Sevindik, M.; Akgul, H.; Pehlivan, M.; Selamoglu, Z. Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresenius Environ. Bull., 2017, 26(7), 4757-4763.
Mohammed, F. S.; Karakaş, M.; Akgül, H.; Sevindik, M. Medicinal properties of Allium calocephalum collected from Gara Mountain (Iraq). Fresenius Environ. Bull., 2019, 28(10), 7419-7426.
Bal, C.; Eraslan, E. C.; Sevindik, M. Antioxidant, Antimicrobial Activities, Total Phenolic and Element Contents of Wild Edible Mushroom Bovista nigrescens. Prospects Pharm. Sci., 2023, 21(2), 37-41. https://doi.org/10.56782/pps.139
DOI: https://doi.org/10.56782/pps.139
Mohammed, F. S.; Sevindik, M.; Uysal, I.; Sevindik, E.; Akgül, H. A Natural Material for Suppressing the Effects of Oxidative Stress: Biological Activities of Alcea kurdica. Biol. Bull., 2022, 49(Suppl 2), S59-S66. http://dx.doi.org/10.1134/S1062359022140102
DOI: https://doi.org/10.1134/S1062359022140102
Unal, O.; Eraslan, E. C.; Uysal, I.; Mohammed, F. S.; Sevindik, M.; Akgul, H. Biological activities and phenolic contents of Rumex scutatus collected from Turkey. Fresenius Environ. Bull., 2022, 31(7), 7341-7346.
Mohammed, F. S.; Uysal, I.; Sevindik, M. A Review on Antiviral Plants Effective Against Different Virus Types. Prospects Pharm. Sci., 2023, 21(2), 1-21.
DOI: https://doi.org/10.56782/pps.128
Khanbabaee, K.; Van Ree, T. Tannins: Classification and Definition. Nat. Prod. Rep., 2001, 18, 641-649. https://doi.org/10.1039/B101061L
DOI: https://doi.org/10.1039/b101061l
Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Funct. Genomics, 2002, 155-171.
DOI: https://doi.org/10.1007/978-94-010-0448-0_11
D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann. Ist. Super. Sanita., 2007, 43, 348-361.
Lattanzio, V. Phenolic compounds: introduction 50. Nat. Prod., 2013, 1543-1580. https://doi.org/10.1007/978-3-642-22144-6_57
DOI: https://doi.org/10.1007/978-3-642-22144-6_57
Sevindik, M.; Akgul, H.; Bal, C.; Selamoglu, Z. Phenolic contents, oxidant/antioxidant potential and heavy metal levels in Cyclocybe cylindracea. Indian J. Pharm. Educ. Res., 2018, 52(3), 437-441. https://doi.org/10.5530/ijper.52.3.50
DOI: https://doi.org/10.5530/ijper.52.3.50
Uysal, I.; Koçer, O.; Mohammed, F. S.; Lekesiz, Ö.; Doğan, M.; Şabik, A. E., Sevindik, E.; Gerçeker, F.Ö.; & Sevindik, M. Pharmacological and Nutritional Properties: Genus Salvia. Adv. Pharmacol. Pharmacy, 2023, 11(2), 140-155. http://dx.doi.org/10.13189/app.2023.110206
DOI: https://doi.org/10.13189/app.2023.110206
Harborne, J. B.; Williams, C. A. Advances in flavonoid research since 1992. Phytochem., 2000, 55(6), 481-504. https://doi.org/10.1016/s0031-9422(00)00235-1
DOI: https://doi.org/10.1016/S0031-9422(00)00235-1
Dias, M. C.; Pinto, D. C.; Silva, A. M. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377. https://doi.org/10.3390%2Fmolecules26175377
DOI: https://doi.org/10.3390/molecules26175377
Lakhanpal, P.; Rai, D. K. Quercetin: a versatile flavonoid. Internet J. Medical Update, 2007, 2(2), 22-37. https://doi.org/10.4314/ijmu.v2i2.39851
DOI: https://doi.org/10.4314/ijmu.v2i2.39851
de Groot, H. D.; Rauen, U. Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam. Clin. Pharmacol., 1998, 12(3), 249-255.
