aus der Beek, T., Weber, F.A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., Küster, A., Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 2016, 35, 823-835.
DOI: https://doi.org/10.1002/etc.3339
Boxall, A.B., Rudd, M.A., Brooks, B.W., Caldwell, D.J., Choi, K., Hickmann, S., Innes, E., Ostapyk, K., Staveley, J.P., Verslycke, T., Pharmaceuticals and personal care products in the environment: what are the big questions? Environmental Health Perspectives, 2012, 120, 1221-1229.
DOI: https://doi.org/10.1289/ehp.1104477
Medicines use and spending in the US: A review of 2015 and outlook to 2020. 2016, Institute for Healthcare Informatics: Parsippany, New Jersey.
Halling-Sørensen, B., Nielsen, S.N., Lanzky, P., Ingerslev, F., Lützhøft, H.H., Jørgensen, S., Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere, 1998, 36, 357-393.
DOI: https://doi.org/10.1016/S0045-6535(97)00354-8
Pharmaceuticals in the environment – the global perspective. Occurrence, effects, and potential cooperative action under SAICM. 2014, Rheinisch-Westfälisches Institut für Wasser.
Rodríguez-Couto, S., Industrial and environmental applications of white-rot fungi. Mycosphere, 2017, 8, 456-466.
DOI: https://doi.org/10.5943/mycosphere/8/3/7
Burns, E.E., ThomasOates, J., Kolpin, D.W., Furlong, E.T., Boxall, A.B., Are exposure predictions, used for the prioritization of pharmaceuticals in the environment, fit for purpose? Environmental Toxicology and Chemistry, 2017, 36, 2823-2832.
DOI: https://doi.org/10.1002/etc.3842
Szymonik, A., Lach, J., Zagrożenie środowiska wodnego obecnością środków farmaceutycznych. Inżynieria i Ochrona Środowiska, 2012, 15, 249-263.
Wontorska, K., Wąsowski, J., Problematyka usuwania farmaceutyków w procesach oczyszczania ścieków. Gaz, Woda i Technika Sanitarna, 2018, 1, 36-42.
DOI: https://doi.org/10.15199/17.2018.1.8
Subedi, B., Kannan, K., Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, USA. Science of the Total Environment, 2015, 514, 273-280.
DOI: https://doi.org/10.1016/j.scitotenv.2015.01.098
Dusi, E., Rybicki, M., Jungmann, D., The Database" Pharmaceuticals in the Environment"-Update and New Analysis.2019: Umweltbundesamt.
Umwelt Bundesamt, Database "Pharmaceuticals in the environment", 26.06.2019, https://www.umweltbundesamt.de/en/databasepharmaceuticals-in-the-environment-0, [dostęp: 27.08.2021].
Nikolaou, A., Meric, S., Fatta, D., Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 2007, 387, 1225-1234.
DOI: https://doi.org/10.1007/s00216-006-1035-8
Garrison, A., GC/MS analysis of organic compounds in domestic wastewaters. Identification and analysis of organic pollutants in water, 1976.
Dyrektywa Rady z dnia 21 maja 1991 r. dotycząca oczyszczania ścieków komunalnych (91/271/EWG).
Dyrektywa Parlamentu Europejskiego i Rady 2013/39/UE z dnia 12 sierpnia 2013 r. zmieniająca dyrektywy 2000/60/WE i 2008/105/WE w zakresie substancji priorytetowych w dziedzinie polityki wodnej., in Dz. Urz. UE L’226/1 24.8.2013 2013.
Dziennik Urzędowy Unii Europejskiej z dnia 20 marca 2015r. ustanawiająca listę obserwacyjną substancji do celów monitorowania obejmującego całą Unię w zakresie polityki wodnej na podstawie dyrektywy Parlamentu Europejskiego i Rady 2008/105/WE., in Dz. Urz. UE L’78/40, 24.3.2015.
Decyzja Wykonawcza Komisji (UE) 2018/840 z dnia 5 czerwca 2018 r. ustanawiająca listę obserwacyjną substancji do celów monitorowania obejmującego całą Unię w zakresie polityki wodnej na podstawie dyrektywy Parlamentu Europejskiego i Rady 2008/105/WE i uchylająca decyzję wykonawczą Komisji (UE) 2015/495 (notyfikowana jako dokument nr C(2018) 3362) Dz.U. UE L 141, 2018, 7.6.2018, 9-12. 19. Komunikat Komisji Do Parlamentu Europejskiego, Rady i Europejskiego Komitetu Ekonomicznospołecznego Strategiczne podejście Unii Europejskiej do substancji farmaceutycznych w środowisku. 20. K'oreje, K.O., Demeestere, K., De Wispelaere, P., Vergeynst, L., Dewulf, J., Van Langenhove, H., From multi-residue screening to target analysis of pharmaceuticals in water: development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Science of the Total Environment, 2012, 437, 153-164.
