Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118(17), 3272-3287. DOI:10.1093/cvr/cvac013
DOI: https://doi.org/10.1093/cvr/cvac013
Bleumink, G.S.; Knetsch, A.M.; Sturkenboom, M.C.; Straus, S.M.; Hofman, A.; Deckers, J.W.; Witteman, J.C.; Stricker, B.H. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure: The Rotterdam Study. Eur. Heart J. 2004, 25, 1614–1619. DOI: 10.1016/j.ehj.2004.06.038
DOI: https://doi.org/10.1016/j.ehj.2004.06.038
Imprialos, K.; Stavropoulos, K.; Papademetriou, V. Sodium-Glucose Cotransporter-2 Inhibitors, Reverse J-Curve Pattern, and Mortality in Heart Failure. Heart Fail. Clin. 2019, 15(4), 519-530. DOI: 10.1016/j.hfc.2019.06.004
DOI: https://doi.org/10.1016/j.hfc.2019.06.004
Nessler, J.; Kozierkiewicz, A.; Gackowski, A.; Ponikowski, P.; Hryniewiecki, T.; Grucha-ła, M.; Gąsior, M.; Grodzicki, T.; Kaźmierczak, J.; Legutko, J.; Leszek, P.; Miłkowski, M.; Rozen-Tryt, P.; Sierpiński, R.; Straburzyńska -Migaj, E.; Śliwczyński, A.; Uchmanowicz, I.; Windak, A.; Witkowski, A.; Zapaśnik, A.; Szumowski, Ł. Comprehensive Heart Failure Care pilot study: starting point and expected developments. Kardiol. Pol. 2019, 77, 994–999. DOI: 10.33963/KP.15035
DOI: https://doi.org/10.33963/KP.15035
Lopuszynski, J.B.; Downing, A.J.; Finley, C.M.; Zahid, M. Prognosticators of All-Cause Mortality in Patients With Heart Failure With Preserved Ejection Fraction. Am. J. Cardiol. 2021, 1(158), 66-73. DOI: 10.1016/j.amjcard.2021.07.044
DOI: https://doi.org/10.1016/j.amjcard.2021.07.044
Maggioni, AP.; Dahlström, U.; Filippatos, G.; Chioncel, O.; Crespo Leiro, M.; Drozdz, J.; Fruhwald, F.; Gullestad, L.; Logeart, D.; Fabbri, G.; Urso, R.; Metra, M.; Parissis, J.; Pers-son, H.; Ponikowski, P.; Rauchhaus, M.; Voors, A.A.; Nielsen, O.W.; Zannad, F.; Tavazzi, L. He-art Failure Association of the European Society of Cardiology (HFA). EURObserva-tional Research Programme: regional differences and 1‐year follow‐up results of the Heart Failure Pilot Survey (ESC‐HF Pilot). Eur. J. Heart Fail. 2013, 15, 808–817. DOI: 10.1093/eurjhf/hft050
DOI: https://doi.org/10.1093/eurjhf/hft050
Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart Failure With Reduced Ejection Fraction: A Review. JAMA 2020, 324(5), 488–504. DOI:10.1001/jama.2020.10262
DOI: https://doi.org/10.1001/jama.2020.10262
Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González -Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; Jessup, M.; Linde, C.; Nihoyannopo-ulos, P.; Parissis, J.T.; Pieske, B.; Riley, J.P.; Rosano, G.M.; Ruilope, L.M.; Ruschitzka, F.; Rutten, F.H.; van der Meer, P. Wytyczne ESC dotyczace diagnostyki i leczenia ostrej i przewle-kłej niewydolności serca w 2016 roku. Kardiol. Pol. 2016, 74, 1037–1147. DOI: 10.5603/KP.2016.0141
DOI: https://doi.org/10.5603/KP.2016.0141
Wright, E.M. SGLT2 Inhibitors: Physiology and Pharmacology. Kidney 360. 2021, 17, 2(12), 2027-2037. DOI: 10.34067/KID.0002772021.
