1. Baino, F.; Vitale-Brovarone, C. Bioceramics in ophthalmology. Acta Biomater. 2014, 10 (8), 3372-3397. DOI: 10.1016/j.actbio.2014.05.017
2. Baino, F.; Vitale-Brovarone, C. Ceramics for oculo-orbital surgery. Ceram. Int. 2015, 41 (4), 5213-5231. DOI: https://doi.org/10.1016/j.ceramint.2014.12.086
3. Masse, F.; Ouellette, M.; Lamoureux, G.; Boisselier, E. Gold nanoparticles in ophthalmology. Med. Res. Rev. 2019, 39 (1), 302-327. DOI: 10.1002/med.21509
4. Nikolov, A.S.; Stankova, N.E.; Karashanova, D.B.; Nedyalkov, N.N.; Pavlov, E.L.; Koev, K.Tz.; Najdenski; Hr.; Kussovski, V.; Avramov, L.A.; Ristoscu, C.; Badiceanu, M.; Mihailescu, I.N. Synergistic effect in a two-phase laser procedure for production of silver nanoparticles colloids applicable in ophthalmology. Opt. Laser Technol. 2021, 138, Art. No. 106850. DOI: https://doi.org/10.1016/j.optlastec.2020.106850
5. Felt, O.; Furrer, P.; Mayer, J.M.; Plazonnet, B.; Buri, P.; Gurny, R. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int. J. Pharm. 1999, 180 (2), 185-193. DOI: 10.1016/s0378-5173(99)00003-4
6. Chang, W.; Liu, P.; Lin, M.; Lu, C.; Chou, H.; Nian, C.; Jiang, Y.; Hsu, Y.H. Applications of Hyaluronic Acid in Ophthalmology and Contact Lenses. Molecules 2021, 26 (9), Art. No. 2485. DOI: 10.3390/molecules26092485
7. Hartmann, L.; Watanabe, K.; Zheng, L.L.; Kim, C.; Beck, S.E.; Huie, P.; Noolandi, J.; Cochran, J.R.; Ta, C.N.; Frank, C.W. Toward the development of an artificial cornea: improved stability of interpenetrating polymer networks. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98 (1), 8-17. DOI: 10.1002/jbm.b.31806
8. Swindle, K.E.; Ravi, N. Recent advances in polymeric vitreous substitutes. Expert Rev. Ophthalmol. 2007, 2 (2), 255–265. DOI: https://doi.org/10.1586/17469899.2.2.255
9. Alhalafi, A.M. Applications of polymers in intraocular drug delivery systems. Oman J. Ophthalmol. 2017, 10 (1), 3-8. DOI: 10.4103/0974-620X.200692
10. Imperiale, J.C.; Acosta, G.B.; Sosnik, A. Polymer-based carriers for ophthalmic drug delivery. JCR 2018, 285, 106-141. DOI: 10.1016/j.jconrel.2018.06.031
11. Aruldass, S.; Mathivanan, V.; Mohamed, A.R.; Tye, C.T. Factors affecting hydrolysis of polyvinyl acetate to polyvinyl alcohol. J. Environ. 2019, 7 (5), Art. No. 103238. DOI: https://doi.org/10.1016/j.jece.2019.103238
12. Nagarkar, R.; Patel, J. Polyvinyl Alcohol: A Comprehensive Study. Acta Sci. Pharm. Sci. 2019, 3 (4), 34-44.
13. Liu, Y.; Deng, Y.; Chen, P.; Duan, M.; Lin, X.; Zhang, Y. Biodegradation analysis of polyvinyl alcohol during the compost burial course. J. Basic Microbiol. 2019, 59 (4), 368-374. DOI: 10.1002/jobm.201800468
14. Bennett, N.H.; Chinnery, H.R.; Downie, L.E.; Hill, L.J.; Grover, L. Material, immunological, and practical perspectives on eye drop formulation. Adv. Func. Material. 2020, 30 (14), Art. No. 1908476. DOI: 10.1002/adfm.201908476
15. Leone, G.; Consumi, M.; Pepi, S; Pardini, A.; Bonechi, C.; Tamasi, G.; Donati, A.; Rossi, C.; Magnani, A. Modified low molecular weight poly-vinyl alcohol as viscosity enhancer. Materials Today Commun. 2019, 21, Art. No. 100634. DOI: 10.1016/j.mtcomm.2019.100634
16. Gade, S.K.; Shivshetty, N.; Sharma, N.; Bhatnagar, S.; Garg, P.; Venuganti, V.V.K. Effect of Mucoadhesive Polymeric Formulation on Corneal Permeation of Fluoroquinolones. J. Ocul. Pharmacol. Ther. 2018, 34 (8), 570-578. DOI: 10.1089/jop.2018.0059
17. Brugh, C.; Miller, D.A.; Keen, J.M.; Kucera, S.A.; Lubda, D.; Williams, R.O. Use of Polyvinyl Alcohol as a Solubility-Enhancing Polymer for Poorly Water Soluble Drug Delivery (Part 1). AAPS PharmSciTech 2016, 17, 167-179. DOI: 10.1208/s12249-015-0458-y
18. Bhatnagar, S.; Saju, A.; Cheerla, K.D.; Gade, S.K.; Garg, P.; Venuganti, V.V.K. Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles. Drug Deliv. 2018, 8 (3), 473-483. DOI: 10.1007/s13346-017-0470-8
19. Sukhlaaied, W.; Riyajan, S-A; Palmese, G.R. Green robust pH-temperature-sensitive maleated poly(vinyl alcohol)-g-gelatin for encapsulated capsaicin. Polymer Bull. 2016, 73, 2303-2320. DOI: 10.1007/s00289-016-1609-3