DOI: https://doi.org/10.1111/j.1472-8206.1998.tb00951.x
Middleton Jr, E. Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol., 1998, 439, 175-182. https://doi.org/10.1007/978-1-4615-5335-9_13
DOI: https://doi.org/10.1007/978-1-4615-5335-9_13
Narayana, K. R.; Reddy, M. S.; Chaluvadi, M. R.; Krishna, D. R. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol., 2001, 33(1), 2-16.
Bayazid, A. B.; Lim, B. O. Quercetin is an active agent in berries against neurodegenerative diseases progression through modulation of Nrf2/HO1. Nutrients, 2022, 14(23), 5132. https://doi.org/10.3390/nu14235132
DOI: https://doi.org/10.3390/nu14235132
Moskaug, J. Ø.; Carlsen, H.; Myhrstad, M.; Blomhoff, R. Molecular imaging of the biological effects of quercetin and quercetin-rich foods. Mech. Ageing Dev., 2004, 125(4), 315-324. https://doi.org/10.1016/j.mad.2004.01.007
DOI: https://doi.org/10.1016/j.mad.2004.01.007
Biesaga, M.; Pyrzynska, K. Analytical procedures for determination of quercetin and its glycosides in plant material. Crit. Rev. Anal. Chem., 2009, 39(2), 95-107. http://dx.doi.org/10.1080/10408340902820718
DOI: https://doi.org/10.1080/10408340902820718
Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The role of quercetin in plants. Plant Physiol. Biochem., 2021, 166, 10-19. https://doi.org/10.1016/j.plaphy.2021.05.023
DOI: https://doi.org/10.1016/j.plaphy.2021.05.023
Ndhlala, A. R.; Moyo, M.; Van Staden, J. Natural antioxidants: fascinating or mythical biomolecules?. Molecules, 2010, 15(10), 6905-6930. https://doi.org/10.3390%2Fmolecules15106905
DOI: https://doi.org/10.3390/molecules15106905
Batiha, G. E. S.; Beshbishy, A. M.; Ikram, M.; Mulla, Z. S.; El-Hack, M. E. A.; Taha, A. E.; Elewa, Y. H. A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374. https://doi.org/10.3390%2Ffoods9030374
DOI: https://doi.org/10.3390/foods9030374
Watkin, J. E.; Neish, A. C. Biosynthesis of Quercetin in Buckwheat: Part III. Can. J. Biochem. Physiol., 1960, 38(6), 559-567. https://doi.org/10.1139/y60-068
DOI: https://doi.org/10.1139/o60-068
Watkin, J. E.; Underhill, E. W.; Neish, A. C. Biosynthesis of Quercetin in Buckwheat: Part II. Can. J. Biochem. Physiol., 1957, 35(3), 229-237. https://doi.org/10.1139/o57-029
DOI: https://doi.org/10.1139/o57-029
Glässer, G.; Graefe, E. U.; Struck, F.; Veit, M.; Gebhardt, R. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine, 2002, 9(1), 33-40. https://doi.org/10.1078/0944-7113-00080
DOI: https://doi.org/10.1078/0944-7113-00080
Zhao, P.; Mao, J. M.; Zhang, S. Y.; Zhou, Z. Q.; Tan, Y.; Zhang, Y. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis. Oncol. Lett., 2014, 8(2), 765-769https://doi.org/10.3892%2Fol.2014.2159
DOI: https://doi.org/10.3892/ol.2014.2159
Underhill, E. W.; Watkin, J. E.; Neish, A. C. Biosynthesis of quercetin in buckwheat: Part I. Can. J. Biochem. Physiol., 1957, 35(3), 219-228. https://doi.org/10.1139/o57-028
DOI: https://doi.org/10.1139/o57-028
