Diefenbeck M., Mückley T., Hofmann G. O. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury 2006, 37(2), 95 – 104.
DOI: https://doi.org/10.1016/j.injury.2006.04.015
ter Boo G.–J. A., Grijpma D. W., Moriarty T. F., Richards R. G., Eglin D. Antimicrobial delivery systems for local infection prophylaxis in orthopedic – and trauma surgery. Biomaterials 2015, 52, 113 – 125.
DOI: https://doi.org/10.1016/j.biomaterials.2015.02.020
Klekamp J., Dawson J. The use of vancomycin and tobramycin in acrylic bone cement. J Arthroplasty 1999, 14 (3), 339 – 346.
DOI: https://doi.org/10.1016/S0883-5403(99)90061-X
Joosten U., Joist A., Gosheger G., Liljenqvist U., Brandt B., von Eiff Ch. Effectiveness of hydroxyapatite – vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials 2005, 26 (25), 5251 – 5258.
DOI: https://doi.org/10.1016/j.biomaterials.2005.01.001
Rauschmann M. A., Wichelhaus T. A., Stirnal V., Dingeldein E., Zichner L., Schnettler R., Alt V. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials 2005, 26 (15), 2677–2684.
DOI: https://doi.org/10.1016/j.biomaterials.2004.06.045
Loca D., Sokolova M., Locs J., Smirnova A., Irbe Z. Calcium phosphate bone cements for local vancomycin delivery. Mater Sci Eng: C 2015, 49, 106 – 113.
DOI: https://doi.org/10.1016/j.msec.2014.12.075
Yu J., Chu X., Cai Y., Tong P., Yao J. Preparation and characterization of antimicrobial nano – hydroxyapatite composites. Mater Sci Eng: C 2014, 37, 54 – 59.
DOI: https://doi.org/10.1016/j.msec.2013.12.038
Yang C. – C, Lin C. – C, Liao J. – W., Yen S. – K. Vancomycin – chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng: C 2013, 33 (4), 2203 – 2212.
DOI: https://doi.org/10.1016/j.msec.2013.01.038
Leprêtre S., Chai F., Hornez J. – Ch., Vermet G., Neut Ch., Descamps M., Hildebrand H. F., Martel B. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials 2009, 30 (30), 6086 – 6093.
DOI: https://doi.org/10.1016/j.biomaterials.2009.07.045
Martínez – Vázquez F.J., Cabañas M.V., Paris J. L., Lozano D., Vallet – Regí M. Fabrication of novel Si – doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater 2015, 15, 200 – 209.
DOI: https://doi.org/10.1016/j.actbio.2014.12.021
Lian X., Liu H., Wang X., Xu S., Cui F., Bai F. Antibacterial and biocompatible properties of vancomycin – loaded nano – hydroxyapatite/collagen/poly (lactic acid) bone substitute. Prog Nat Sci: Materials International 2013, 23 (6), 549 – 556.
DOI: https://doi.org/10.1016/j.pnsc.2013.11.003
Vorndran E., Geffers M., Ewald A., Lemm M., Nies B., Gbureck U. Ready – to – use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomater 2013, 9 (12), 9558 – 9567.
DOI: https://doi.org/10.1016/j.actbio.2013.08.009
Makarov C., Cohen V., Raz – Pasteur A., Gotman I. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate – polycaprolactone composite beads for treatment of osteomyelitis. Eur J Pharm Sci 2014, 62, 49 – 56.
DOI: https://doi.org/10.1016/j.ejps.2014.05.008
Yu M., Zhou K., Zhang F., Zhang D. Porous HA microspheres as drug delivery: Effects of porosity and pore structure on drug loading and in vitro release. Ceram Int 2014, 40 (8), 12617 – 12621.
DOI: https://doi.org/10.1016/j.ceramint.2014.04.100
Yu M., Zhou K., Li Z., Zhang D. Preparation, characterization and in vitro gentamicin release of porous HA microspheres, Mater Sci Eng: C 2014, 45, 306 – 312.