DOI: https://doi.org/10.34067/KID.0002772021
Vallon, V.; Thomson, SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017, 60(2), 215-225. DOI: 10.1007/s00125-016-4157-3
DOI: https://doi.org/10.1007/s00125-016-4157-3
Packer, M.; Anker, S. D.; Butler, J.; Filippatos, G.; Ferreira, J. P.; Pocock, S. J.; Sattar, N.; Brueckmann, M.; Jamal, W.; Cotton, D.; Iwata, T.; Zannad, F. Empagliflozin in patients with heart failure, reduced ejection fraction, and volume overload: EMPEROR-reduced trial. J. Am. Coll. Cardiol. 2021, 77, 1381–1392. DOI: 10.1016/j.jacc.2021.01.033
DOI: https://doi.org/10.1016/j.jacc.2021.01.033
Chilton, R.; Tikkanen, I.; Cannon, C. P.; Crowe, S.; Woerle, H. J.; Broedl, U. C.; Johansen, O. E. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes. Metab. 2015, 17, 1180–1193. DOI: 10.1111/dom.12572
DOI: https://doi.org/10.1111/dom.12572
Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc. Diabetol. 2017, 16, 138. DOI: 10.1186/s12933-017-0621-8
DOI: https://doi.org/10.1186/s12933-017-0621-8
Aroor, A. R.; Das, N. A.; Carpenter, A. J.; Habibi, J.; Jia, G.; Ramirez-Perez, F. I.; Martinez-Lemus, L.; Manrique-Acevedo, C. M.; Hayden, M. R.; Duta, C.; Nistala, R.; Mayoux, E.; Padilla, J.; Chandrasekar, B.; DeMarco, V. G. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc. Diabetol. 2018, 17, 108. DOI: 10.1186/s12933-018-0750-8
DOI: https://doi.org/10.1186/s12933-018-0750-8
Mahaffey, KW.; Jardine, M.J.; Bompoint, S.; Cannon, C.P.; Neal, B.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; Capuano, G.; de Zeeuw, D.; Greene, T.; Levin, A.; Pollock, C.; Sun, T.; Wheeler, D.C.; Yavin, Y.; Zhang, H.; Zinman, B.; Rosenthal, N.; Brenner, B.M.; Perkovic, V. Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups. Circulation 2019, 27, 140(9), 739-750. DOI: 10.1161/CIRCULATIONAHA.119.042007
DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.042007
Nielsen, R.; Møller, N.; Gormsen, L.C.; Tolbod, L.P.; Hansson, N.H.; Sorensen, J.; Harms, H.J.; Frøkiær, J.; Eiskjaer, H.; Jespersen, N.R.; Mellemkjaer, S.; Lassen, T.R.; Pryds, K.; Bøtker, H.E.; Wiggers, H. Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation 2019, 30, 139(18), 2129-2141. DOI: 10.1161/CIRCULATIONAHA.118.036459
DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.036459
Lopaschuk, G.D.; Verma, S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl. Sci. 2020, 5, 632–644. DOI: 10.1016/j.jacbts.2020.02.004
DOI: https://doi.org/10.1016/j.jacbts.2020.02.004
Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; Shah, S.J.; Desai, A.S.; McMurray, J.J.V.; Solomon, S.D. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 2022, 400(10354), 757-767. DOI: 10.1016/S0140-6736(22)01429-5
DOI: https://doi.org/10.1016/S0140-6736(22)01429-5
Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.;, Biffi, A.; Boavida, J.M.; Capodanno, D.; Cosyns, B.; Crawford, C.; Davos, C.H.; Desormais, I.; Di Angelantonio, E.; Franco, O.H.; Halvorsen, S.; Hobbs, F.D.R.; Hollander, M.; Jankowska, E.A.; Michal, M.; Sacco, S.; Sattar, N.; Tokgozoglu, L.; Tonstad, S.; Tsioufis, K.P.; van Dis, I.; van Gelder, I.C.; Wanner, C.; Williams, B. ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42(34), 3227-3337. doi: 10.1093/eurheartj/ehab484 Erratum in: Eur. Heart J. 2022, 43(42), 4468-4468. DOI: 10.1093/eurheartj/ehac458
DOI: https://doi.org/10.1093/eurheartj/ehac458
