1. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73 (1), 17‐48. DOI: 10.3322/caac.21763
DOI: https://doi.org/10.3322/caac.21763
2. Zembower, T.R. Epidemiology of infections in cancer patients. In: Infectious Complications in Cancer Patients. Cancer Treatment and Research, vol 161. Stosor, V.; Zembower, T. (eds) Springer, Cham. 2014, pp. 43–89. DOI: 10.1007/978-3-319-04220-6_2
DOI: https://doi.org/10.1007/978-3-319-04220-6_2
3. Bhat, S.; Muthunatarajan, S.; Mulki, S.S.; Bhat, K.A. and Himani, K. Bacterial Infection among Cancer Patients: Analysis of isolates and antibiotics sensitivity pattern. Int. J. Microbiol. 2021, Art. No: 8883700. DOI: 10.1155/2021/8883700
DOI: https://doi.org/10.1155/2021/8883700
4. Oluyele, O.; Oladunmoye, M.K.; Ogundare, A.O.; Onifade, A.K and Okunnuga, N.A. Microbial Spectrum and Susceptibility Profile of Opportunistic Pathogens Isolated from Cancer Patients Attending a Tertiary Healthcare Centre in Akure, Nigeria. Micr. infect. Chemoth. 2023, 3, Art. No: e1961. DOI: 10.54034/mic.e1961
DOI: https://doi.org/10.54034/mic.e1961
5. Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 2013, 41(2), 580-637. DOI: 10.1097/CCM.0b013e31827e83af
DOI: https://doi.org/10.1097/CCM.0b013e31827e83af
6. Baden, L.R.; Bensinger, W.; Angarone, M.; Casper, C.; Dubberke, E.R.; Freifeld, A.G.; Garzon, R.; Greene, J.N. et al. Prevention and treatment of cancer-related infections. J. Natl. Compr. Canc. Netw. 2012, 10(11), 1412-1445. DOI: 10.6004/jnccn.2012.0146
DOI: https://doi.org/10.6004/jnccn.2012.0146
7. Rolston, K.V.I. Infections in Cancer Patients with Solid Tumors: A Review. Infec. Dis. Ther, 2017, 6, 69–83. DOI: 10.1007/s40121-017-0146-1
DOI: https://doi.org/10.1007/s40121-017-0146-1
8. Gudiol, C.; Aguado, J.M. and Carratala`, J. Bloodstream infections in patients with solid tumors. Vir. 2016, 7, 298–308. DOI: 10.1080/21505594.2016.1141161.
DOI: https://doi.org/10.1080/21505594.2016.1141161
9. Bahu, R.; Chaftari, A.M.; Hachem, R.Y.; et al. Nephrostomy tube related pyelonephritis in patients with cancer: epidemiology, infection rate and risk factors. J. Urol. 2013, 189(1), 130–135. DOI: 10.1016/j.juro.2012.08.094
DOI: https://doi.org/10.1016/j.juro.2012.08.094
10. Marı´n, M.; Gudiol, C.; Garcia-Vidal, C.; Ardanuy, C.; Carratala`, J. Bloodstream infections in patients with solid tumors: epidemiology, antibiotic therapy, and outcomes in 528 episodes in a single cancer center. Medicine (Baltimore), 2014, 93(3), 143–149. DOI: 10.1097/MD.0000000000000026
DOI: https://doi.org/10.1097/MD.0000000000000026
11. Mimura, W.; Fukuda, H. and Akazawa, M. Antimicrobial utilization and antimicrobial resistance in patients with haematological malignancies in Japan: a multi-centre cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2020, 19, Art. No: 7. DOI: 10.1186/s12941-020-00348-0
DOI: https://doi.org/10.1186/s12941-020-00348-0
12. Amanati, A.; Sajedianfard, S.; Khajeh, S.; Ghasempour, S.; Mehrangiz, S.; Nematolahi, S. and Shahhosein, Z. Bloodstream infections in adult patients with malignancy, epidemiology, microbiology, and risk factors associated with mortality and multi-drug resistance. BMC Infect. Dis. 2021, 21(1), Art. No: 636. DOI: 10.1186/s12879-021-06243-z
DOI: https://doi.org/10.1186/s12879-021-06243-z
13. Oluyele, O.; Oladunmoye, M.K.; Ogundare, A.O. Toxicity Studies on Essential Oil from Phoenix dactylifera (L.) Seed in Wistar Rats. Biol. 2022, 2, 69–80. https:// DOI.org/10.3390/biologics2010006.