DOI: https://doi.org/10.1016/j.msec.2014.08.075
Wang Y., Wang X., Wei K., Zhao N., Zhang S., Chen J. Fabrication, characterization and long – term in vitro release of hydrophilic drug using PHBV/HA composite microspheres. Mater Lett 2007, 61 (4–5), 1071 – 1076.
DOI: https://doi.org/10.1016/j.matlet.2006.06.062
Belcarz A., Zima A., Ginalska G. Biphasic mode of antibacterial action of aminoglycoside antibiotics – loaded elastic hydroxyapatite – glucan composite. Int J Pharm 2013, 454 (1), 285 – 295.
DOI: https://doi.org/10.1016/j.ijpharm.2013.06.076
Schnieders J., Gbureck U., Thull R., Kissel T. Controlled release of gentamicin from calcium phosphate – poly (lactic acid – co – glycolic acid) composite bone cement. Biomaterials 2006, 27 (23), 4239 – 4249.
DOI: https://doi.org/10.1016/j.biomaterials.2006.03.032
Joosten U., Joist A., Frebel T., Brandt B., Diederichs S., von Eiff C. Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: Studies in vitro and in vivo. Biomaterials 2004, 25 (18), 4287 – 4295.
DOI: https://doi.org/10.1016/j.biomaterials.2003.10.083
Padilla S., del Real R. P., Vallet – Regı́ M. In vitro release of gentamicin from OHAp/PEMA/PMMA samples. J Control Release 2002, 83 (3), 343 – 352.
DOI: https://doi.org/10.1016/S0168-3659(02)00168-2
Chen C. – H. D., Chen C. – C., Shie M.– Y., Huang C. – H., Ding S. – J. Controlled release of gentamicin from calcium phosphate/alginate bone cement. Mater Sci Eng: C 2011, 31 (2), 334 – 341.
DOI: https://doi.org/10.1016/j.msec.2010.10.002
Zamoume O., Thibault S., Regnié G., Mecherri M. O., Fiallo M., Sharrock P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Mater Sci Eng: C 2011, 31 (7), 1352 – 1356.
DOI: https://doi.org/10.1016/j.msec.2011.04.020
Sun F., Zhou H., Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 2011, 7, 3813 – 3828.
DOI: https://doi.org/10.1016/j.actbio.2011.07.002
Dorozhkin S.V. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 2010, 6, 715 – 734.
DOI: https://doi.org/10.1016/j.actbio.2009.10.031
Janus A. M., Faryna M., Haberko K., Rakowska A., Panz T. Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Microchi m Acta 2008, 161, 349 – 353.
DOI: https://doi.org/10.1007/s00604-007-0864-2
Loca D., Locs J., Dubnika A., Zalite V., Berzina – Cimdina L. Porous hydroxyapatite for drug delivery. w: Mucalo M. (ed.). Hydroxyapatite for biomedical applications. Elsevier, Cambridge, 2015.
DOI: https://doi.org/10.1016/B978-1-78242-033-0.00009-2
Ślósarczyk A., Polesiński Z., Jaegermann Z., Karaś J., Stoch L., Ciecińska M., Łączka M. Biomateriały ceramiczne. w: Błażewicz S., Stoch L. Biomateriały, Akademicka Oficyna wydawnicza Exit, Warszawa, 2003.
Ramay H. R., Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel – casting and polymer – sponge methods. Biomaterials 2003, 24(19), 3293 – 3302.
DOI: https://doi.org/10.1016/S0142-9612(03)00171-6
Swain S. K., Bhattacharyya S., Sarkar D. Preparation of porous scaffold from hydroxyapatite powders. Mater Sci Eng C 2011, 31(6), 1240 – 1244.
DOI: https://doi.org/10.1016/j.msec.2010.11.014
Manzano M. Ceramics for drug delivery. w: Vallet – Regi M. (ed.). Bioceramics with Clinical Applications, Wiley and Sons, Chichester, 2014.
DOI: https://doi.org/10.1002/9781118406748.ch12
Ginebra M. – P., Canal C., Espanol M., Pastorino D., Montufar E. B. Calcium phosphate cements as drug delivery materials. Adv Drug Deliver Rev 2012, 64 (12), 1090 – 1110.