Möhle, B.; Heller, W.; Wellmann, E. UV-induced biosynthesis of quercetin 3-O-β-D-glucuronide in dill cell cultures. Phytochemistry,1985, 24(3), 465-467. https://doi.org/10.1016/S0031-9422(00)80748-7
DOI: https://doi.org/10.1016/S0031-9422(00)80748-7
Jung, C. H.; Lee, J. Y.; Cho, C. H.; Kim, C. J. Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch. Pharm. Res., 2007, 30, 1599-1607. https://doi.org/10.1007/bf02977330
DOI: https://doi.org/10.1007/BF02977330
Li, N.; Li, Q.; Zhou, X. D.; Kolosov, V. P.; Perelman, J. M. The effect of quercetin on human neutrophil elastase‐induced mucin5AC expression in human airway epithelial cells. Int. Immunopharmacol., 2012, 14(2), 195-201. https://doi.org/10.1016/j.intimp.2012.07.008
DOI: https://doi.org/10.1016/j.intimp.2012.07.008
Wang, G.; Song, L.; Wang, H.; Xing, N. Quercetin synergizes with 2-methoxyestradiol inhibiting cell growth and inducing apoptosis in human prostate cancer cells. Oncol. Rep., 2013, 30(1), 357-363. https://doi.org/10.3892/or.2013.2469
DOI: https://doi.org/10.3892/or.2013.2469
Liu, K. C., Yen, C. Y., Wu, R. S. C., Yang, J. S., Lu, H. F., Lu, K. W., Chung, J. G. (2014). The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin‐mediated cell death of human prostate cancer PC‐3 cells. Environ. Toxicol., 2014, 29(4), 428-439. https://doi.org/10.1002/tox.21769
DOI: https://doi.org/10.1002/tox.21769
Dok-Go, H.; Lee, K. H.; Kim, H. J.; Lee, E. H.; Lee, J.; Song, Y.S.; Cho, J. Neuroprotective effects of anti-oxidative flavonoids, quercetin,(+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res., 2003, 965(1-2), 130-136. https://doi.org/10.1016/s0006-8993(02)04150-1
DOI: https://doi.org/10.1016/S0006-8993(02)04150-1
Das, S.; Mandal, A. K.; Ghosh, A.; Panda, S.; Das, N.; Sarkar, S. Nanoparticulated quercetin in combating age related cerebral oxidative injury. Curr. Aging Sci., 2008, 1(3), 169-174. https://doi.org/10.2174/1874609810801030169
DOI: https://doi.org/10.2174/1874609810801030169
Ishisaka, A.; Ichikawa, S.; Sakakibara, H.; Piskula, M. K.; Nakamura, T.; Kato, Y.; Terao, J. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic. Biol. Med., 2011, 51(7), 1329-1336. https://doi.org/10.1016/j.freeradbiomed.2011.06.017
DOI: https://doi.org/10.1016/j.freeradbiomed.2011.06.017
Posokhova, K.; Stechyshyn, I.; Krynytska, I.; Marushchak, M.; Birchenko, I.; Klishch, I. Comparative study of the effect of various forms of quercetin on experimental diabetes. Romanian J. Diabetes, Nutr. Metab. Dis., 2018, 25(4), 383-388.
DOI: https://doi.org/10.2478/rjdnmd-2018-0046
Shaikhomar, O. A.; Bahattab, O. S. Physiological effect of quercetin as a natural flavonoid to be used as hypoglycemic agent in diabetes mellitus type II rats. Saudi J. Biomed. Res., 2021, 6(1), 10-17. https://doi.org/10.36348/sjbr.2021.v06i01.003
DOI: https://doi.org/10.36348/sjbr.2021.v06i01.003
Edwards, R. L.; Lyon, T.; Litwin, S. E.; Rabovsky, A.; Symons, J. D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr., 2007, 137(11), 2405-2411.