20. Chung, W.Y.; Lee, S.M.; Koo, S.M; Suh, D.H. Surfactant-free thermochromic hydrogel system: PVA/borax gel networks containing pH-sensitive dyes. J. Apl. Polym. 2003, 91 (2), 890-893. DOI: DOI:10.1002/app.13272
21. Patil, A.M. Synthesis and Characterization of Bio-Based Polyester and Polyamide from Citric Acid and Mannitol. Orient. J. Chem. 2018, 34 (1), 538-543. DOI: http://dx.doi.org/10.13005/ojc/340161
22. Alamdari, D.H.; Sedaghat, M-R.; Alizadeh, R.; Zarei-Ghanavati, S.; Naseri, H.; Sharifi, F. Comparison of autologous fibrin glue versus nylon sutures for securing conjunctival autografting in pterygium surgery. Internation. Ophthalmol. 2018, 38 (3), 1219-1224. DOI: 10.1007/s10792-017-0585-4
23. Matalia, J.; Panmand, P.; Ghalla, P. Comparative analysis of non-absorbable 10-0 nylon sutures with absorbable 10-0 Vicryl sutures in pediatric cataract surgery. Ind. J. Ophthalmol. 2018, 66 (5), 661-664. DOI: 10.4103/ijo.IJO_654_17
24. de Lima Pereira, C.C.; Pereira Leite, E.; Wanderley de Queiroga Ewangelista, I.; Lutaif Dolci, J.E. Nylon, cola de fibrina e Vicryl® – Avaliação da fixação do enxerto no autotransplante conjuntival para tratamento do pterígio primário. Rev. Brasil. Oftalmol. 2017, 76 (6), 300-305. DOI: DOI: 10.5935/0034-7280.20170062
25. Hayashi, K.; Katori, N.; Kasai, K.; Kamisasanuki, T.; Kokubo, K.; Ohno-Matsui, K. Comparison of Nylon Monofilament Suture and Polytetrafluoroethylene Sheet for Frontalis Suspension Surgery in Eyes With Congenital Ptosis. Am. J. Ophthalmol. 2013, 155 (4), 654-663. DOI: 10.1016/j.ajo.2012.10.022
26. Noma, K.; Takahashi, Y.; Sabundayo, M.S.; Kakizaki, H. Late complications of nylon suture blepharoplasty causing ocular surface injury. J. Cosm. Med. 2017, 1 (2), 95-99. DOI: 10.25056/JCM.2017.1.2.95
27. Kumar, S.; Singh, R. Pterygium excision and conjunctival autograft: A comparative study of techniques. Oman J. Ophthalmol. 2018, 11 (2), 124-129. DOI: 10.4103/ojo.OJO_6_2017.
28. Das, S.; Pai, V.; Shetty, J.; Amin, H.; Bhat, K.S.; Kotian, V. Comparison of Conjunctival Autograft with Suture versus Autograft with Patient's Own Blood (without Suture) Pterygium in Surgery: A Pilot Study. J. Clin. Diagnostic Res. 2018, 12 (8), NC13-NC16. DOI: 10.7860/JCDR/2018/35922.11953
29. Brachaczek, W.; Gradek, Ł.; Sarna, E. Impact of Polysiloxanes of Various Chemical Structure on Water Vapour Permeability in Silicone Plasters Used in Building Renovation. Mater. 2016, 865, 211-218. DOI: 10.4028/www.scientific.net/MSF.865.211
30. Liravi, F.; Toyserkani, E. Additive manufacturing of silicone structures: A review and prospective. Addit. 2018, 24, 232-242. DOI: https://doi.org/10.1016/j.addma.2018.10.00
31. Das, A.; Breuer, K.; Mathai, V. Nonlinear modeling and characterization of ultrasoft silicone elastomers. Appl. Phys. Lett. 2020, 116 (20), Art. No. 203702. DOI: https://doi.org/10.1063/5.0006791
32. Li, Y.S.; Zang, Ch-G.; Zhang Y-l. Effect of the structure of hydrogen-containing silicone oil on the properties of silicone rubber. Mater. 2020, 248, Art. No. 122734. DOI:10.1016/j.matchemphys.2020.122734
33. Syed, R.; Jusufbegovic, D; Schaal, S. A Needle-Free Minimally Invasive Surgical Technique for the Placement of Silicone Oil Retention Sutures. Retina 2016, 36 (5), 1032-1034. DOI: 10.1097/IAE.0000000000000984
34. Yüksel, K.; Pekel, G.; Alagöz, N.; Alagöz, C.; Baz, O.; Yazc, A.T. Silicone oil barrier sutures in aphakic eyes with iris defects. Retina 2016, 36 (6), 1222-1226. DOI: 10.1097/IAE.0000000000000856
35. Stapleton, F.; Stretton, S.; Papas, E.; Skotnitsky, C.; Sweeney Boptom, D.F. Silicone Hydrogel Contact Lenses and the Ocular Surface. Ocul. Surf. 2006, 4 (1), 24-43. DOI: 10.1016/s1542-0124(12)70262-8
36. Compañ, V.; Andrio, A.; López-Alemany, A.; Riande, E.; Refojo, M.F. Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials 2002, 23 (13), 2767-2772. DOI: 10.1016/s0142-9612(02)00012-1
37. Rao, A.; Hart, R.; Alvord, L.; Sentell, K. High oxygen permeable color silicone hydrogel contact lens with fully encapsulated pigments. Cont. Lens Anterior Eye 2018, 41 (1), S6-S7.