Matongo, S., Birungi, G., Moodley, B., Ndungu, P., Pharmaceutical residues in water and sediment of Msunduzi River, kwazulu-natal, South Africa. Chemosphere, 2015, 134, 133-140.
DOI: https://doi.org/10.1016/j.chemosphere.2015.03.093
Manickum, T., John, W., Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). Science of the Total Environment, 2014, 468, 584-597.
DOI: https://doi.org/10.1016/j.scitotenv.2013.08.041
Mburu, N., Tebitendwa, S.M., van Bruggen, J.J., Rousseau, D.P., Lens, P.N., Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: A case study of the Juja sewage treatment works. Journal of Environmental Management, 2013, 128, 220-225.
DOI: https://doi.org/10.1016/j.jenvman.2013.05.031
Kostich, M.S., Batt, A.L., Lazorchak, J.M., Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environmental Pollution, 2014, 184, 354-359.
DOI: https://doi.org/10.1016/j.envpol.2013.09.013
McEneff, G., Barron, L., Kelleher, B., Paull, B., Quinn, B., A yearlong study of the spatial occurrence and relative distribution of pharmaceutical residues in sewage effluent, receiving marine waters and marine bivalves. Science of the Total Environment, 2014, 476-477, 317-26.
DOI: https://doi.org/10.1016/j.scitotenv.2013.12.123
Gibson, R., Durán-Álvarez, J.C., Estrada, K.L., Chávez, A., Cisneros, B.J., Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 2010, 81, 1437-1445.
DOI: https://doi.org/10.1016/j.chemosphere.2010.09.006
Ferreira, A.P., Identification and quantification of ibuprofen in conventional wastewater treatment plants in Rio de Janeiro, Brazil, and their discharge to the aquatic environment. Journal of Advances in Biology, 2014, 4, 305-313.
Pacheco Ferreira, A., Environmental Investigation of Psychiatric Pharmaceuticals: Guandu River, Rio De Janeiro State, Southeast Brazil. Journal of Chemical Health Risks, 2018, 4,
Roberts, J., Kumar, A., Du, J., Hepplewhite, C., Ellis, D.J., Christy, A.G., Beavis, S.G., Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of the Total Environment, 2016, 541, 1625-1637.
DOI: https://doi.org/10.1016/j.scitotenv.2015.03.145
Wu, M., Xiang, J., Que, C., Chen, F., Xu, G., Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China. Chemosphere, 2015, 138, 486-493.
DOI: https://doi.org/10.1016/j.chemosphere.2015.07.002
Ma, R., Wang, B., Lu, S., Zhang, Y., Yin, L., Huang, J., Deng, S., Wang, Y., Yu, G., Characterization of pharmaceutically active compounds in Dongting Lake, China: occurrence, chiral profiling and environmental risk. Science of the Total Environment, 2016, 557, 268-275.
DOI: https://doi.org/10.1016/j.scitotenv.2016.03.053
Sheng, L.-H., Chen, H.-R., Huo, Y.-B., Wang, J., Zhang, Y., Yang, M., Zhang, H.-X., Simultaneous determination of 24 antidepressant drugs and their metabolites in wastewater by ultra-high performance liquid chromatography–tandem mass spectrometry. Molecules, 2014, 19, 1212-1222.
DOI: https://doi.org/10.3390/molecules19011212
Fang, T.-H., Nan, F.-H., Chin, T.-S., Feng, H.-M., The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Marine Pollution Bulletin, 2012, 64, 1435-1444.
DOI: https://doi.org/10.1016/j.marpolbul.2012.04.008
Subedi, B., Balakrishna, K., Joshua, D.I., Kannan, K., Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere, 2017, 167, 429-437.
DOI: https://doi.org/10.1016/j.chemosphere.2016.10.026
Loos, R., Carvalho, R., António, D.C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., EUwide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 2013, 47, 6475-6487.
DOI: https://doi.org/10.1016/j.watres.2013.08.024
Golovko, O., Kumar, V., Fedorova, G., Randak, T., Grabic, R., Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere, 2014, 111, 418-426.
DOI: https://doi.org/10.1016/j.chemosphere.2014.03.132
Baker, D.R., Kasprzyk-Hordern, B., Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments. Science of the Total Environment, 2013, 454-455, 442-56.
