1. Terradot, L.; Bayliss, R.; Oomen, C.; Leonard, G. A.; Baron, C.; Waksman, G. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc. Natl. Acad. Sci. 2005, 102 (12), 4596-4601. DOI: 10.1073/pnas.0408927102 
															2. Atzenhofer, W.; Regelsberger, G.; Jacob, U.; Peschek, G. A.; Furtmüller, P. G.; Huber, R.; Obinger, C. The 2.0 Å resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese superoxide dismutase. J. Mol. Biol. 2002, 321 (3), 479-489. DOI: 10.1016/S0022-2836(02)00624-1 
															3. Paschos, A.; Patey, G.; Sivanesan, D.; Gao, C.; Bayliss, R.; Waksman, G.; O'callaghan, D.; Baron, C.; Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc. Natl. Acad. Sci. 2006, 103 (19), 7252-7257. DOI: 10.1073/pnas.0600862103 
															4. Elkaeed, E.B.; Yousef, R.G.; Elkady, H.; Gobaara, I.M.; Alsfouk, A.A.; Husein, D.Z.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. The assessment of anticancer and VEGFR-2 inhibitory activities of a new 1 H-indole derivative: in silico and in vitro approaches. Processes 2022, 10(7), Art. No: 1391. DOI: 10.3390/pr10071391 
															5. Regelsberger, G.; Atzenhofer, W.; Ruker, F.; Peschek, G.A.; Jakopitsch, C.; Paumann, M.; Furtmüller, P.G.; Obinger, C. Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120. J. Biol. Chem. 2002, 277(46), 43615-43622. DOI: 10.1074/jbc.M207691200 
															6. Surana, K.R.; Ahire, E.D.; Sonawane, V.N.; Talele, S.G.; Biomolecular and molecular docking: A modern tool in drug discovery and virtual screening of natural products. In Applied Pharmaceutical Practice and Nutraceuticals. Apple Academic Press 2021, 209-223. DOI: 10.1201/9781003054894 
															7. Hoppner, C.; Carle, A.; Sivanesan, D.; Hoeppner, S.; Baron, C. The putative lytic transglycosylase VirB1 from Brucellasuis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 2005, 151(11), 3469-3482. DOI: 10.1099/mic.0.28326-0 
															8. Priya, B.; Premanandh, J.; Dhanalakshmi, R.T.; Seethalakshmi, T.; Uma, L.; Prabaharan, D.; Subramanian, G.; Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. BMC Genomics, 2007, 8, Art. No: 435. DOI: 10.1186/1471-2164-8-435 
															9. Andrieux, L.; Bourg, G.; Pirone, A.; O’Callaghan, D.; Patey, G. A single amino acid change in the transmembrane domain of the VirB8 protein affects dimerization, interaction with VirB10 and Brucella suis virulence. FEBS Lett. 2011, 585(15), 2431-2436. DOI: 10.1016/j.febslet.2011.07.004 
															10. Shah, M.; Kumar, A.; Singh, A.K.; Singh, H.; Narasimhan, B.; Kumar, P.; In silico studies of Indole Derivatives as Antibacterial agents. J. Pharmacopuncture 2023, 26(2), 147-157. DOI: 10.3831/KPI.2023.26.2.147 
															11. Parthiban, A.; Sivasankar, R.; Rajdev, B.; Asha, R.N.; Jeyakumar, T.C.; Periakaruppan, R.; Naidu, V.G.M. Synthesis, in vitro, in silico and DFT studies of indole curcumin derivatives as potential anticancer agents. J. Mol. Struc. 2022, 1270, Art. No: 133885. DOI: 10.1016/j.molstruc.2022.133885 
															12. Kumari, A.; Singh, R.K. Synthesis, molecular docking and ADME prediction of 1H-indole/5-substituted indole derivatives as potential antioxidant and anti-inflammatory agents. Med. Chem. 2023, 19(2), 163-173. DOI: 10.2174/1573406418666220812152950 
															13. Dileep, K.V.; Remya, C.; Tintu, I.; Haridas, M.; Sadasivan, C. Interactions of selected indole derivatives with phospholipase A 2: in silico and in vitro analysis. J. Mol. Model. 2013, 19, 1811-1817. DOI: 10.1007/s00894-012-1741-4 
