Someswara Rao, M.; Pulla Rao, B.; Purna Koteswara Rao, C.H. and Bhaskara Rao, T. Synthesis, Characterization and Antibacterial Screening of Some Novel Imidazol Associated 1,2,4-Triazolo Linked 1,3,4- Thiadiazine. Heterocycl. Lett 2020, 10, 299-307.
Kerru, N.; Gummidi, L.; Maddila, S.; Gang, K.K. and Jonnalagadda, S.B.A. Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25 (8), 1909. https://doi.org/10.3390/molecules25081909
DOI: https://doi.org/10.3390/molecules25081909
Mulla, A.Al. A Review: Biological Importance of Heterocyclic Compounds. Der Pharma Chemica 2017, 9 (13), 141-147.
Shaikh, A.Z.; Jadhav, H.; Borse, D.M.; Jain, R.S. A Short Review on Structures and Synthesis of Some Heterocyclic Compounds. AJRC 2021, 14, 2, 149-151. https://doi.10.5958/0974-4150.2021.00028.6
Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.;Taylor, R.J.K. CHEC-III. 2008. https://doi.org/10.1016/B978-008044992-0.09004-0.
DOI: https://doi.org/10.1016/B978-008044992-0.09004-0
Jha, KK.; Samad, A.; Kumar, Y.; Shaharyar, M.; Khosa, R.L.; Jain, J.; Kumar, V.; Singh, P. Design, Synthesis and Biological Evaluation of 1,3,4-Oxadiazole Derivatives. Eur. J. Med. Chem. 2010, 45, 4963–4967. https://doi.org/10.1016/j.ejmech.2010.08.003
DOI: https://doi.org/10.1016/j.ejmech.2010.08.003
Palit, R.; Saraswat, N.; Sahoo, J. Review on Substituted 1,3,4-Oxadiazole and Its Biological Activities. Int. Res. J. Pharm. 2016, 7, 1–7. https://doi.10.7897/2230-8407.07212
DOI: https://doi.org/10.7897/2230-8407.07212
Bala, S.; Kamboj, S.; Kajal, A.; Saini, V.; Prasad, D.N. 1,3,4-Oxadiazole Derivatives: Synthesis, Characterization, Antimicrobial Potential, and Computational Studies. Biomed. Res. Int. 2014, 1-18. https://doi.10.1155/2014/172791
DOI: https://doi.org/10.1155/2014/172791
Bondock, S.; Adel, S.; Etman, H.A.; Badria F.A. Synthesis and Antitumor Evaluation of Some New 1,3,4-Oxadiazole-Based Heterocycles. Eur. J. Med. Chem.
, 48, 192–199. https://doi.10.1016/j.ejmech.2011.12.013
Nauduri, D.; and Reddy, G.B. Antibacterials and Antimycotics: Part 1: Synthesis and Activity of 2-Pyrazoline Derivatives. Chem. Pharm. Bull. 1998, 46, 1254. https://doi.10.1248/cpb.46.1254
DOI: https://doi.org/10.1248/cpb.46.1254
Udupi, R.H.; Kushnoor, A.R. and Bhat, A.R. Synthesis and Biological Evaluation of Certain Pyrazoline Derivatives of 2-[6-Methoxy Naphthyl]-Propionic Acid (naproxen). Indian J. Heterocycl. Chem. 1998, 8, 63.