DOI: https://doi.org/10.1016/j.scitotenv.2013.03.043
Salgado, R., Noronha, J., Oehmen, A., Carvalho, G., Reis, M., Analysis of 65 pharmaceuticals and personal care products in 5 wastewater treatment plants in Portugal using a simplified analytical methodology. Water Science and Technology, 2010, 62, 2862-2871.
DOI: https://doi.org/10.2166/wst.2010.985
Meierjohann, A., Brozinski, J.-M., Kronberg, L., Seasonal variation of pharmaceutical concentrations in a river/lake system in Eastern Finland. Environmental Science: Processes & Impacts, 2016, 18, 342-349.
DOI: https://doi.org/10.1039/C5EM00505A
Kosonen, J., Kronberg, L., The occurrence of antihistamines in sewage waters and in recipient rivers. Environmental Science and Pollution Research, 2009, 16, 555-564.
DOI: https://doi.org/10.1007/s11356-009-0144-2
Giebultowicz, J., Nalecz-Jawecki, G., Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicology and Environmental Safety, 2014, 104, 103-109.
DOI: https://doi.org/10.1016/j.ecoenv.2014.02.020
Giebułtowicz, J., Nałęcz-Jawecki, G., Occurrence of immunosuppressive drugs and their metabolites in the sewageimpacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland). Chemosphere, 2016, 148, 137-147.
DOI: https://doi.org/10.1016/j.chemosphere.2015.12.135
Styszko, K., Proctor, K., Castrignanò, E., Kasprzyk-Hordern, B., Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Science of the Total Environment, 2021, 768, 1-18.
DOI: https://doi.org/10.1016/j.scitotenv.2020.144360
Vasquez, M.I., Lambrianides, A., Schneider, M., Kümmerer, K., Fatta-Kassinos, D., Environmental side effects of pharmaceutical cocktails: what we know and what we should know. Journal of Hazardous Materials, 2014, 279, 169-189.
DOI: https://doi.org/10.1016/j.jhazmat.2014.06.069
Fabbri, E., Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna. Annals of the New York Academy of Sciences, 2015, 1340, 20-28.
DOI: https://doi.org/10.1111/nyas.12605
Hallgren, P., Nicolle, A., Hansson, L.A., Brönmark, C., Nikoleris, L., Hyder, M., Persson, A., Synthetic estrogen directly affects fish biomass and may indirectly disrupt aquatic food webs. Environmental Toxicology and Chemistry, 2014, 33, 930-936.
DOI: https://doi.org/10.1002/etc.2528
Thilagam, H., Gopalakrishnan, S., Bo, J., Wang, K.J., Effect of 17β estradiol on the immunocompetence of japanese sea bass (Lateolabrax japonicus). Environmental Toxicology and Chemistry: An International Journal, 2009, 28, 1722-1731.
DOI: https://doi.org/10.1897/08-642.1
Adeel, M., Song, X., Wang, Y., Francis, D., Yang, Y., Environmental impact of estrogens on human, animal and plant life: a critical review. Environment International, 2017, 99, 107-119.
DOI: https://doi.org/10.1016/j.envint.2016.12.010
Bielen, A., Šimatović, A., Kosić-Vukšić, J., Senta, I., Ahel, M., Babić, S., Jurina, T., Plaza, J.J.G., Milaković, M., Udiković-Kolić, N., Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Research, 2017, 126, 79-87.
DOI: https://doi.org/10.1016/j.watres.2017.09.019
Kristofco, L.A., Brooks, B.W., Global scanning of antihistamines in the environment: Analysis of occurrence and hazards in aquatic systems. Science of the Total Environment, 2017, 592, 477-487.
DOI: https://doi.org/10.1016/j.scitotenv.2017.03.120
Bergheim, M., Gminski, R., Spangenberg, B., Dębiak, M., Bürkle, A., Mersch-Sundermann, V., Kümmerer, K., Gieré, R., Recalcitrant pharmaceuticals in the aquatic environment: a comparative screening study of their occurrence, formation of phototransformation products and their in vitro toxicity. Environmental Chemistry, 2014, 11, 431-444.
DOI: https://doi.org/10.1071/EN13218
Parrella, A., Lavorgna, M., Criscuolo, E., Russo, C., Fiumano, V., Isidori, M., Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans. Chemosphere, 2014, 115, 59-66.
DOI: https://doi.org/10.1016/j.chemosphere.2014.01.013
Lee, J., Ji, K., Kho, Y.L., Kim, P., Choi, K., Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicology and Environmental Safety, 2011, 74, 1216-1225.