Zhou, Y.; Wu, Y.; Ma, W.; Jiang, X.; Takemra, A.; Uemura, M.; Xu, Y. The effect of quercetin delivery system on osteogenesis and angiogenesis under osteoporotic conditions. J. Mater. Chem. B, 2017, 5(3), 612-625. https://doi.org/10.1039/C6TB02312F
DOI: https://doi.org/10.1039/C6TB02312F
Rendig, S. V.; Symons, D. J.; Longhurst, J. C.; Amsterdam, E. A. Effects of red wine, alcohol, and quercetin on coronary resistance and conductance arteries. J. Cardiovasc. Pharmacol., 2001, 38(2), 219-227. https://doi.org/10.1097/00005344-200108000-00007
DOI: https://doi.org/10.1097/00005344-200108000-00007
Ding, Y.; Li, C.; Zhang, Y.; Ma, P.; Zhao, T.; Che, D.; He, L. Quercetin as a Lyn kinase inhibitor inhibits IgE-mediated allergic conjunctivitis. Food Chem. Toxicol., 2020, 135, 110924. https://doi.org/10.1016/j.fct.2019.110924
DOI: https://doi.org/10.1016/j.fct.2019.110924
Schwartz, A.; Sutton, S. L.; Middleton Jr, E. Quercetin inhibition of the induction and function of cytotoxic T lymphocytes. Immunopharmacol., 1982, 4(2), 125-138. https://doi.org/10.1016/0162-3109(82)90015-7
DOI: https://doi.org/10.1016/0162-3109(82)90015-7
Shaukat, A.; Hussain, K. Quercetin Based Standardization of Polyherbal Anti-Gout Remedy and Its Molecular Docking Study against Anti-Gout and Anti-Inflammatory Protein Targets. Fabad J. Pharm. Sci., 2022, 47(3), 317-330. https://doi.org/10.55262/fabadeczacilik.1085825
DOI: https://doi.org/10.55262/fabadeczacilik.1085825
Coşkun, Ö.; Kanter, M.; Armutçu, F.; Çetin, K.; Kaybolmaz, B.; Yazgan, Ö. Protective effects of quercetin, a flavonoid antioxidant, in absolute ethanol-induced acute gastric ulcer. Eur. J. Gen. Med., 2004, 1(3), 37-42. https://doi.org/10.29333/ejgm/82201
DOI: https://doi.org/10.29333/ejgm/82201
Zribi, N.; Chakroun, N. F.; Abdallah, F. B.; Elleuch, H.; Sellami, A.; Gargouri, J.; Keskes, L. A. Effect of freezing–thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology, 2012, 65(3), 326-331. https://doi.org/10.1016/j.cryobiol.2012.09.003
DOI: https://doi.org/10.1016/j.cryobiol.2012.09.003
Hong, Y.; Yin, Y.; Tan, Y.; Hong, K.; Jiang, F.; Wang, Y. Effect of quercetin on biochemical parameters in letrozoleinduced polycystic ovary syndrome in rats. Trop. J. Pharm. Res., 2018, 17(9), 1783-1788. https://doi.org/10.4314/tjpr.v17i9.15
DOI: https://doi.org/10.4314/tjpr.v17i9.15
Uygur, R.; Yagmurca, M.; Alkoç, O. A.; Genç, A.; Songur, A.; Ucok, K.; Ozen, O. A. Effects of quercetin and fish n‐3 fatty acids on testicular injury induced by ethanol in rats. Andrologia, 2014, 46(4), 356-369. https://doi.org/10.1111/and.12085
DOI: https://doi.org/10.1111/and.12085
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M. J.; Wielinga, P. Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 2011, 218(1), 44-52. https://doi.org/10.1016/j.atherosclerosis.2011.04.023
DOI: https://doi.org/10.1016/j.atherosclerosis.2011.04.023
Tristantini, D.; Amalia, R. Quercetin concentration and total flavonoid content of anti-atherosclerotic herbs using aluminum chloride colorimetric assay. In AIP Conference Proceedings, 2019, 2193(1), 030012. http://dx.doi.org/10.1063/1.5139349