DOI: https://doi.org/10.3390/biologics2010006
14. Gorniak, I.; Bartoszewski, R. and Kroliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18 (19), 241–272. DOI: 10.1007/s11101-018-9591-z
DOI: https://doi.org/10.1007/s11101-018-9591-z
15. Nafis, A.; Kasrati, A.; Jamali, C.; A.; Custódio, L.; Vitalini, S.; Iriti, M. and Hassani, L. A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products. Antibiotics 2020, 9(4), Art. No: (140). DOI: 10.3390/antibiotics9040140
DOI: https://doi.org/10.3390/antibiotics9040140
16. Oluyele, O.; Oladunmoye, M.K. and Ogundare, A.O. Antioxidant potential of essential oil from Phoenix dactylifera (L.) seed. GSC Biol. Pharm. Sci. 2022, 19(02), 014–022. DOI: 10.30574/gscbps.2022.19.2.0139
DOI: https://doi.org/10.30574/gscbps.2022.19.2.0139
17. Sadeq, O.; Mechchate, H.; Es-safi, I.; Bouhrim, M.; Jawhari, F.Z.;, Ouassou, H.; Kharchoufa, L.; AlZain, N.M.; Alzamel, M.N.; et al. Phytochemical Screening, Antioxidant and Antibacterial Activities of Pollen Extracts from Micromeria fruticosa, Achillea fragrantissima, and Phoenix dactylifera. Plants 2021, 10(4), Art. No: 676. DOI: 10.3390/plants10040676
DOI: https://doi.org/10.3390/plants10040676
18. Al-Alawi, R.; Al-Mashiqri, J.H.; Al-Nadabi, J.S.M.; Al-Shihi, B.I. and Baqi, Y. Date palm tree (Phoenix dactylifera L.): Natural products and therapeutic options. Front. Plant Sci. 2017, 8(5), Art. No: 845. DOI: 10.3389/fpls.2017.00845
DOI: https://doi.org/10.3389/fpls.2017.00845
19. Manda, K.; Joshi, B.C. and Dobhal, Y. Phytopharmacological Review on Date Palm (Phoenix dactylifera). Ind. J. Pharm. Sci. 2022, 84(2), 261-267. DOI: 10.22377/ijpscr.v3i02.162
DOI: https://doi.org/10.36468/pharmaceutical-sciences.919
20. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA; 2020.
21. Teneva, D.; Denkova-Kostova, R.; Goranov, B.; Hristova-Ivanova, R.; Slavchev, A.; Denkova, Z. and Kostov, G. Chemical composition, antioxidant activity and antimicrobial activity of essential oil from Citrus aurantium L. zest against some pathogenic microorganisms. Z. Naturforsch. C J. Biosci. 2019, 74 (5-6), 105–111. DOI: 10.1515/znc-2018-0062
DOI: https://doi.org/10.1515/znc-2018-0062
22. Li, Z-H.; Cai, M.; Liu, Y-S.; Sun, P-L. and Luo, S-L. Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24(8), Art. No: 1577. DOI: 10.3390/molecules24081577
DOI: https://doi.org/10.3390/molecules24081577
23. Singh, G. and Katoch, M. Antimicrobial activities and mechanism of action of Cymbopogon khasianus (Munro ex Hackel) Bor essential oil. BMC Compl. Med. Ther. 2020, 20(1), Art. No: 331. DOI: 10.1186/s12906-020-03112-1
DOI: https://doi.org/10.1186/s12906-020-03112-1
24. Falade, O.E.; Oyetayo, V.O.; and Awala, S.I. Evaluation of the mycochemical composition and antimicrobial potency of wild macrofungus, Rigidoporus microporus (Sw). J. Phytopharm. 2017, 6 (2), 115-125. DOI: 10.31254/phyto.2017.6209
DOI: https://doi.org/10.31254/phyto.2017.6209
25. Oluyele, O. and Oladunmoye, M.K. Susceptibility patterns of Staphylococcus aureus isolated from wound swabs to extracts of Vernonia amygdalina. J. Adv. Med. Pharm. Sci. 2017, 13(4), 1-11. DOI: 10.9734/JAMPS/2017/33837
DOI: https://doi.org/10.9734/JAMPS/2017/33837
26. Zakari, A.D.; Bello, K.E.; AKoh, P.Q.; Musa, O.; Adejoh, P.O.; Osazuwa, C.O.; Oluyele, O. Antimicrobial Activity of Moringa oleifera Seed on Beta-Lactam Resistant Bacteria. IOSR J. Pharm. 2020, 10(8), 14-22.
27. Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C. and Messi, P. Essential Oils: A Natural Weapon against Antibiotic-Resistant Bacteria Responsible for Nosocomial Infections. Antibiotics 2021, 10(4), Art. No: 417. DOI: 10.3390/antibiotics10040417
DOI: https://doi.org/10.3390/antibiotics10040417
28. Puvača, N.; Milenković, J.; Galonja C.T.; Bursić, V.; Petrović, A.; Tanasković, S.; Pelić, M.; Ljubojević Pelić, D. and Miljković, T. Antimicrobial Activity of Selected Essential Oils against Selected Pathogenic Bacteria: In Vitro Study. Antibiotics 2012, 10(5), Art. No: 546. DOI: 10.3390/antibiotics10050546
DOI: https://doi.org/10.3390/antibiotics10050546
29. Zuzarte, M.; Correia, P.M.P.; Alves-Silva, J.M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, T. and Salgueiro, L. Antifungal and Anti-Inflammatory Potential of Bupleurum rigidum subsp. paniculatum (Brot.) H. Wolff Essential Oil. Antibiotics 2021, 10(5), Art. No: 592. DOI: 10.3390/antibiotics10050592
DOI: https://doi.org/10.3390/antibiotics10050592
30. Elgammal, E.W.; El Gendy, A.E.N. and Elgamal, A.E.A. Mechanism of action and bioactivities of Cinnamomum zeylanicum essential oil against some pathogenic microbes. Egypt. Pharm. J. 2020, 19(2), 162–171. DOI: 10.4103/epj.epj_63_19
DOI: https://doi.org/10.4103/epj.epj_63_19
31. Sripahco, T.; Khruengsai, S.; Charoensup, R.; Tovaranonte, J. and Pripdeevech, P. Chemical composition, antioxidant, and antimicrobial activity of Elsholtzia beddomei C. B. Clarke ex Hook. F. essential oil. Sci. Rep. 2022, 12(1), Art. No: 2225. DOI: 10.1038/s41598-022-06358-6
DOI: https://doi.org/10.1038/s41598-022-06358-6
32. Marinas, I.C.; Oprea, E.; Gaboreanu, D.M.; Gradisteanu, P.G.; Buleandra, M.; Nagoda, E.; Badea, I.A.; Chifiriuc, M.C. Chemical and Biological Studies of Achillea setacea Herba Essential Oil—First Report on Some Antimicrobial and Antipathogenic features. Antibiotics 2023, 12(2), 371. DOI: 10.3390/antibiotics12020371
DOI: https://doi.org/10.3390/antibiotics12020371
33. Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Benziane-Ouaritini, Z.; Salamatullah, A.M.; Alzahrani, A. et al. Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia aragonensis Lam. against Drug-Resistant Microbes. Molecules 2022, 27(3), Art. No: 1136. DOI: 10.3390/molecules27031136
DOI: https://doi.org/10.3390/molecules27031136
34. Abba, B.N.; Ilagouma, A.T.; Amadou, I. and Romane, A. Chemical profiling, antioxidant and antibacterial activities of essential oil from Englerastrum gracillimum TH. CE. Fries Growing in Niger. Nat. Prod. Comm. 2021, 16(3). DOI: 10.1177/1934578X211002422
DOI: https://doi.org/10.1177/1934578X211002422
35. Vašák, M. and Schnabl, J. Sodium and Potassium Ions in Proteins and Enzyme Catalysis. Met. Ions Life Sci. 2016, 16, 259-290. DOI: 10.1007/978-3-319-21756-7_8
DOI: https://doi.org/10.1007/978-3-319-21756-7_8
36. Owen, L. and Laird, K. Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Crit. Rev. Microbiol. 2018, 44 (4), 414-435. DOI: 10.1080/1040841X.2018.1423616
DOI: https://doi.org/10.1080/1040841X.2018.1423616
37. Oladunmoye, M.K.; Adetuyi, F.C. and Akinyosoye, F.A. Release of sodium and potassium ions by aqueous and ethanolic extract of Cassia accidentalis on some selected bacteria. Trends Appl. Sci. Res. 2007, 2(1), 85-87.
DOI: https://doi.org/10.3923/tasr.2007.85.87
38. Olotu, E.J.; Aribisala, J.O.; Oladunmoye, M.K.; Afolami, O.I.; Oluyele, O.; Ojo, O.R. and Oluwayomi, H. T. Antimicrobial Activity of Honey Against Bacterial Isolates Associated with Wound Infections. EC. Microbiol. 2020, 16(5), 33-52.
39. Oluyele, O. and Oladunmoye, M.K. Antibiotics susceptibility patterns and plasmid profile of Staphylococcus aureus isolated from patients with wound infections attending four hospitals in Akure, Ondo state. J. Adv. Microbiol. 2017, 3(4), 1-8. DOI: 10.9734/JAMB/2017/33879
DOI: https://doi.org/10.9734/JAMB/2017/33879
40. Falowo, D.E.; Oluyele, O. and Oladunmoye, M.K. Antibiotics Susceptibility Pattern and Plasmid Profile of Escherichia coli O157 Isolated from Fecal Samples of Apparently Healthy Children. Intern. J. Pathog. Res. 2018, 1(1), 1-9. DOI: 10.9734/IJPR/2018/v1i11188
DOI: https://doi.org/10.9734/ijpr/2018/v1i11188