Abid, M. and Azam, A. Synthesis and Antiamoebic Activities of 1-N-Substituted Cyclised Pyrazoline Analogues of Thiosemicarbazones. Bioorg. Med. Chem. 2005, 15, 2213. https://doi.org/10.1016/j.bmc.2004.12.050
Bilgin, A.; Palaska, E. and Sunal, R.; Forsch, A. A Modified and Convenient Method for the Preparation of N-Phenylpyrazoline Derivatives. Chem. Heterocycl. Compd. 1993, 43, 1041. https://doi.org/10.1016/j.bmc.2004.12.050
DOI: https://doi.org/10.1016/j.bmc.2004.12.050
Secci, D.; Bolasco, A.; Chimenti, P.; Carradori,S.The State of the Art of Pyrazole Derivatives as Monoamine Oxidase Inhibitors and Antidepressant/Anticonvulsant Agents. Curr. Med. Chem. 2011, 18, 5114-5144. https://doi.org/10.2174/092986711797636090
DOI: https://doi.org/10.2174/092986711797636090
Guniz, K.S.; Rollas, S.; Erdeniz, H.; Kiraz, M.; Cevdet, E.A. and Vidin, A. Modified and Convenient Method for the Preparation of N-Phenylpyrazoline Derivatives. Eur. J. Med. Chem. 20O6, 35, 892-896. https://doi 10.1002/chin.200717113
Huang, Y.R. and Katzenellenbogen, J.A. Regioselective Synthesis of 1,3,5-Triaryl-4-Alkylpyrazoles: Novel Ligands for the Estrogen Receptor. Org. Lett. 2000, 2, 2833. https://doi.org/10.1021/ol0062650
DOI: https://doi.org/10.1021/ol0062650
Cahyono, R.N.; Andari, S.A.; Wahyuningsih, T.D.; Synthesis of N-Phenylpyrazoline Derivative from 4-Chlorobenzaldehyde and 4-Chloroacetophenone and its Activity as an Antimalarial Agent. Mater. Forum. 2022, 1061, 211-216. https://doi.org/10.4028/p-wah85x
DOI: https://doi.org/10.4028/p-wah85x
Fustero, S.; Rosello, M.S.; Barrio, P. and Fuentes, A.S. From 2000 to Mid-2010. Chem. Rev. 2011, 111, 6984–7034. https://doi.10.1021/cr2000459
DOI: https://doi.org/10.1021/cr2000459
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. M. New J. Chem. 2017, 41, 16–41. https://doi.10.1039/C6NJ03181A
DOI: https://doi.org/10.1039/C6NJ03181A
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-aizari, F.A., and Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. https://doi.10.3390/molecules23010134
DOI: https://doi.org/10.3390/molecules23010134
Berghot, M.A. and Moawad, E.B. Convergent Synthesis and Antibacterial Activity of Pyrazole and Pyrazoline Derivatives of Diazepam. Eur. J. Pharm. Sci. 2003, 20, 173. https://doi.org/10.1016/S0928-0987(03)00162-3
DOI: https://doi.org/10.1016/S0928-0987(03)00162-3
Go, M.L.; Wu, X. and Liu, X.L. Chalcones: An Update on Cytotoxic and Chemoprotective Properties. Curr. Med. Chem. 2005, 12, 483-499. http://dx.doi.org/10.2174/0929867053363153
DOI: https://doi.org/10.2174/0929867053363153
Singh, P.; Anand, A.; Kumar, V. Recent Developments in Biological Activities of Chalcones: A Mini-Review Eur. J. Med. Chem. 2014, 85, 758-777. https://doi.10.1016/j.ejmech.2014.08.033
DOI: https://doi.org/10.1016/j.ejmech.2014.08.033
Salehi, B.; Quispe, C.; Chamkhi, I.; Omari, N.EI.; Balahbib, A. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front. Pharmacol. 2020, 11, 592654. https://doi.org/10.3389/fphar.2020.592654
DOI: https://doi.org/10.3389/fphar.2020.592654
Vanjare, B.D.; Choi, N.M.; Mahajan, P.G.; Raza, H.; Hassan, M.; Han, Y.; Yu, S.-Mi.; Kim, S.J.; Seo, S.Y.; Lee, K.H. Novel 1,3,4-Oxadiazole Compounds Inhibit the Tyrosinase and Melanin Level: Synthesis, In-vitro, and In-silico Studies Bioorg. Med. Chem. 2021, 41, 16222. https://doi. org/10.1016/j.bmc.2021.116222
DOI: https://doi.org/10.1016/j.bmc.2021.116222
Oliveira, C.S.De.; Lira B.F.; Filho, J.M.B.; Lorenzo, J.G.F.; Athayde-Filho, P.F.De; Synthetic Approaches and Pharmacological Activity of 1,3,4-Oxadiazoles: A Review of the Literature from 2000-2012. Molecules 2012, 17, 2000-2012. https://doi.org/10.3390/molecules170910192
DOI: https://doi.org/10.3390/molecules170910192
Yakkala, P.A.; Khan, I.A.; Dannarm, S.R; Aboti, J.; Sonti, R.; Shafi, S., and Kamal, A. Multicomponent Domino Reaction for Concise Access to 2-Amino-Substituted 1,3,4 Oxadiazoles via Smiles Rearrangement. J. Org. Chem. 2023, 88, 17, 12216–12223. https://doi.org/10.1021/acs.joc.3c00516
DOI: https://doi.org/10.1021/acs.joc.3c00516
Somani R.R.; Shirodkarb, P.Y. Oxadiazole: A Biologically Important Heterocycle. Der Pharma Chemica 2009, 1 (1), 130-140.
Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed B. 1,3,4-Oxadiazole: a Biologically Active Scaffold. Mini-Rev. Med. Chem. 2012, 12, 789. https://doi.10.2174/138955712801264800
DOI: https://doi.org/10.2174/138955712801264800
Sun, J.; Makawana, J.A.; Zhu H.L. 1,3,4-Oxadiazole Derivatives as Potential Biological Agents. Mini-Rev. Med. Chem. 2013, 13, 1725. https://doi. 10.2174/13895575113139990071
DOI: https://doi.org/10.2174/13895575113139990071
Ahsan, M.J. 1,3,4-Oxadiazole Containing Compounds as Therapeutic Targets For Cancer Therapy. Mini-Rev. Med. Chem. 2022, 22, 1, 164-197(34). https://doi. 10.2174/1389557521666210226145837
DOI: https://doi.org/10.2174/1389557521666210226145837
Paruch, K.; Popiołek, Ł.; Wujec, M. Antimicrobial and Antiprotozoal Activity of 3-Acetyl-2,5-Disubstituted-1,3,4-Oxadiazolines: A Review. Med. Chem. Res. 2020, 29, 1–16. https://doi.10.3390/molecules25245844
DOI: https://doi.org/10.1007/s00044-019-02463-w
Lam, K.W.; Syahida, A.; Ul-Haq, Z.; Rahman, M.B.A.; Lajis, N.H. Synthesis and biological Activity of Oxadiazole and Triazolothiadiazole Derivatives as Tyrosinase Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 3755–3759. https://doi.org/10.1016/j. bmcl.2010.04.067
DOI: https://doi.org/10.1016/j.bmcl.2010.04.067
Bandgar, B.P.; Adsul, L.K.; Chavan, H.V.; Shringare, S.N.; Korbad, B.L.; Jalde, S.S.; Lonikar, S.V.; Nile, S.H.; Shirfule, A.L. Synthesis, Biological Evaluation, and Molecular Docking of N-{3-[3-(9-Methyl-9H-Carbazol-3-yl)-Acryloyl]-Phenyl}-Benzamide/Amide Derivatives as Xanthine Oxidase and Tyrosinase Inhibitors. Bioorg. Med. Chem. 2012, 20, 5649–5657. https://doi.org/10.1016/j.bmc.2012.07.001
DOI: https://doi.org/10.1016/j.bmc.2012.07.001
Sar, D.; Bag, R.; Yashmeen, A.; Bag, S.S.and Punniyamurthy, T. Synthesis of Functionalized Pyrazoles via Vanadium-Catalyzed C–N Dehydrogenative Cross-Coupling and Fluorescence Switch-On Sensing of BSA Protein. Org. Lett. 2015, 17, 5308−5311. https://doi.10.1021/acs.orglett.5b02669
DOI: https://doi.org/10.1021/acs.orglett.5b02669
Shu, W.M.; Zheng, K.L.; Ma, J.R.; Sun, H.Y.; Mei Wang, M., and Wu, A.X. Convenient Access to Polyfunctional Pyrazoles via a Highly Efficient and Regioselective Multicomponent Reaction. Org. Lett. 2015, 17, 1914−1917. https://doi.10.1021/acs.orglett.5b00605
DOI: https://doi.org/10.1021/acs.orglett.5b00605
Zhang, Q. and Tang, M. Regioselective Synthesis of Highly Functionalized Pyrazoles from
N-Tosylhydrazones. Org. Lett. 2019, 21, 1917−1920. https://doi.10.1021/acs.orglett.9b00561
DOI: https://doi.org/10.1021/acs.orglett.9b00561
Deng, X. and Mani, N.S. Reaction of N-Monosubstituted Hydrazones with Nitroolefins: A Novel Regioselective Pyrazole Synthesis. Org. Lett. 2006, 8, 16, 3505-3508.https://doi 10.1002/chin.200649121
DOI: https://doi.org/10.1021/ol061226v
Kirkham, J.D.; Edeson, S.J.; Stokes, S. and Harrity. J.P.A. Synthesis of Ynone Trifluoroborates toward Functionalized Pyrazoles. Org. Lett. 2012, 14, 20, 5354-5357. https://doi10.1021/ol302418b
DOI: https://doi.org/10.1021/ol302418b
Kong, Y.; Tang, M. and Wang, Y. Regioselective Synthesis of 1,3,5-Trisubstituted Pyrazoles from N. Alkylated Tosylhydrazones and Terminal Alkynes. Org. Lett. 2014, 16, 576−579. https://doi.org/10.1021/ol403447g
DOI: https://doi.org/10.1021/ol403447g
Safaei, G.J.; Bamoniri, A.H. and Soltanian,T.M. A Modified and Convenient Method for the Preparation of N-Phenylpyrazoline Derivatives. 2006, 42, 7. https://doi. 10.1007/s10593-006-0176-1