DOI: https://doi.org/10.1063/1.5139349
Bae, S. C.; Jung, W. J.; Lee, E. J.; Yu, R.; Sung, M. K. Effects of antioxidant supplements intervention on the level of plasma inflammatory molecules and disease severity of rheumatoid arthritis patients. J. Am. Coll. Nutr., 2009, 28(1), 56-62. https://doi.org/10.1080/07315724.2009.10719762
DOI: https://doi.org/10.1080/07315724.2009.10719762
El-Said, K. S.; Atta, A.; Mobasher, M. A.; Germoush, M. O.; Mohamed, T. M.; Salem, M. M. Quercetin mitigates rheumatoid arthritis by inhibiting adenosine deaminase in rats. Mol. Med., 2022, 28(1), 24. https://doi.org/10.1186%2Fs10020-022-00432-5
DOI: https://doi.org/10.1186/s10020-022-00432-5
Ishitsuka, H.; Ohsawa, C.; Ohiwa, T.; Umeda, I.; Suhara, Y. Antipicornavirus flavone RO 09-0179. Antimicrob. Agents. Chemother., 1982, 22(4), 611-616. https://doi.org/10.1128/aac.22.4.611
DOI: https://doi.org/10.1128/AAC.22.4.611
Weiss, L. M.; Ma, Y. F.; Takvorian, P. M.; Tanowitz, H. B.; Wittner, M. Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infect. Immun., 1998, 66(7), 3295-3302. https://doi.org/10.1128/iai.66.7.3295-3302.1998
DOI: https://doi.org/10.1128/IAI.66.7.3295-3302.1998
Metodiewa, D.; Jaiswal, A. K.; Cenas, N.; Dickancaité, E.; Segura-Aguilar, J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic. Biol. Med., 1999, 26(1-2), 107-116. https://doi.org/10.1016/s0891-5849(98)00167-1
DOI: https://doi.org/10.1016/S0891-5849(98)00167-1
Jagadeeswaran, R.; Thirunavukkarasu, C.; Gunasekaran, P.; Ramamurty, N.; Sakthisekaran, D. In vitro studies on the selective cytotoxic effect of crocetin and quercetin. Fitoterapia, 2000, 71(4), 395-399. https://doi.org/10.1016/s0367-326x(00)00138-6
DOI: https://doi.org/10.1016/S0367-326X(00)00138-6
Duarte, J.; Pérez‐Palencia, R.; Vargas, F.; Angeles Ocete, M.; Pérez‐Vizcaino, F.; Zarzuelo, A.; Tamargo, J. (2001). Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol., 2001, 133(1), 117-124. https://doi.org/10.1038/sj.bjp.0704064
DOI: https://doi.org/10.1038/sj.bjp.0704064
Martini, N. D.; Katerere, D. R. P.; Eloff, J. N. (2004). Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J. ethnopharmacol., 2004, 93(2-3), 207-212. https://doi.org/10.1016/j.jep.2004.02.030
DOI: https://doi.org/10.1016/j.jep.2004.02.030
Cushnie, T. T.; Lamb, A. J. (2005). Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
DOI: https://doi.org/10.1016/j.ijantimicag.2005.09.002
Tasdemir, D.; Kaiser, M.; Brun, R.; Yardley, V.; Schmidt, T. J.; Tosun, F.; Rüedi, P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob. Agents. Chemother., 2006, 50(4), 1352-1364. https://doi.org/10.1128/aac.50.4.1352-1364.2006
DOI: https://doi.org/10.1128/AAC.50.4.1352-1364.2006
Boots, A. W.; Wilms, L. C.; Swennen, E. L.; Kleinjans, J. C.; Bast, A.; Haenen, G. R. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition, 2008, 24(7-8), 703-710. https://doi.org/10.1016/j.nut.2008.03.023
DOI: https://doi.org/10.1016/j.nut.2008.03.023