DOI: https://doi.org/10.1016/j.addr.2012.01.008
Hamdan Alkhraisat M., C. Rueda, Cabrejos – Azama J., Lucas – Aparicio J, Tamimi Mariño F., Torres García – Denche J., Blanco Jerez L., Gbureck U., Lopez Cabarcos E. Loading and release of doxycycline hyclate from strontium – substituted calcium phosphate cement. Acta Biomater 2010, 6 (4), 1522 – 1528.
DOI: https://doi.org/10.1016/j.actbio.2009.10.043
Chai F., Hornez J. – C., Blanchemain N., Neut C., Descamps M., Hildebrand H.F. Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol. Eng. 2007, 24 (5), 510 – 514.
DOI: https://doi.org/10.1016/j.bioeng.2007.08.001
Čolović B., Pašalić S., Jokanović V. Influence of hydroxyapatite pore geometry on tigecycline release kinetics. Ceram Int 2012, 38 (8), 6181– 6189.
DOI: https://doi.org/10.1016/j.ceramint.2012.04.069
Taha M., Chai F., Blanchemain N., Goube M., Martel B., Hildebrand H.F. Validating the poly – cyclodextrins based local drug delivery system on plasma – sprayed hydroxyapatite coated orthopedic implant with toluidine blue O. Mater Sci Eng: C 2013, 33 (5), 2639 – 2647.
DOI: https://doi.org/10.1016/j.msec.2013.02.022
Taha M., Chai F., Blanchemain N., Neut Ch., Goube M., Maton M., Martel B., Hildebrand H. F. Evaluation of sorption capacity of antibiotics and antibacterial properties of a cyclodextrin – polymer functionalized hydroxyapatite – coated titanium hipprosthesis. Int J Pharm 2014, 477 (1–2), 380 – 389.
DOI: https://doi.org/10.1016/j.ijpharm.2014.10.026
Pastorino D., Canal C., Ginebra M. – P.Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity – drug interaction. Acta Biomater 2015, 12, 250 – 259.
DOI: https://doi.org/10.1016/j.actbio.2014.10.031
Stigter M., Bezemer J., de Groot K., Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release 2004, 99 (1), 127 – 137.
DOI: https://doi.org/10.1016/j.jconrel.2004.06.011
Stigter M., de Groot K., Layrolle P. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials 2002, 23 (20), 4143 – 4153.
DOI: https://doi.org/10.1016/S0142-9612(02)00157-6
Ginebra M. P., Traykova T., Planell J. A. Calcium phosphate cements as bone drug delivery systems. J Control Release 2006, 113 (2), 102 – 110.
DOI: https://doi.org/10.1016/j.jconrel.2006.04.007
Ratier A., Gibson I. R., Best S. M., Freche M., Lacout J. L., Rodriguez F. Setting characteristics and mechanical behaviour of a calcium phosphate bone cement containing tetracycline. Biomaterials 2001, 22 (9), 897 – 901.
DOI: https://doi.org/10.1016/S0142-9612(00)00252-0
Ratier A., Freche M., Lacout J. L., Rodriguez F. Behaviour of an injectable calcium phosphate cement with added tetracycline. Int J Pharm 2004, 274 (1–2), 261 – 268.
DOI: https://doi.org/10.1016/j.ijpharm.2004.01.021
Kallala R., Graham S. M., Nikkhah D., Kyrkos M., Heliotis M., Mantalaris A., Tsiridis E. In vitro and in vivo effects of antibiotics on bone cell metabolism and fracture healing. Expert Opin Drug Saf 2012, 11 (1), 15 – 32.
DOI: https://doi.org/10.1517/14740338.2012.643867
Ong S. M., Taylor G. J. S. Doxycycline inhibits bone resorption by human interface membrane cells from aseptically loose hip replacements. J Bone Joint Surg BR 2003, 85, 456 – 461.
DOI: https://doi.org/10.1302/0301-620X.85B3.13151
Canal C., Pastorino D., Mestres G., Schuler P., Ginebra M. – P. Relevance of microstructure for the early antibiotic release of fresh and pre – set calcium phosphate cement. Acta Biomater 2013, 9 (9), 8403 – 8412.
DOI: https://doi.org/10.1016/j.actbio.2013.05.016