DOI: https://doi.org/10.1007/s10593-006-0176-1
Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. I2-Mediated Oxidative C–N Bond Formation for Metal-Free One-Pot Synthesis of Di-, Tri-, and Tetrasubstituted Pyrazoles from a,ß-Unsaturated Aldehydes/Ketones and Hydrazines. J. Org. Chem. 2014, 79, 10170-10178. https://doi.org/10.1021/jo501844x
DOI: https://doi.org/10.1021/jo501844x
Zhang, G.; H, Ni.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. One-pot Three-Component Approach to the Synthesis of Polyfunctional Pyrazoles. Org. Lett. 2013, 15, 5967- 5969. https://doi.10.1021/ol402810f
DOI: https://doi.org/10.1021/ol402810f
Ding, Y.; Zhang, T.; Chen, Q.Y.; Zhu, C. Visible-Light Photocatalytic Aerobic Annulation for the Green Synthesis of Pyrazoles. Org. Lett. 2016, 18, 4206-4209. https://doi.org/10.1021/acs.orglett.6b01867
DOI: https://doi.org/10.1021/acs.orglett.6b01867
Kamal, A.; Sastry, K.N.V.; Chandrasekhar, D.; Mani, G.S.; Adiyala, P.R.; Nanubolu, J.B.; Singarapu, K.J.; Maurya, R.A. One-Pot, Three-Component Approach to the Synthesis of 3,4,5-Trisubstituted Pyrazoles. J. Org. Chem. 2015, 80, 4325-4335. https://doi.10.1021/jo502946g
DOI: https://doi.org/10.1021/jo502946g
Moura, N.M.M.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Tome, A.C.; Rakib, El M.; Hannioui, A.; Mojahidi, S.; Hackbarth, S.; Roder, B.; Paz, F.A.A.; Silva, A.M.S.; Cavaleiro, J.A.S. Novel Pyrazoline and Pyrazole Porphyrin Derivatives: Synthesis and Photophysical Properties. Tetrahedron 2012, 68, 8181-8193. https://doi.org/10.1016/j.tet.2012.07.072
DOI: https://doi.org/10.1016/j.tet.2012.07.072
Casadia, I.; Albuquerque, D.Y.de; Capiotto, A. do C,; Pereira, C.M.P de, and Pizzuti, L. Oxidative Aromatization of Pyrazolines. Curr. Org. Synth. 2017, 1, 691-703. https://doi.org/10.2174/1570179414666161230151123
DOI: https://doi.org/10.2174/1570179414666161230151123
Zhao, W.W.; Shao, Y.C.;Wang, A.N.; Huang, J.L.; He, C.Y.; Cui, B.D.; Wan, N.W.; Chen, Y.Z. and Han, W.Y. Diazotrifluoroethyl Radical: A CF3.Containing Building Block in [3+2] Cycloaddition. Org. Lett. 2021, 23, 9256−9261. https://doi.org/10.1021/acs.orglett.1c03603
DOI: https://doi.org/10.1021/acs.orglett.1c03603
Gao, Q.; Liu, S.; Wu, X.; Zhang, J. and Wu, A. Direct Annulation of Hydrazides to 1,3,4-Oxadiazoles via Oxidative C(CO)-C(Methyl) Bond Cleavage of Methyl Ketones. Org. Lett. 2015, 17, 2960−2963. https://doi.10.1021/acs.orglett.5b01241
Abdildinova, A. and Gong, Y.D. Current Parallel Solid-Phase Synthesis of Drug-like Oxadiazole and Thiadiazole Derivatives for Combinatorial Chemistry. ACS Comb. Sci. 2018, 20, 309−329. https://doi.10.1021/acscombsci.8b00044
DOI: https://doi.org/10.1021/acscombsci.8b00044
Dzeagu, F.O. and Carrick, J.D. Synthetic Access to Unsymmetric, Tridentate, Pyridyl-1,3,4-Oxadiazole Complexants via Intramolecular Oxidative Annulation of Arylhydrazides with Heteroaryl Carbaldehydes. J. Org. Chem. 2023, 88, 419−432. https://doi.org/10.1021/acs.joc.2c02421
DOI: https://doi.org/10.1021/acs.joc.2c02421
Yu, W.; Huang, G.; Zhang, Y.; Liu, H.; Dong, L.; Yu, X.; Y. Li.; Chang, J. I2. Mediated Oxidative C.O Bond Formation for the Synthesis of 1,3,4-Oxadiazoles from Aldehydes and Hydrazides. J. Org. Chem. 2013, 78, 10337-10343. https://doi.10.1021/jo401751h
DOI: https://doi.org/10.1021/jo401751h
Bhatia, S. and Gupta, M. 1, 3, 4-Oxadiazole as Antimicrobial Agents: An Overview. J. Chem. Pharm. Res. 2011, 3, 137-147.
Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Direct Annulation of Hydrazides to 1,3,4-Oxadiazoles via Oxidative C (CO)–C (Methyl) Bond Cleavage of Methyl Ketones. Org. Lett. 2015, 17, 2960-2963. https://doi.org/10.1021/acs.orglett.5b01241
DOI: https://doi.org/10.1021/acs.orglett.5b01241
He, Z.; Li, H.; Li, Z. Intramolecular Cyclization of Enamines to 3 H-Indoles Mediated by Iodine. J. Org. Chem. 2010, 75, 4636. https://doi.10.1055/s-0030-1258061
DOI: https://doi.org/10.1021/jo100796s
He, Z.; Liu, W.; Li, Z. I2-Catalyzed Indole Formation via Oxidative Cyclization of N-Aryl Enamines. Chem. Asian J. 2011, 6, 1340-1343. https://doi.org/10.1002/asia.201100045
DOI: https://doi.org/10.1002/asia.201100045
Gao, W.C.; Jiang, S.; Wang, R.L.; Zhang, C. Iodine-Mediated Intramolecular Amination of Ketones: The Synthesis of 2-Acylindoles and 2-Acylindolines by Tuning N-Protecting Groups. Chem. Commun. 2013, 49, 4890. https://doi.10.1039/c3cc40797g
DOI: https://doi.org/10.1039/c3cc40797g
Jiang, H.; Huang, H.; Cao H.; Qi, C. TBHP/I2-Mediated Domino Oxidative Cyclization for One-Pot Synthesis of Polysubstituted Oxazoles. Org. Lett. 2010, 12, 5561. https://doi.org/10.1021/ol1023085
DOI: https://doi.org/10.1021/ol1023085
Wan, C.; Gao, L.; Wang, Q.; Zhang, J.; Wang, Z. Simple and Efficient Preparation of 2, 5-Disubstituted Oxazoles via a Metal-Free-Catalyzed Cascade Cyclization. Org. Lett. 2010, 12, 3902. https://doi.org/10.1021/ol101596s
DOI: https://doi.org/10.1021/ol101596s
Wan, C.; Zhang, J.; Wang, S.; Fan, J.; Wang, Z.; Facile Synthesis of Polysubstituted Oxazoles via a Copper-Catalyzed Tandem Oxidative Cyclization. Org. Lett. 2010, 12, 2338. https://doi.org/10.1021/ol100688c
DOI: https://doi.org/10.1021/ol100688c
Boselli, M,; Lee, B.H,; Robert, J.; Prado, M.A.; Min, S.W.; Cheng, C.; Silva, M.C.; Seong, C.; Elsasser, S.; Hatle, K.M.; Gahman, T.C.; Gygi, S.P.; Haggarty, S.J.; Gan, Li; Randall W. King, R.W.; and Finley, D. An Inhibitor of the Proteasomal Deubiquitinating Enzyme USP14 Induces tau Elimination in Cultured Neurons. J. Biol. Chem. 2017, 292, 47, 19209-19225. https://doi.org/10.1074/jbc.M117.815126
DOI: https://doi.org/10.1074/jbc.M117.815126
Murugesan, D; Mital, A.; Kaiser, M.; Shackleford, D.M.; Morizzi, J.; Katneni, K.; Campbell, M.; Hudson, A.; Charman, S.A.; Yeates, C.; Gilbert, L.H. Discovery and Structure–Activity Relationships of Pyrrolone Antimalarials. J. Med. Chem. 2013, 56, 7, 2975–2990. https://doi.org/10.1021/jm400009c
DOI: https://doi.org/10.1021/jm400009c
Liu, P.; Yang Y.; Yuan Ju; Tang, Y.; Sang, Z.; Chend, L.; Yanga, T.; Ana, Qi; Zhangb, T.; Luo, Y. Design, Synthesis and Biological Evaluation of Novel Pyrrole Derivatives as Potential ClpP1P2 Inhibitor Against Mycobacterium Tuberculosis. J. Bioorg. Chem. 2018, 80, 422-432. https://doi.org/10.1016/j.bioorg.2018.06.004
DOI: https://doi.org/10.1016/j.bioorg.2018.06.004