															14. Balupuri, A.; Gadhe, C.G.; Balasubramanian, P.K.; Kothandan, G.; Cho, S.J. In silico study on indole derivatives as anti HIV-1 agents: a combined docking, molecular dynamics and 3D-QSAR study. Arch. Pharm. Res. 2014, 37, 1001-1015. DOI: 10.1007/s12272-013-0313-1 
															15. Pingaew, R.; Mandi, P.; Prachayasittikul, V.; Thongnum, A.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Investigations on anticancer and antimalarial activities of indole-sulfonamide derivatives and in silico studies. ACS Omega 2021, 6(47), 31854-31868. DOI: 10.1021/acsomega.1c04552 
															16. Rudrapal, M.; Celik, I.; Chinnam, S.; Çevik, U.A.; Tallei, T.E.; Nizam, A.; Joy, F.; Abdellattif, M.H.; Walode, S.G. Analgesic and anti-inflammatory potential of indole derivatives. Polycyclic Aromatic Compounds 2023, 43(9), 7732-7753. DOI: 10.1080/10406638.2022.2139733 
															17. Miller, A.F.; Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 2012, 586(5), 585-595. DOI: 10.1016/j.febslet.2011.10.048 
															18. Uma, L.; Prabaharan, D.; Priya, B.; Subramanian, G.; Role of cyanobacterial oxidases in bioremediation-an overview. Al. Bio. Biotech. 2009, 251-261. 
															19. Venkataramanaa, C.H.S.; Sravania, K.R.; Singha, S.S.; Madhavanb, V.; In-silico ADME and toxcity studies of some novel indole derivatives. J. Appl. Pharm. Sci. 2011, 01(10), 159-162. 
															20. Surana, K.R.; Mahajan, S.K. In silico study of chromane ring compound rubranonoside from Plumeria rubra as anticancer potential. Trend. Sci. 2022, 19(24), 3305-3305. DOI: 10.48048/tis.2022.3305 
															21. Surana, K.R.; Jadhav, P.S.; Shewale, H.S.; Wagh, D.B.; Mahajan, S.K.; Musale, J.V. In silico and Biological Evaluation of Anti-Inflammatory Activity of synthesized Benzimidazoles Derivatives. Biosci. Biotechnol. Res. Asia. 2024, 20(3), 1241-1253. DOI: 10.13005/bbra/3300 
															22. Aher, S.N.; Sonawane, S.N.; Sonawane, P.R.; Surana, K.R.; Mahajan, S.K.; and Patil, D.M. In silico Drug Design, Synthesis and Evaluation of Anti-inflammatory Activity Pyrimidine Analogue. Biosci. Biotechnol. Res. Asia. 2024, 21(2), 741-753. DOI: 10.13005/bbra/3261 
															23. Balekundri, A.; Ahire, E. D. Bacterial network construction and molecular docking approach to study interaction of Myristica fragrans on Acne infections: Molecular docking approach to study interaction of Myristica fragrans. Community Acquir. Infect. 2023,10. DOI: 10.54844/cai.2023.0326 
															24. Ahire, E. D.; Kshirsagar, S. J. In Silico Investigation of Surfactants as Potential Permeation Glycoprotein Inhibitors for Formulation Development. Adv. Biores. 2023, 12, 115-120. DOI: 10.15515/abr.0976-4585.14.4.115120. 
															25. Smith, M.A.; Coinçon, M.; Paschos, A.; Jolicoeur, B.; Lavallée, P.; Sygusch, J.; Baron, C. Identification of the binding site of Brucella VirB8 interaction inhibitors. Chem. Biol. 2012, 19(8), 1041-1048. DOI: 10.1016/j.chembiol.2012.07.007 
															26. Priya, B.; Sivaprasanth, R.K.; Jensi, V.D.; Uma, L.; Subramanian, G.; Prabaharan, D. Characterization of manganese superoxide dismutase from a marine cyanobacterium Leptolyngbya valderiana BDU20041. Saline Syst. 2010, 6, Art. No: 6. DOI: 10.1186/1746-1448-6-6