerpohl O, Kalthoff H, Tsao MS, Folsch UR, Schafer H. Role of myofibroblasts in innate chemoresistance of pancreatic carcinoma--epigenetic downregulation of caspases. Int J Cancer. 2008, 123(8), 1751-1760.
DOI: https://doi.org/10.1002/ijc.23703
Schito L. Hypoxia-Dependent Angiogenesis and Lymphangiogenesis in Cancer. Adv Exp Med Biol. 2019, 1136, 71-85.
DOI: https://doi.org/10.1007/978-3-030-12734-3_5
Al-Zoughbi W, Hoefler G. Tumor Macroenvironment: An Update. Pathobiology. 2019, 1-3.
DOI: https://doi.org/10.1159/000502097
Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008, 358(19), 2039-2049.
DOI: https://doi.org/10.1056/NEJMra0706596
Sacewicz I, Wiktorska M, Wysocki T, Niewiarowska J. [Mechanisms of cancer angiogenesis]. Postepy Hig Med Dosw (Online). 2009, 63, 159-168.
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971, 285(21), 1182-1186.
DOI: https://doi.org/10.1056/NEJM197111182852108
Li H, Zhao B, Liu Y, Deng W, Zhang Y. Angiogenesis in residual cancer and roles of HIF-1alpha, VEGF, and MMP-9 in the development of residual cancer after radiofrequency ablation and surgical resection in rabbits with liver cancer. Folia Morphol (Warsz). 2019.
Fagiani E, Christofori G. Angiopoietins in angiogenesis. Cancer Lett. 2013, 328(1), 18-26.
DOI: https://doi.org/10.1016/j.canlet.2012.08.018
Kurzyk A. [Angiogenesis - possibilities, problems and perspectives]. Postepy Biochem. 2015, 61(1), 25-34.
Kerbel RS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science. 2006, 312(5777), 1171-1175.
DOI: https://doi.org/10.1126/science.1125950
Szala S, Mitrus I, Sochanik A. Can inhibition of angiogenesis and stimulation of immune response be combined into a more effective antitumor therapy? Cancer Immunol Immunother. 2010, 59(10), 1449-1455.
DOI: https://doi.org/10.1007/s00262-010-0873-6
Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, Armstrong TD, Hicklin DJ, Jaffee EM, Emens LA. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res. 2007, 13(13), 3951-3959.
DOI: https://doi.org/10.1158/1078-0432.CCR-07-0374
Lin Z, Zhang Q, Luo W. Angiogenesis inhibitors as therapeutic agents in cancer: Challenges and future directions. Eur J Pharmacol. 2016, 793, 76-81.
DOI: https://doi.org/10.1016/j.ejphar.2016.10.039
Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006, 5(2), 147-159.
DOI: https://doi.org/10.1038/nrd1957
Verheul HM, Pinedo HM. Inhibition of angiogenesis in cancer patients. Expert Opin Emerg Drugs. 2005, 10(2), 403-412.
DOI: https://doi.org/10.1517/14728214.10.2.403
Booy EP, Johar D, Maddika S, Pirzada H, Sahib MM, Gehrke I, Loewen S, Louis SF, Kadkhoda K, Mowat M, Los M. Monoclonal and bispecific antibodies as novel therapeutics. Arch Immunol Ther Exp (Warsz). 2006, 54(2), 85-101.
DOI: https://doi.org/10.1007/s00005-006-0011-5
Jaszai J, Schmidt MHH. Trends and Challenges in Tumor Anti-Angiogenic Therapies. Cells. 2019, 8(9).
DOI: https://doi.org/10.3390/cells8091102
Antoniak K, Nowak JZ. [Bevacizumab: progress in the treatment of metastatic cancer and hope for patients with proliferative retinopathy]. Postepy Hig Med Dosw (Online). 2007, 61, 320-330.
Salem KZ, Moschetta M, Sacco A, Imberti L, Rossi G, Ghobrial IM, Manier S, Roccaro AM. Exosomes in Tumor Angiogenesis. Methods Mol Biol. 2016, 1464, 25-34.
DOI: https://doi.org/10.1007/978-1-4939-3999-2_3
Szala S, Szary J, Cichon T, Sochanik A. Antiangiogenic gene therapy in inhibition of metastasis. Acta Biochim Pol. 2002, 49(2), 313-321.
DOI: https://doi.org/10.18388/abp.2002_3789
Monk BJ, Minion LE, Coleman RL. Anti-angiogenic agents in ovarian cancer: past, present, and future. Ann Oncol. 2016, 27 Suppl 1, i33-i39.
DOI: https://doi.org/10.1093/annonc/mdw093
Hirata E, Sahai E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb Perspect Med. 2017, 7(7).
DOI: https://doi.org/10.1101/cshperspect.a026781
Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. 2017, 20(2), 185-204.
DOI: https://doi.org/10.1007/s10456-017-9552-y