38. Sulley, A.; Dumbleton, K. Silicone hydrogel daily disposable benefits: The evidence. Cont. Lens Ant. Eye 2020, 43 (3), 298-307. DOI: 10.1016/j.clae.2020.02.001
39. Musgrave, C.S.A.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials (Basel) 2019, 12 (2), Art. No. 261. DOI: https://doi.org/10.3390/ma12020261.
40. Hall, B.J.; Jones, L.W.; Dixon, B. Silicone allergies and the eye: fact or fiction? Eye Cont. Lens 2014, 40 (1), 51-57. DOI: 10.1097/ICL.0000000000000010
41. Aghamollaei, H.; Pirhadi, S.; Shafiee, S.; Sehri, M.; Goodarzi, V.; Jadidi, K. Chapter 15 - Application of polymethylmethacrylate, acrylic, and silicone in ophthalmology. In Materials for Biomedical Engineering.Thermoset and Thermoplastic Polimers; Grumezescu, V., Grumezescu A.M., Eds.; Elsevier, 2019, pp. 507-554. DOI:10.1016/B978-0-12-816874-5.00015-3
42. Ahmad, R.; Saini, N.S.; Mahajan, S.K.; Mohindroo, J.; Singh, S.S. Comparison of rigid polymethylmethacrylate and foldable square edgeacrylic lens replacement for management of cataract after phacoemulsification in 22 eyes of dogs. Indian J. Anim. Res. 2017, 51 (1), 146-150. DOI: 10.18805/ijar.7080
43. Kumari, R.; Srivastava, M.R.; Garg, P.; Janardhanan, R. Intra Ocular Lens Technology - A Review of Journey from Its Inception. Ophthalmol. Res. 2019, 11 (3), 1-9. DOI: 10.9734/or/2019/v11i330129
44. Pomes, B.; Richaud, E.; Nguyen, J-F. Chapter 7 – Polymethacrylates. In Materials for Biomedical Engineering.Thermoset and Thermoplastic Polimers; Grumezescu, V., Grumezescu A.M., Eds.; Elsevier, 2019; pp. 217-271.
45. Ajekwene, K.K. Properties and Applications of Acrylates in Acrylate Polymers for Advanced Applications. In Acrylate Polymers for Advanced Applications; Serrano-Aroca, Á.; Deb, S., Eds.; IntechOpen, London, United Kingdom, 2019; pp. 35-46.
46. Princz, M.A.; Lasowski, F.J.R.; Sheardown, H. Advances in intraocular lens materials. In Biomaterials and Regenerative Medicine in Ophthalmology, 2nd Edition; Chirila, T.V., Harkin, D.G., Eds.; Woodhead Publishing, Sawston, Cambridge, United Kingdom, 2016; pp. 401-417. DOI: 10.1016/B978-0-08-100147-9.00016-X
47. Hassanein, N.; Amleh, A. Biomaterial Implants: A Gateway to Cancer Through Genetics and Epigenetics. Adv. Modern Oncol. Res. 2019, 4 (4), 15-27. DOI:10.30564/amor.v4i4.194
48. Deb, K.P.; Kokaz, S.F.; Abed, S.N.; Paradkar, A.; Tekade, R.K. Pharmaceutical and biomedical applications of polymers. In Basic Fundamentals of Drug Delivery; Tekade, R.K., Eds.; Academic Press, Cambridge, Massachusetts, USA, 2019; pp. 203-267.