Santos-Gallego, C.G.; Vargas-Delgado, A.P.; Requena-Ibanez, J.A.; Garcia-Ropero, A.; Mancini, D.; Pinney, S.; Macaluso, F.; Sartori, S.; Roque, M.; Sabatel-Perez, F.; Rodriguez-Cordero, A.; Zafar, M.U.; Fergus, I.; Atallah-Lajam, F.; Contreras, J.P.; Varley, C.; Moreno, P.R.; Abascal, V.M.; Lala, A.; Tamler, R.; Sanz, J.; Fuster, V.; Badimon, J.J. EMPA-TROPISM (ATRU-4) Investigators. Randomized Trial of Empagliflozin in Nondiabetic Patients With Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2021, 26, 77(3), 243-255. DOI: 10.1016/j.jacc.2020.11.008
DOI: https://doi.org/10.1016/j.jacc.2020.11.008
Packer, M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation 2022, 146, 1383–1405. DOI: 10.1161/CIRCULATIONAHA.122.061732
DOI: https://doi.org/10.1161/CIRCULATIONAHA.122.061732
Benham, J.L.; Booth, J.E.; Sigal, R.J.; Daskalopoulou, S.S.; Leung, A.A.; Rabi, D.M. Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes. Int. J. Cardiol. Heart Vasc. 2021, 10(33), Art. No: 100725. DOI: 10.1016/j.ijcha.2021.100725
DOI: https://doi.org/10.1016/j.ijcha.2021.100725
Bedi, K.C.Jr.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; Rame, J.E. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation 2016, 133(8), 706-16. DOI: 10.1161/CIRCULATIONAHA.115.017545
DOI: https://doi.org/10.1161/CIRCULATIONAHA.115.017545
Scheen, A.J. Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr. Cardiol. Rep. 2019, 21, Art. No: 70. DOI: 10.1007/s11886-019-1165-1
DOI: https://doi.org/10.1007/s11886-019-1165-1
Wang, J.; Chen, Y.; Xu, W.; Lu, N.; Cao, J.; Yu, S. Effects of intensive blood pressure lowering on mortality and cardiovascular and renal outcomes in type 2 diabetic patients: A meta-analysis. PLoS One 2019, 14(4), e0215362. DOI: 10.1371/journal.pone.0215362
DOI: https://doi.org/10.1371/journal.pone.0215362
Heymans, S.; Hirsch, E.; Anker, S.D.; Aukrust, P.; Balligand, J.L.; Cohen-Tervaert, J.W.; Drexler, H.; Filippatos, G.; Felix, S.B.; Gullestad, L.; Hilfiker-Kleiner, D.; Janssens, S.; Latini, R.; Neubauer, G.; Paulus, W.J.; Pieske, B.; Ponikowski, P.; Schroen, B.; Schultheiss, H.P.; Tschöpe, C.; Van Bilsen, M.; Zannad, F.; McMurray, J.; Shah, A.M. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2009, 11(2), 119-29. DOI: 10.1093/eurjhf/hfn043
DOI: https://doi.org/10.1093/eurjhf/hfn043
Kolijn, D.; Pabel, S.; Tian, Y.; Lódi, M.; Herwig, M.; Carrizzo, A.; Zhazykbayeva, S.; Kovács, Á.; Fülöp, G.Á.; Falcão-Pires, I.; Reusch, P.H.; Linthout, S.V.; Papp, Z.; van Heerebeek, L.; Vecchione, C.; Maier, L.S.; Ciccarelli, M.; Tschöpe, C.; Mügge, A.; Bagi, Z.; Sossalla, S.; Hamdani, N. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc. Res. 2021, 117(2), 495-507. DOI: 10.1093/cvr/cvaa123
DOI: https://doi.org/10.1093/cvr/cvaa123
Bray, J.J.H.; Foster-Davies, H.; Stephens, J.W. A systematic review examining the effects of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on biomarkers of inflammation and oxidative stress. Diabetes Res. Clin. Pract. 2020, 168, Art. No: 108368. DOI: 10.1016/j.diabres.2020.108368
DOI: https://doi.org/10.1016/j.diabres.2020.108368
Nabrdalik-Leśniak, D.; Nabrdalik, K.; Sedlaczek, K.; Główczyński, P.; Kwiendacz, H.; Sawczyn, T.; Hajzler, W.; Drożdż, K.; Hendel, M.; Irlik, K.; Stelmach, P.; Adamczyk, P.; Paradysz, A.; Kasperczyk, S.; Stompór, T.; Gumprecht, J. Influence of SGLT2 Inhibitor Treatment on Urine Antioxidant Status in Type 2 Diabetic Patients: A Pilot Study. Oxid. Med. Cell Longev. 2021, 2021, Art. No: 5593589. DOI: 10.1155/2021/5593589
DOI: https://doi.org/10.1155/2021/5593589
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. DOI: 10.1038/nature05485
DOI: https://doi.org/10.1038/nature05485
Garvey, W.T.; Van Gaal, L.; Leiter, L.A.; Vijapurkar, U.; List, J.; Cuddihy, R.; Ren, J.; Davies, M.J. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018, 85, 32-37. DOI: 10.1016/j.metabol.2018.02.002