DOI: https://doi.org/10.1016/j.ecoenv.2011.03.014
Heath, E., Filipič, M., Kosjek, T., Isidori, M., Fate and effects of the residues of anticancer drugs in the environment. Environmental Science and Pollution Research, 2016, 23, 14687–14691.
DOI: https://doi.org/10.1007/s11356-016-7069-3
Ericson, H., Thorsén, G., Kumblad, L., Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquatic Toxicology, 2010, 99, 223-231.
DOI: https://doi.org/10.1016/j.aquatox.2010.04.017
Maszkowska, J., Stolte, S., Kumirska, J., Łukaszewicz, P., Mioduszewska, K., Puckowski, A., Caban, M., Wagil, M., Stepnowski, P., Białk-Bielińska, A., Beta-blockers in the environment: Part II. Ecotoxicity study. Science of the Total Environment, 2014, 493, 1122-1126.
DOI: https://doi.org/10.1016/j.scitotenv.2014.06.039
Mennigen, J.A., Lado, W.E., Zamora, J.M., Duarte-Guterman, P., Langlois, V.S., Metcalfe, C.D., Chang, J.P., Moon, T.W., Trudeau, V.L., Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus. Aquatic Toxicology, 2010, 100, 354-364.
DOI: https://doi.org/10.1016/j.aquatox.2010.08.016
Coppola, F., Almeida, Â., Henriques, B., Soares, A.M., Figueira, E., Pereira, E., Freitas, R., Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios. Science of the Total Environment, 2017, 601, 1129-1138.
DOI: https://doi.org/10.1016/j.scitotenv.2017.05.201
Sehonova, P., Plhalova, L., Blahova, J., Doubkova, V., Marsalek, P., Prokes, M., Tichy, F., Skladana, M., Fiorino, E., Mikula, P., Effects of selected tricyclic antidepressants on early-life stages of common carp (Cyprinus carpio). Chemosphere, 2017, 185, 1072-1080.
DOI: https://doi.org/10.1016/j.chemosphere.2017.07.092
Yang, M., Liu, S., Hu, L., Zhan, J., Lei, P., Wu, M., Effects of the antidepressant, mianserin, on early development of fish embryos at low environmentally relevant concentrations. Ecotoxicology and Environmental Safety, 2018, 150, 144-151.
DOI: https://doi.org/10.1016/j.ecoenv.2017.12.024
Estévez-Calvar, N., Canesi, L., Montagna, M., Faimali, M., Piazza, V., Garaventa, F., Adverse effects of the SSRI antidepressant sertraline on early life stages of marine invertebrates. Marine Environmental Research, 2017, 128, 88-97.
DOI: https://doi.org/10.1016/j.marenvres.2016.05.021
Henry, T.B., Kwon, J.W., Armbrust, K.L., Black, M.C., Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia. Environmental Toxicology and Chemistry, 2004, 23, 2229-33.
DOI: https://doi.org/10.1897/03-278
Hassett, B., Gradinger, R., Chytrids dominate arctic marine fungal communities. Environmental Microbiology, 2016, 18, 2001-2009.
DOI: https://doi.org/10.1111/1462-2920.13216
Sista Kameshwar, A.K., Qin, W., Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology, 2018, 9, 93-105.
DOI: https://doi.org/10.1080/21501203.2017.1419296
Kołwzan, B., Adamiak, W., Dziubek, A., Możliwości zastosowania grzybów w technologiach oczyszczania i remediacji wybranych elementów środowiska. Ochrona Środowiska, 2018, 40, 3-20.
Bankole, P.O., Adekunle, A.A., Govindwar, S.P., Biodegradation of a monochlorotriazine dye, cibacron brilliant red 3B-A in solid state fermentation by wood-rot fungal consortium, Daldinia concentrica and Xylaria polymorpha: Co-biomass decolorization of cibacron brilliant red 3B-A dye. International Journal of Biological Macromolecules, 2018, 120, 19-27.
DOI: https://doi.org/10.1016/j.ijbiomac.2018.08.068
Fernando, M., Wijesundera, R., Soysa, S., de Silva, E., Nanayakkara, C., Antioxidant potential and content of the polyphenolic secondary metabolites of white rot macrofungi; Flavodon flavus (Klotzsch.) and Xylaria feejeensis (Berk.). SDRP Journal of Plant Science, 2016, 1,
DOI: https://doi.org/10.25177/JPS.1.1.2
Koyani, R.D., Pramod, S., Patel, H.R., Vasava, A.M., Rao, K.S., Rajput, K.S. Anatomical characterisation and in vitro laboratory decay test of different woods decayed by Xylaria hypoxylon. 2017. Singapore: Springer Singapore.