49. Hollick, E.J.; Spalton, D.J.; Ursell, P.G.; Pande, M.V.; Barman, S.A.; Boyce, J.F.; Tilling K. The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. Ophthalmology 1999, 106 (1), 49-55. DOI: 10.1016/S0161-6420(99)90047-7
50. Grzybowski, A.; Kanclerz, P. Recent Developments in Cataract Surgery. In Current Concepts in Ophthalmology; Grzybowski, A. Eds.; Springer Cham, Switzerland, 2020; pp. 55-97. DOI: 10.1007/978-3-030-25389-9_3
51. Hassan, R.; Khan, M.U.A.; Abdullah, A.M.; Razak, S.I.A. A Review on Current Trends of Polymers in Orthodontics: BPA-Free and Smart Materials. Polymers 2021, 13 (9), Art. No. 1409. DOI: 10.3390/polym13091409
52. Xu, X.; He, L.; Zhu, B.; Lib, J.; Li, J.Advances in polymeric materials for dental applications. Polym. Chem. 2017, 8, 807-823. DOI: 10.1039/C6PY01957A
53. Chi, M.; Qi, M.; Lan, A.; Wang, P.; Weir, M.D.; Melo, M.A.; Sun, X.; Dong, B.; Li, C.; Wu, J.; Wang, L; Xu, H.H.K. Novel Bioactive and Therapeutic Dental Polymeric Materials to Inhibit Periodontal Pathogens and Biofilms. Biomed Eng. Online. 2019, 20 (2), Art. No. 278. DOI: 10.3390/ijms20020278
54. Kaur, H.;Thakur, A. Applications of poly(methyl methacrylate) polymer in dentistry: A review. Mater. Today. 2022, 50 (5), 1619-1625. DOI: 10.1016/j.matpr.2021.09.125
55. Macías, G.; Luz, A.; Cóndor, Q.; Odalys, B.; López Torres Rómulo, G.; Salame Ortiz, V.A. Use of Addition Silicones in the Final Impression of A Fixed Prosthesis. HIV Nursing 2023, 23 (3), 1739-1744.
56. Klimczak, J.; Helman, S.; Kadakia, S.; Sawhney, R.; Abraham, M.; Vest, A.K.; Ducic, Y. Prosthetics in Facial Reconstruction. Craniomaxillofac Trauma Reconstr. 2018, 11 (1), 6–14. DOI: 10.1055/s-0037-1603459
57. Cevik, P. Maxillofacial Silicone Elastomers in Dentistry. In Reactive and Functional Polymers Volume One, Gutiérrez, T.J., Eds.; Springer Cham, Switzerland, 2020; pp. 293-300. DOI: 10.1007/978-3-030-43403-8_12
58. Gălbinașu, B.M.; Dragason, M.; Grigore, V.; Ciocan, L.T.; Pătrașcu, I. Study on the dimensional stability of modern impression materials. Ro. J. Stomatol. 2020, 66 (3), 199-206. DOI:10.37897/RJS.2020.3.8
59. Liang, X.; Liao, W.; Cai, H.; Jiang, S.; Chen, S. 3D-Printed Artificial Teeth: Accuracy and Application in Root Canal Therapy. J. Biomed. Nanotechnol. 2018, 14 (8), 1477-1485. DOI: 10.1166/jbn.2018.2599
60. Bascones, A.; Vega, J. M.; Olmo, N.; Turnay, J.; Gavilanes, J.G.; Lizarbe, M.A. Dental and Maxillofacial Surgery Applications of Polymers. In Polymeric Biomaterials, Revised and Expanded, 2nd ed., Dumitriu, S., Eds.; 2001, CRC Press, Boca Raton, USA; pp. 423-450. DOI: 10.1201/9780203904671
61. Nguyen, L.G.; Kopperud, H.M.; Oilo, M. Water sorption and solubility of polyamide denture base materials. Acta Biomater. Odontol. Scand. 2017, 3 (1), 47-52. DOI: 10.1080/23337931.2017.1326009
62. Ucar, Y; Akova, T.; Aysan, I. Mechanical Properties of Polyamide Versus Different PMMA Denture Base Materials. J. Prosthodont. 2012, 21, 173–176. DOI: 10.1111/j.1532-849X.2011.00804.x
63. Kümbüloğlu, O.; Yildirim, B.; Husain, NA-H.; Özcan, M. Adhesion potential of relining materials to polyamide and PMMA-based denture base materials: effect of surface conditioning methods. J. Adhes. Sci. Technol. 2019, 33 (17), 1939-1947. DOI: 10.1080/01694243.2019.1617935
64. Al-Dharrab, A.; Shinawi, L.A. Biocompatibility and Cytotoxicity of Two Different Polymerized Denture Base Resins Cultured on Human Mesenchymal Stem Cells. J. Inter. Oral Health 2016, 8 (12), 1114-1118. DOI: 10.2047/jioh-08-12-13
65. Soesetijo, F.X.; Prijatmoko, D.; Hidajati, L. Biocompatibility of Thermoplastic Nylon Flexible Removable Partial Denture – A Review. Int. J. Curr. Res. Aca. Rev. 2016, 4 (10), 75-83. DOI: 10.20546/ijcrar.2016.410.009
66. Ardelean, L.C.; Bortun, C.M.; Podariu, A.C.; Rusu, L.C. Polymeric alternatives in manufacturing removable partial dentures. Materiale Plastice 2017, 54 (4), 754-756.
67. Vulićević, Z.; Beloica, M.; Kosanović, D.; Radović, I.; Juloski, J.; Ivanović, D. Prosthetics in paediatric dentistry. Bal. J. Dent. Med. 2017, 21, 78-82. DOI: 10.37358/MP.17.4.4938
68. Polychronakis, N.; Sarafianou, A.; Zissis, A.; Papadopoulos, T. The Influence of Thermocycling on the Flexural Strength of a Polyamide Denture Base Material. Acta Stomatol. Croat. 2017, 51 (4), 309-315. DOI: 10.15644/asc51/4/5
69. Pradusha, R.; Suresh Sajjan, M.C.; Ramaraju, A.V.; Rao, B.; Chandrasekharan Nair, K. A study on flexible dentures. Trends in prosthodontics 2019, 10, No. 1-2.