DOI: https://doi.org/10.1016/j.metabol.2018.02.002
Braga, T. T.; Forni, M. F.; Correa-Costa, M.; Ramos, R. N.; Barbuto, J. A.; Branco, P.; Castoldi, A.; Hiyane, M. I.; Davanso, M. R.; Latz, E.; Franklin, B. S.; Kowaltowski, A. J.; Camara, N. O. Soluble uric acid activates the NLRP3 inflammasome. Sci. Rep. 2017, 7, Art. No: 39884. DOI: 10.1038/srep39884
DOI: https://doi.org/10.1038/srep39884
Kim, S.R.; Lee, S.G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; Oh, C.M.; Jeon, J.Y.; Gee, H.Y.; Kim, J.H.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Lee, M.S.; Yu, J.W.; Cho, J.W.; Kim, J.S.; Lee, Y.H. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 2020, 11(1), Art. No: 2127. DOI: 10.1038/s41467-020-15983-6
DOI: https://doi.org/10.1038/s41467-020-15983-6
Lee, T.M.; Chang, N.C.; Lin, S.Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic. Biol. Med. 2017, 104, 298–310. DOI: 10.1016/j.freeradbiomed.2017.01.035
DOI: https://doi.org/10.1016/j.freeradbiomed.2017.01.035
Li, C.; Zhang, J.; Xue, M.; Li, X.; Han, F.; Liu, X.; Xu, L.; Lu, Y.; Cheng, Y.; Li, T.; Yu, X.; Sun, B.; Chen, L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol. 2019, 18(1), Art. No: 15. DOI: 10.1186/s12933-019-0816-2
DOI: https://doi.org/10.1186/s12933-019-0816-2
Kang, S.; Verma, S.; Hassanabad, A.F.; Teng, G.; Belke, D.D.;Dundas, J.A.; Guzzardi, D.G.; Svystonyuk, D.A.; Pattar, S.S.; Park, D.S.J.; Turnbull, J.D.; Duff, H.J.; Tibbles, L.A.; Cunnington, R.H.; Dyck, J.R.B.; Fedak, P.W.M. Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Can. J. Cardiol. 2020, 36(4), 543-553. DOI: 10.1016/j.cjca.2019.08.033.
DOI: https://doi.org/10.1016/j.cjca.2019.08.033
Verma, S.; Mazer, C. D.; Yan, A. T.; Mason, T.; Garg, V.; Teoh, H.; Zuo, F.; Quan, A.; Farkouh, M. E.;, Fitchett, D. H.; Goodman, S. G.; Goldenberg, R. M.; Al-Omran, M.; Gilbert, R. E.; Bhatt, D. L.; Leiter, L. A.; Jüni, P.; Zinman, B.; Connelly, K. A. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 2019, 140, 1693–1836. DOI: 10.1161/CIRCULATIONAHA.119.042375
DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.042375
Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; GerasimosFilippatos, G.; Diederick, E.; Grobbee, D.E.; Hansen, T.B.; Huikuri, H.V.; Johans-son, I.; Jüni, P.; Lettino, M.; Marx, N.; Mellbin, L.G.; Östgren, C.J.; Rocca, B.; Roffi, M.; Sattar, N.; Seferović, P.M.; Sousa -Uva, M.; Valensi, P.; Wheeler, DC. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41(2), 255–323. DOI: 10.1093/eurheartj/ehz486
DOI: https://doi.org/10.1093/eurheartj/ehz486
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. EMPA -REG OUTCOME In-vestigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. DOI: 10.1056/NEJMoa1504720.
DOI: https://doi.org/10.1056/NEJMoa1504720
Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. CANVAS Program Collaborative Group. Canagli-flozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017, 377, 644–657. DOI: 10.1056/NEJMoa1611925.
DOI: https://doi.org/10.1056/NEJMoa1611925
Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Ruff, C.T.; Gause -Nilsson, I.A.M.; Fredriksson, M.; Johansson, P.A.; Langkilde, A.M.; Sabatine, M.S. DECLARE-TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019, 380, 347–357. DOI: 10.1056/NEJMoa1812389.
DOI: https://doi.org/10.1056/NEJMoa1812389
Wanner. C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. EMPA-REG OUTCOME Investigators. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375(4), 323-34. DOI: 10.1056/NEJMoa1515920.