Du, G.; Lin, H.; Yang, Y.; Zhang, S.; Wu, X.; Wang, M.; Han, G. Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. Int. Immunopharmacol., 2010, 10(7), 819-826. https://doi.org/10.1016/j.intimp.2010.04.018
DOI: https://doi.org/10.1016/j.intimp.2010.04.018
Shu, Y.; Liu, Y.; Li, L.; Feng, J.; Lou, B.; Zhou, X.; Wu, H. Antibacterial activity of quercetin on oral infectious pathogens. Afr. J. Microbiol. Res., 2011, 5(30), 5358-5361. http://dx.doi.org/10.5897/AJMR11.849
DOI: https://doi.org/10.5897/AJMR11.849
Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J. P.; De Biasi, S.; Roat, E.; Cossarizza, A. Quercetin and cancer chemoprevention. Evid. Based. Complement. Alternat. Med., 2011. https://doi.org/10.1093%2Fecam%2Fneq053
DOI: https://doi.org/10.1093/ecam/neq053
Johari, J.; Kianmehr, A.; Mustafa, M. R.; Abubakar, S.; Zandi, K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int. J. Mol. Sci., 2012, 13(12), 16785-16795. https://doi.org/10.3390%2Fijms131216785
DOI: https://doi.org/10.3390/ijms131216785
Sassi, N.; Biasutto, L.; Mattarei, A.; Carraro, M.; Giorgio, V.; Citta, A.; Zoratti, M. Cytotoxicity of a mitochondriotropic quercetin derivative: mechanisms. Biochim. Biophys. Acta. Bioenerg., 2012, 1817(7), 1095-1106. https://doi.org/10.1016/j.bbabio.2012.03.007
DOI: https://doi.org/10.1016/j.bbabio.2012.03.007
Lekić, N.; Canová, N. K.; Hořínek, A.; Farghali, H. The involvement of heme oxygenase 1 but not nitric oxide synthase 2 in a hepatoprotective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Fitoterapia, 2013, 87, 20-26. https://doi.org/10.1016/j.fitote.2013.03.016
DOI: https://doi.org/10.1016/j.fitote.2013.03.016
Maciel, R. M.; Costa, M. M.; Martins, D. B.; França, R. T.; Schmatz, R.; Graça, D. L.; Lopes, S. T. A. Antioxidant and anti-inflammatory effects of quercetin in functional and morphological alterations in streptozotocin-induced diabetic rats. Res. Vet. Sci., 2013, 95(2), 389-397.
DOI: https://doi.org/10.1016/j.rvsc.2013.04.028
Sharmila, G.; Athirai, T.; Kiruthiga, B.; Senthilkumar, K., Elumalai, P., Arunkumar, R., Arunakaran, J. Chemopreventive effect of quercetin in MNU and testosterone induced prostate cancer of Sprague-Dawley rats. Nutr Cancer., 2014, 66(1), 38-46. https://doi.org/10.1080/01635581.2014.847967
DOI: https://doi.org/10.1080/01635581.2014.847967
Sharmila, G.; Bhat, F. A.; Arunkumar, R.; Elumalai, P.; Singh, P. R.; Senthilkumar, K.; Arunakaran, J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr., 2014, 33(4), 718-726. https://doi.org/10.1016/j.clnu.2013.08.011
DOI: https://doi.org/10.1016/j.clnu.2013.08.011
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M. T.; Wang, S.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167. https://doi.org/10.3390%2Fnu8030167
DOI: https://doi.org/10.3390/nu8030167
Abd-Allah, W. E.; Awad, H. M.; AbdelMohsen, M. M. HPLC analysis of quercetin and antimicrobial activity of comparative methanol extracts of Shinus molle L. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, 550-558.