70. Manzon, L.; Fratto, G.; Poli, O.; Infusino, E. Patient and clinical evaluation of traditional metal and polyamide removable partial dentures in an elderly cohort. J. Prosthodont. 2019, 28 (8), 868-875. DOI: 10.1111/jopr.13102
71. Gilmore, W.H.; Schnell, R.J.; Phillips, R.W. Factors influencing the accuracy of silicone impression materials. J. Prosthet. Dent. 1959, 9 (2), 304-314. DOI: 10.1016/0022-3913(59)90015-0
72. Wezgowiec, J.; Paradowska-Stolarz, A.; Malysa, A.; Orzeszek, S.; Seweryn, P.; Wieckiewicz, M. Effects of Various Disinfection Methods on the Material Properties of Silicone Dental Impressions of Different Types and Viscosities. Int. J. Mol. Sci. 2022, 23 (18), Art. No. 10859. DOI: 10.3390/ijms231810859
73. Kambiranda, S.C.; Pinto, B.; Elpata, M.A.; Sam, G.; Chaitra, A.S.; Rani, R.P. Evaluation of the Bond Strength of Universal Tray Adhesives on Silicone Impression Materials Using an Acrylic Tray. J. Contemp. Dent. Pract. 2019, 20 (12), 1406-1411.
74. Naumovski, B.; Kapushevska, B. Dimensional stability and accuracy of silicone–based impression materials using different impression techniques – a literature review. PRILOZI 2017, 38 (2), 131-138. DOI: 10.1515/prilozi-2017-0031
75. Siregar, I.; Permitasari; R.; Morgano, M. Comparison of the potential genotoxicities of resin-, silicone-, and bioceramic-based root canal sealers against human lymphocytes. J. Int. Dent. Medical. Res. 2019, 12 (1), 88-94.
76. Stern, S.A.; Shah, V.M.; Hardy, B.J. Structure-permeability relationships in silicone polymers. J. Polym. Sci. B. 1987, 25 (6), 1263-1298. DOI: https://doi.org/10.1002/polb.1987.090250607
77. Bohn, S; Ilie, N. Wetting behaviour of silicone - and resin - based root canal sealers. Int. Endod. J. 2014, 47 (6), 542-549. DOI: 10.1111/iej.12184
78. Nicholson, J.; Czarnecka, B.: Materials for root canal filling. In Materials for the Direct Restoration of Teeth; Nicholson, J.; Czarnecka, B., Eds.; Woodhead Publishing, Sawston, Cambridge, United Kingdom, 2016; pp. 197-219.
79. Mansouri, S.A.; Zidan, A.Z. Assessing the flow rate of silicon-based endodontic sealers. Int. J. Appl. Dent. Sci. 2019, 5 (1), 237-240.
80. Jung, S.; Sielker, S.; Hanisch, M.R.; Libricht, V.; Schäfer E., Dammaschke, T. Cytotoxic effects of four different root canal sealers on human osteoblast. PLoS One. 2018, 13 (3), Art. No. e0194467. DOI: 10.1371/journal.pone.0194467.
81. Ayatollahi, M.R.; Ghouli, S.; Bahrami, B. Experimental and theoretical fracture analyses for three biomaterials with dental applications. J. Mech. Behav. Biomed. Mater. 2020, 103, Art. No. 103612. DOI: 10.1016/j.jmbbm.2019.103612
82. Yadav, R.; Kumar, M. Dental restorative composite materials: A review. J. Oral Biosci. 2019, 61 (2), 78-83. DOI: 10.1016/j.job.2019.04.001
83. Kostić, M.; Igić, M.; Gligorijević, N.; Nikolić, V.; Stošić, N.; Nikolić, L. The Use of Acrylate Polymers in Dentistry. Polymers 2022, 14 (21), Art. No. 4511. DOI: 10.3390/polym14214511
84. Resan, K.K. Effect of repeated load on life of the PMMA molar denture. Int. J. Energy Environ. 2019, 10 (4), 231-236.
85. Mirza, E.H.; Khan, A.A.; El-Sharawy, M.A.; Al-Khureif, A.; Al-Hijji, S.; Al-Omair, K.A.; Khalil, K.A. Physical, mechanical, thermal, and dynamic characterization of carbon nanotubes incorporated poly(methyl methacrylate)-based denture implant. J. Compos. Mater. 2017, 51 (28), 3931-3940. DOI: 10.1177/0021998317694425
86. Kreve, S.; Dos Reis A.C. Denture Liners: A Systematic Review Relative to Adhesion and Mechanical Properties. Sci. World J. 2019, Article ID 6913080. DOI: 10.1155/2019/6913080
87. Hassan, M.; Asghar, M.; Din, S.U.; Sohail Zafar, M. Chapter 8 - Thermoset polymethacrylate-based materials for dental applications. In Materials for Biomedical Engineering. Thermoset and Thermoplastic Polimers; Grumezescu, V., Grumezescu A.M., Eds.; Elsevier, 2019, pp. 273-308. DOI: 10.1016/B978-0-12-816874-5.00008-6
88. Nielsen, B.V.; Nevel, T.G.; Barbu, E.; Smith, J.R.; Rees, G.D.; Tsibouklis, J. Poly(alkyl methacrylate) Tooth Coatings for Dental Care: Evaluation of the Demineralisati. Polymers 2011, 3, 314-329. DOI: 10.3390/polym3010314
89. Somani, M.V.; Khandelwal, M.; Punia, V. The effect of incorporating various reinforcement materials on flexural strength and impact strength of polymethylmethacrylate: A meta-analysis. J. Indian Prosthodont. Soc. 2019, 19 (2), 101-112. DOI: 10.4103/jips.jips_313_18
90. Mohsen, B.; Hashem, S. Polymethyl Methacrylate vs. Cayanoacrylate for Denture Teeth Rebonding. Egypt. Dental J. 2019, 65 (3), 2831-2835. DOI: 10.21608/edj.2019.72679.