DOI: https://doi.org/10.1007/978-981-10-3115-1_10
Asif, M.B., Hai, F.I., Singh, L., Price, W.E., Nghiem, L.D., Degradation of pharmaceuticals and personal care products by white-rot fungi—a critical review. Current Pollution Reports, 2017, 3, 88-103.
DOI: https://doi.org/10.1007/s40726-017-0049-5
Krzyżewska, I., Kozarska, A., Biodegradacja wybranych związków organicznych przy użyciu organizmów White Rot Fungi. Cz. 1. LAB: Laboratoria, Aparatura, Badania, 2016, 21,
Rodarte-Morales, A., Feijoo, G., Moreira, M., Lema, J., Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World Journal of Microbiology and Biotechnology, 2011, 27, 1839-1846.
DOI: https://doi.org/10.1007/s11274-010-0642-x
Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató, C., Caminal, G., Vicent, T., Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. Journal of Hazardous Materials, 2010, 176, 836-842.
DOI: https://doi.org/10.1016/j.jhazmat.2009.11.112
Palli, L., Castellet-Rovira, F., Perez-Trujillo, M., Caniani, D., SarraAdroguer, M., Gori, R., Preliminary evaluation of Pleurotus ostreatus for the removal of selected pharmaceuticals from hospital wastewater. Biotechnology Progress, 2017, 33, 1529-1537.
DOI: https://doi.org/10.1002/btpr.2520
Vasiliadou, I., Sánchez-Vázquez, R., Molina, R., Martínez, F., Melero, J., Bautista, L., Iglesias, J., Morales, G., Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. Journal of Environmental Management, 2016, 180, 228-237.
DOI: https://doi.org/10.1016/j.jenvman.2016.05.035
Golan-Rozen, N., Chefetz, B., Ben-Ari, J., Geva, J., Hadar, Y., Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase. Environmental Science & Technology, 2011, 45, 6800-6805.
DOI: https://doi.org/10.1021/es200298t
Cruz-Morató, C., Lucas, D., Llorca, M., Rodriguez-Mozaz, S., Gorga, M., Petrovic, M., Barceló, D., Vicent, T., Sarrà, M., Marco-Urrea, E., Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Science of the Total Environment, 2014, 493, 365-376.
DOI: https://doi.org/10.1016/j.scitotenv.2014.05.117
Kózka, B., Nałęcz-Jawecki, G., Turło, J., Giebułtowicz, J., Application of Pleurotus ostreatus to efficient removal of selected antidepressants and immunosuppressant. Journal of Environmental Management, 2020, 273, 1-8.
DOI: https://doi.org/10.1016/j.jenvman.2020.111131
Cajthaml, T., Kresinova, Z., Svobodova, K., Moder, M., Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere, 2009, 75, 745-750.
DOI: https://doi.org/10.1016/j.chemosphere.2009.01.034
Taboada-Puig, R., Junghanns, C., Demarche, P., Moreira, M.T., Feijoo, G., Lema, J.M., Agathos, S.N., Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: Production, partial characterization and application for the elimination of endocrine disruptors. Bioresource Technology, 2011, 102, 6593-6599.
DOI: https://doi.org/10.1016/j.biortech.2011.03.018
Eibes, G., Debernardi, G., Feijoo, G., Moreira, M.T., Lema, J.M., Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 2011, 22, 539-550.
DOI: https://doi.org/10.1007/s10532-010-9426-0
Lloret, L., Hollmann, F., Eibes, G., Feijoo, G., Moreira, M.T., Lema, J.M., Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation, 2012, 23, 373-386.
DOI: https://doi.org/10.1007/s10532-011-9516-7
García-Galán, M.J., Rodríguez-Rodríguez, C.E., Vicent, T., Caminal, G., Díaz-Cruz, M.S., Barceló, D., Biodegradation of sulfamethazine by Trametes versicolor: Removal from sewage sludge and identification of intermediate products by UPLC–QqTOF-MS. Science of the Total Environment, 2011, 409, 5505-5512.
DOI: https://doi.org/10.1016/j.scitotenv.2011.08.022
Rodríguez-Rodríguez, C.E., García-Galán, M.J., Blánquez, P., DíazCruz, M.S., Barceló, D., Caminal, G., Vicent, T., Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. Journal of Hazardous Materials, 2012, 213, 347-354.
DOI: https://doi.org/10.1016/j.jhazmat.2012.02.008
Prieto, A., Möder, M., Rodil, R., Adrian, L., Marco-Urrea, E., Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresource Technology, 2011, 102, 10987-10995.
DOI: https://doi.org/10.1016/j.biortech.2011.08.055