Tao, S. F.; He, H. F.; Chen, Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol. Cell. Biochem., 2015, 402, 93-100. https://doi.org/10.1007/s11010-014-2317-7
DOI: https://doi.org/10.1007/s11010-014-2317-7
Jaisinghani, R. N. Antibacterial properties of quercetin. Microbiol. Res., 2017, 8(1), 6877. https://doi.org/10.4081/mr.2017.6877
DOI: https://doi.org/10.4081/mr.2017.6877
Yarahmadi, A.; Zal, F.; Bolouki, A. Protective effects of quercetin on nicotine induced oxidative stress in ‘HepG2 cells’. Toxicol. Mech. Methods, 2017, 27(8), 609-614. https://doi.org/10.1080/15376516.2017.1344338
DOI: https://doi.org/10.1080/15376516.2017.1344338
Yang, H.; Li, K.; Yan, H.; Liu, S.; Wang, Y.; Huang, C. High-performance therapeutic quercetin-doped adhesive for adhesive–dentin interfaces. Sci. Rep., 2017, 7(1), 8189. http://dx.doi.org/10.1038/s41598-017-08633-3
DOI: https://doi.org/10.1038/s41598-017-08633-3
Kalantari, H.; Foruozandeh, H.; Khodayar, M. J.; Siahpoosh, A.; Saki, N.; Kheradmand, P. Antioxidant and hepatoprotective effects of Capparis spinosa L. fractions and Quercetin on tert-butyl hydroperoxide-induced acute liver damage in mice. J. Tradit. Complement. Med., 2018, 8(1), 120-127. https://doi.org/10.1016/j.jtcme.2017.04.010
DOI: https://doi.org/10.1016/j.jtcme.2017.04.010
Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75. http://dx.doi.org/10.1016/j.jff.2017.10.047
DOI: https://doi.org/10.1016/j.jff.2017.10.047
Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M. T.; Wang, M.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot., 2018, 81(1), 68-78. https://doi.org/10.4315/0362-028x.jfp-17-214
DOI: https://doi.org/10.4315/0362-028X.JFP-17-214
Kusaczuk, M.; Krętowski, R.; Naumowicz, M.; Stypułkowska, A.; Cechowska-Pasko, M. A preliminary study of the effect of quercetin on cytotoxicity, apoptosis, and stress responses in glioblastoma cell lines. Int. J. Mol. Sci., 2022, 23(3), 1345. https://doi.org/10.3390%2Fijms23031345
DOI: https://doi.org/10.3390/ijms23031345
Agrawal, P. K.; Agrawal, C.; Blunden, G. Quercetin: antiviral significance and possible COVID-19 integrative considerations. Nat. Prod. Commun., 2020, 15(12), 1934578X20976293. https://doi.org/10.1177/1934578X20976293
DOI: https://doi.org/10.1177/1934578X20976293
Xu, D.; Hu, M. J.; Wang, Y. Q.; Cui, Y. L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123. https://doi.org/10.3390/molecules24061123
DOI: https://doi.org/10.3390/molecules24061123
Bal, C.; Sevindik, M.; Akgul, H.; & Selamoglu, Z. Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma J. Engin. Nat. Sci., 2019, 37(1), 1-5.
DOI: https://doi.org/10.1155/2020/5620484
Selamoglu, Z.; Sevindik, M.; Bal, C.; Ozaltun, B.; Sen, İ.; & Pasdaran, A. Antioxidant, antimicrobial and DNA protection activities of phenolic content of Tricholoma virgatum (Fr.) P. Kumm. Biointerface Res. Appl. Chem., 2020, 10 (3), 5500-5506https://doi.org/10.33263/BRIAC103.500506
DOI: https://doi.org/10.33263/BRIAC103.500506
Saridogan, B. G. O.; Islek, C.; Baba, H.; Akata, I.; & Sevindik, M. Antioxidant antimicrobial oxidant and elements contents of Xylaria polymorpha and X. hypoxylon (Xylariaceae). Fresenius Envir. Bull., 2021, 30(5), 5400-5404.