91. Koster, L.; Hossein Zadeh Zaribaf, P.; Gill, H.; Kaptein, B.; Pegg, E. Model-based Roentgen Stereophotogrammetry (MBRSA) of Radiopaque Polyethylene prosthesis: a Pilot Study. In The 6th International RSA Meeting, Aarhus, Denmark, 4-6.04.2019.
92. Pauwels, R.; History of dental radiography: evolution of 2D and 3D imaging modalities. MPI Special Issue, History of Medical Physics, 2020, 3, 235-277.
93. Li, Y.; He, H.; Ma, Y; Geng, Y.; Tan, J. Rheological and mechanical properties of ultrahigh molecular weight polyethylene/high density polyethylene/polyethylene glycol blends. Adv. Ind. Engineer. Polymer Res. 2019, 2 (1), 51-60. DOI: 10.1016/j.aiepr.2018.08.004
94. Molnar, B.; Ronkay, F. Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate. Polymer Bull. 2019, 76, 2387-2398. DOI: 10.1007/s00289-018-2504-x
95. Moyassari, A.; Gkourmpis; T.; Hedenqvist, M.S.; Gedde, U.W. Molecular dynamics simulation of linear polyethylene blends: Effect of molar mass bimodality on topological characteristics and mechanical behavior. Polymer 2019, 161, 139-150. DOI: 10.1016/j.polymer.2018.12.012
96. Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials (Basel) 2017, 10 (7), Art. No. 791. DOI: 10.3390/ma10070791
97. Dulal, N.; Shanks, R.; Chalmers, D.; Adhikari, B.; Gill, H. Migration and performance of erucamide slip additive in high‐density polyethylene bottle caps. J. Appl. Polym. 2018, 135 (43), Art. No. 46822. DOI: 10.1002/app.46822
98. Dégardin, K.; Jamet, M.; Guillemain, A.; Mohn, T. Authentication of pharmaceutical vials. Talanta 2019, 198, 487-500. DOI: 10.1016/j.talanta.2019.01.121
99. Paxton, N.C.; Allenby, M.C.; Lewis, P.M.; Woodruff, M.A. Biomedical applications of polyethylene. Eur. Polym. J. 2019, 118, 412-428. DOI: 10.1016/j.eurpolymj.2019.05.037
100. Dai, S.; Li, S.; Xu, G.; Chen, C. Direct synthesis of polar functionalized polyethylene thermoplastic elastomer. Macromolecules, 2020, 53 (7), 2539-2546. DOI: 10.1021/acs.macromol.0c00083
101. Bokobza, L. Natural Rubber Nanocomposites: A Review. Nanomaterials 2019, 9 (1), Art. No. 12. DOI: 10.3390/nano9010012
102. Stelescu, M-D.; Manaila, E.; Craciun, G; Chirila, C. D91. Żelezińska, K.; Nowak, M.; Żmudzki, J.; Krawczyk, C.; Chladek, G. The influence of storage conditions on the physicochemical properties and dimensional accuracy of the alginate impressions. J. Achiev. 2018, 87 (2), 68-76. DOI: 10.5604/01.3001.0012.2829
102. Burzynski, J.A.; Firestone, A.R.; Beck, F.M.; Fields, H.W. Jr.; Deguchi, T. Comparison of digital intraoral scanners and alginate impressions: Time and patient satisfaction. Am. J. Orthod. Dentofacial Orthop. 2018, 153 (4), 534-541. DOI: 10.1016/j.ajodo.2017.08.017
103. Cervino, G.; Fiorillo, L.; Herford, A.S.; Laino, L.; Troiano, G.; Amoroso, G.; Crimi, S. Matarese, M.; D’Amico, C.; Siniscalchi, E.N.; Cicciù, M. Alginate materials and dental impression techniqu: A current state of the art and application to dental practice. Marine Drugs 2019, 17 (1), Art. No. 18. DOI: 10.3390/md17010018
104. Al Qahtani, MA; Alrefaie, M.; Altamimi, A.; Aljowyed, I.; Al Qahtani, M.A.; Al Qahtani, A.; Habib, S.R. Evaluation of pre-alginate impression preparation methods in the surface accuracy of dental cast. Saudi Dent. J. 2019, 31 (4), 451-456. DOI: 10.1016/j.sdentj.2019.04.005
105. Chugh, A. Occupational hazards in prosthetic dentistry. Dentistry 2017, 7 (2), Art. No. 410. DOI: 10.4172/2161-1122.1000410
106. Molnar-Varlam, C.; Dmitrii-Valentin, T.; Szolon, A.T.A; Biriș, C. The Hydro-Alginates Vs. The Addition Reaction Silicones: Comparative Study Between Mechanical and Chemical Properties of Two High Fidelity Impression Materials. J. Interdiscip. 2017, 2 (1), 45-49. DOI: DOI:10.1515/jim-2017-0036.