DOI: https://doi.org/10.1056/NEJMoa1515920
Furtado, R.H.M.; Bonaca, M.P.; Raz, I.; Zelniker, T.A.; Mosenzon, O.; Cahn, A.; Kuder, J.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Ruff, C.T.; Nicolau, J.C.; Gause-Nilsson, I.A.M.; Fredriksson, M.; Langkilde, A.M.; Sabatine, M.S.; Wiviott, S.D. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation 2019, 139(22), 2516-2527. DOI: 10.1161/CIRCULATIONAHA.119.039996
DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.039996
Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Sabatine, M.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393(10166), Art. No: 30. DOI: 10.1016/S0140-6736(18)33206-9
DOI: https://doi.org/10.1016/S0140-6736(18)32590-X
Inzucchi, S.E.; Kosiborod, M.; Fitchett, D.; Wanner, C.; Hehnke, U.; Kaspers, S.; George, J.T.; Zinman, B. Improvement in Cardiovascular Outcomes With Empagliflozin Is Independent of Glycemic Control. Circulation. 2018, 138(17), 1904-1907. DOI: 10.1161/CIRCULATIONAHA.118.035759
DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.035759
Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; Cannon, C.P.; Capuano, G.; Chu, P.L.; de Zeeuw, D.; Greene, T.; Levin, A.; Pollock, C.; Wheeler, D.C.; Yavin, Y.; Zhang, H.; Zinman, B.; Meininger, G.; Brenner, B.M.; Mahaffey, K.W. CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl. J. Med. 2019, 380(24), 2295-2306. DOI: 10.1056/NEJMoa1811744
DOI: https://doi.org/10.1056/NEJMoa1811744
McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; Böhm, M.; Chiang, C.E.; Chopra, V.K.; de Boer, R.A.; Desai, A.S.; Diez, M.; Drozdz, J.; Dukát, A.; Ge, J.; Howlett, J.G.; Katova, T.; Kitakaze, M.; Ljungman, C.E.A.; Merkely, B.; Nicolau, J.C.; O'Meara, E.; Petrie, M.C.; Vinh, P.N.; Schou, M.; Tereshchenko, S.; Verma, S.; Held, C.; DeMets, D.L.; Docherty, K.F.; Jhund, P.S.; Bengtsson, O.; Sjöstrand, M.; Langkilde, A.M. DAPA-HF Trial Committees and Investigators. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381(21), 1995-2008. DOI: 10.1056/NEJMoa1911303
DOI: https://doi.org/10.1056/NEJMoa1911303
Packer, M.; Anker, S.D.; Butler, J. Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation 2021, 143, 326-336. DOI: 10.1161/CIRCULATIONAHA.120.051783
DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.051783
Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; Jamal, W.; Kimura, K.; Schnee, J.; Zeller, C.; Cotton, D.; Bocchi, E.; Böhm, M.; Choi, D.-J.; Chopra, V.; Chuquiure, E.; Giannetti, N.; Janssens, S.; Zhang, J.; Gonzalez Juanatey, J.R.; Kaul, S.; Brunner-La Rocca, H.-P.; Merkely, B.; Nicholls, S.J.; Perrone, S.; Pina, I.; Ponikowski, P.; Sattar, N.; Senni, M.; Seronde, M.-F.; Spinar, J.; Squire, I.; Taddei, S.; Wanner, .; Zannad, F. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 2020, 383, 1413–1424. DOI: 10.1056/NEJMoa2022190
DOI: https://doi.org/10.1056/NEJMoa2022190
McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; Crespo-Leiro, M.G.; Farmakis, D.; Gilard, M.; Heymans, S.; Hoes, A.W.; Jaarsma, T.; Jankowska, E.A.; Lainscak, M.; Lam, C.S.P.; Lyon, A.R.; McMurray, J.J.V.; Mebazaa, A.; Mindham, R.; Muneretto, C.; Francesco Piepoli, M.; Price, S.; Rosano, G.M.C.; Ruschitzka, F.; Kathrine Skibelund, A. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42(48), 4901. DOI: 10.1093/eurheartj/ehab670
DOI: https://doi.org/10.1093/eurheartj/ehab670
Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; Giannetti, N.; Gomez-Mesa, J.E.; Janssens, S.; Januzzi, J.L.; Gonzalez-Juanatey J.R.; Merkely, B.; Nicholls, S.J.; Perrone, S.V.; Piña, I.L.; Ponikowski, P.; Senni, M.; Sim, D.; Spinar, J.; Squire, I.; Taddei, S.; Tsutsui, H.; Verma, S.; Vinereanu, D.; Zhang, J.; Carson, P.; Lam, C.S.P.; Marx, N.; Zeller, C.; Sattar, N.; Jamal, W.; Schnaidt, S.; Schnee, J.M.; Brueckmann, M.; Pocock, S.J.; Zannad, F.; Packer, M. EMPEROR-Preserved Trial Investigators. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385(16), 1451-1461. DOI: 10.1056/NEJMoa2107038
DOI: https://doi.org/10.1056/NEJMoa2107038