Krupodorova, T.; & Sevindik, M. Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta. AgroLife Sci. J., 2020, 9(1), 186-191.
Uysal, İ.; Mohammed, F. S.; Şabik, A. E.; Kına, E.; & Sevindik, M. Antioxidant and Oxidant status of medicinal plant Echium italicum collected from different regions. Turkish JAF Sci.Tech., 2021, 9(10), 1902-1904. https://doi.org/10.24925/turjaf.v9i10.1902-1904.4588
DOI: https://doi.org/10.24925/turjaf.v9i10.1902-1904.4588
Eraslan, E. C.; Altuntas, D.; Baba, H.; Bal, C.; Akgül, H.; Akata, I.; & Sevindik, M. Some biological activities and element contents of ethanol extract of wild edible mushroom Morchella esculenta. Sigma J. Engin. Nat. Sci., 2021, 39(1), 24-28.
Baba, H.; Sevindik, M.; Dogan, M.; & Akgül, H. (2020). Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes. Fresenius Environmental Bulletin, 2020, 29(09), 7840-7846.
Islek, C.; Saridogan, B. G. O.; Sevindik, M.; & Akata, I. Biological activities and heavy metal contents of some Pholiota species. Fresenius Envir. Bull., 2021, 30(6), 6109-6114.
Moon, J. H.; Nakata, R.; Oshima, S.; Inakuma, T.; Terao, J. Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(2), R461-R467. https://doi.org/10.1152/ajpregu.2000.279.2.r461
DOI: https://doi.org/10.1152/ajpregu.2000.279.2.R461
Edwards, R. L.; Lyon, T.; Litwin, S. E.; Rabovsky, A.; Symons, J. D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr., 2007, 137(11), 2405-2411. https://doi.org/10.1093/jn/137.11.2405
DOI: https://doi.org/10.1093/jn/137.11.2405
Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J. F., Flamm, G. W., Williams, G. M., Lines, T. C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol., 2007, 45(11), 2179-2205. https://doi.org/10.1016/j.fct.2007.05.015
DOI: https://doi.org/10.1016/j.fct.2007.05.015
Bischoff, S. C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740. https://doi.org/10.1097/mco.0b013e32831394b8
DOI: https://doi.org/10.1097/MCO.0b013e32831394b8
Utesch, D.; Feige, K.; Dasenbrock, J.; Broschard, T. H.; Harwood, M.; Danielewska-Nikiel, B.; Lines, T. C. Evaluation of the potential in vivo genotoxicity of quercetin. Mutat. Res., 2008, 654(1), 38-44. https://doi.org/10.1016/j.mrgentox.2008.04.008
DOI: https://doi.org/10.1016/j.mrgentox.2008.04.008
Kressler, J.; Millard-Stafford, M.; Warren, G. L. Quercetin and endurance exercise capacity: a systematic review and meta-analysis. Med. Sci. Sports Exerc., 2011, 43(12), 2396-2404. https://doi.org/10.1249/mss.0b013e31822495a7
DOI: https://doi.org/10.1249/MSS.0b013e31822495a7
Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G. L. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol., 2012, 83(1), 6-15. https://doi.org/10.1016/j.bcp.2011.08.010
DOI: https://doi.org/10.1016/j.bcp.2011.08.010
Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch‐Ernst, K. I.; Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res., 2018, 62(1), 1700447. https://doi.org/10.1002/mnfr.201700447
DOI: https://doi.org/10.1002/mnfr.201700447
Kandemir, K., Tomas, M., McClements, D. J., & Capanoglu, E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci., 2022, 119, 192-200. https://doi.org/10.1016/j.tifs.2021.11.032
DOI: https://doi.org/10.1016/j.tifs.2021.11.032