107. Zahid, S.; Qadir, S.; Bano, N.Z.; Qureshi, S.W.; Kaleem, M. Evaluation of the dimensional stability of alginate impression materials immersed in various disinfectant solutions. Pak. Oral Dent. J. 2017, 37 (2), 371-376.
108. Abdelraouf, R.M.; Bayoumi, R.E.; Hamdy, T.M. Effect of Powder/Water Ratio Variation on Viscosity, Tear Strength and Detail Reproduction of Dental Alginate Impression Material (In Vitro and Clinical Study). Polymers 2021, 13(17), 2923. DOI: 10.3390/polym13172923
109. Saeed, F.; Muhammad, N.; Khan, A.S.; Sharif, F.; Rahim, A.; Ahmad, P.; Irfan, M. Prosthodontics dental materials: From conventional to unconventional. Mat. Sci. Eng. C 2020, 106, Art. No. 110167. DOI: 10.1016/j.msec.2019.110167
110. Haugen, H.J.; Basu, P.; Sukul, M.; Mano, J.F.; Reseland, J.E. Injectable Biomaterials for Dental Tissue Regeneration. Int. J. Mol. Sci. 2020, 21 (10), Art. No. 3442.evelopment and characterization of polymer eco-composites based on natural rubber reinforced with natural fibers. Materials (Basel) 2017, 10 (7), Art. No. 787. DOI: 10.3390/ma10070787.
111. Johar, A.O. Ridge augmentation with autogenous bone graft and expanded polytetrafluoroethylene membrane using tenting screw: a randomized controlled clinical trial. J. Contemp. Dent. Pract. 2019, 20 (4), 409-416.
112. Rathnayake, N.; Trajkovski, B.; Rahman, B.; Zafiropoulos, G. Clinical applications and outcomes of non-resorbable polytetrafluoroethylene (PTFE) membranes in guided bone regeneration. J. Int. Dent. Med. Res. 2019, 12 (4), 1626-1635.
113. Trobos, M.; Juhlin, A.; Shah, F.A.; Hoffman, M.; Sahlin, H.; Dahlin, C. In vitro evaluation of barrier function against oral bacteria of dense and expanded polytetrafluoroethylene (PTFE) membranes for guided bone regeneration. Clin. Implant. Dent. Relat. Res. 2018, 20 (5), 738-748. DOI: 10.1111/cid.12629
114. Tasiopoulos, C.P.; Petronis, S.; Sahlin, H.; Hedhammar, M. Surface functionalization of PTFE membranes intended for guided bone regeneration using recombinant spider silk. ACS Appl. Biomat. 2019, 3 (1), 577-583. DOI: 10.1021/acsabm.9b00972
115. Kameda, T.; Ohkuma, K.; Oka, S. Polytetra-fluoroethylene (PTFE): A resin material for possible use in dental prostheses and devices. Dent. Mater. J. 2019, 38 (1), 136-142. DOI: 10.4012/dmj.2018-088
116. Carter, A. Restorative dentistry: Occlusal hypervigilance. Brit. Dent. J. 2017, 222 (408), Art. No. 151. DOI: 10.1038/sj.bdj.2017.252
117. Alkadi M, Alsalleeh F. Ex vivo microbial leakage analysis of polytetrafluoroethylene tape and cotton pellet as endodontic access cavity spacers. J. Conserv. Dent. 2019, 22 (4), 381-386. DOI: 10.4103/JCD.JCD_555_18
118. Stean, H. PTFE tape: a versatile material in restorative dentistry. Dent Update. 1993, 20 (4), 146-148.
119. Khatab, A.M.; Abdelhafez, L.J. Evaluation of Cotton and Polytetrafluoroethylene Tape as Endodontic Spacer martial in pulpectomy of primary molars. Egypt. Dent. J. 2020, 66 (2), 715-726. DOI: 10.21608/edj.2020.27254.1097
120. Sattar, M.M.; Patel, M.; Alani, A. Clinical applications of polytetrafluoroethylene (PTFE) tape in restorative dentistry. Brit. Dent. J. 2017, 222, 151-158. DOI: 10.1038/sj.bdj.2017.110
121. Donadio, C.; Kanaki, A.; Sami, N.; Tognotti, D. High-Flux Dialysis: Clinical, Biochemical, and Proteomic Comparison with Low-Flux Dialysis and On-Line Hemodiafiltration. Blood Purif. 2017, 44 (2), 129-139. DOI: 10.1159/000476053
122. Ahmad, M.; Tang, C.; Yang, L.; Yaroshchuk, A.; Bruening, M.L. Layer-by-layer modification of aliphatic polyamide anion-exchange membranes to increase Cl−/SO42− selectivity. J. Membr. Sci. 2019, 578, 209-219. DOI: 10.1016/j.memsci.2019.02.018
123. Pirsaheb, M.; Sharafie K.; Naderi, S.; Ghafari, H.; Khosravi, T. Role of reverse osmosis membranes on the concentration fluctuations of heavy metals in used water by dialysis instrument of hemodialysis patients. ATMPH 2017, 10 (4). DOI: 10.4103/ATMPH.ATMPH_313_17.
124. Kohlová, M.; Gomes Amorim, C.; Araújo, A.; Santos Silva, A.; Solich, P.; Montenegro, M.C.B.S.M. The biocompatibility and bioactivity of hemodialysis membranes: their impact in end-stage renal disease. J. Artif. Organs 2019, 22, 14-28. DOI: 10.1007/s10047-018-1059-9.
125. Olczyk, P.; Małyszczak, A.; Kusztal, M. Dialysis membranes: A 2018 update. Polim. Med. 2018, 48 (1), 57-63. DOI: 10.17219/pim/102974
126. Mao, H.; Bao, J.; Chen, Z.; Dong. J. Balloon Dilatation Catheter. In Endovascular Surgery and Devices; Jing, Z., Mao, H.; Dai, W., Eds.; Springer Singapore, 2018; pp. 29-37.
127. Patel, K.K.; Howe, L.; Heuer, C.; Asher, G.F.; Wilson, P.R. Evaluation of Western blot, ELISA and latex agglutination tests to detect Toxoplasma gondii serum antibodies in farmed red deer. Veterinary parasitology, 2017, 244, 154-159. DOI: 10.1016/j.vetpar.2017.08.003
128. Altun, O.; Athlin, S.; Almuhayawi, M.; Stralin, K.; Özenci, V. Rapid identification of Streptococcus pneumoniae in blood cultures by using the ImmuLex, Slidex and Wellcogen latex agglutination tests and the BinaxNOW antigen test. Eur. J. Clin. Microbiol. 2016, 35, 579–585. DOI: 10.1007/s10096-015-2573-9
129. Rastawicki, W.; Chróst, A.; Gielarowiec, K. Development and evaluation of latex agglutination tests for the detection of human antibodies to the lipopolysaccharides of verocytotoxin-producing Escherichia coli (VTEC) serogroups O157 and non-O157. J. Microbiol. 2017, 140, 74-76. DOI: 10.1016/j.mimet.2017.07.009
130. Zhu, M.; Jia, Y.; Peng, L.; Ma, J.; Li, X.; Shi, F. A highly sensitive dual-color lateral flow immunoassay for brucellosis using one-step synthesized latex microspheres. Anal. Methods 2019, 11, 2937-2942. DOI: 10.1039/C9AY00944B
131. Gritskova, I.A.; Sivaev, A.A.; Gusev, S.A.; Levachev, S.M.; Lobanova, N.A.; Andreeva, A.V.; Chvalun, S.N. Polymer microspheres for replacement of biological carriers in test systems operating on the principle of latex agglutination reaction. Russ. Chem. Bull. 2019, 68, 2075-2082. DOI: 10.1007/s11172-019-2668-z
132. Suzuta, T. Therapeutic and diagnostic applications of latex-bound immunoglobulins. In Controlled Drug Delivery, Bruck, S.D., Eds.; CRC Press, Boca Raton, United States, 2019; pp. 149-188.
133. Alhabbab, R.Y. Pregnancy Test. In Basic Serological Testing, Kalyuzhny, A.E., Eds.; Springer Nature, Dubai, 2018; pp. 97-103.
134. Datta, P. Immunoassay Design for Screening of Drugs of Abuse. In Critical Issues in Alcohol and Drugs of Abuse Testing; Dasgupta, A., Eds.; Academic Press, Cambridge (Massachusetts), United States, 2019; pp. 121-128.
135. Moulahoum, H.; Zihnioglu, F.; Timur, S.; Coskunol, H. Novel technologies in detection, treatment and prevention of substance use disorders. J. Food Drug Anal. 2019, 27 (1), 22-31. DOI: 10.1016/j.jfda.2018.09.003
136. Luppa, P.B.; Junker, R., Schimke, I., Stürenbur, E.: Immunological methods: Principles and Clinical Applications. In Point-of-CareTesting, Luppa, P.B.; Junker, R., Eds.; Springer Berlin, Heidelberg, 2018, pp. 69-79.
137. Hassan, C.; Repici, A. Recent Advances in Diagnostic Colonoscopy for Colorectal Cancer Screening: An Update for Radiologists. AJR 2017, 209, 88-93. DOI: 10.2214/AJR.17.17863
138. Lemke, M.; Banwell, A.; Rubinger, N.; Wiepjes, M.; Ropeleski, M.; Vanner, S.; Hookey, L. A205 A prospective assesment of insertion versus withdrawal as a component of a colonoscopy techniqual skills acquisition cirriculum. J. Can. Assoc. Gastroenterol. 2018, 1 (2), 303-304. DOI: 10.1093/jcag/gwy009.205
139. Lee, S.M.; Chung, S.J.; Lew, H. Clinical Efficacy of Lacrimal Endoscopy Assisted Silicone Tube Intubation in Patients with Nasolacrimal Duct Obstruction. Korean J. Ophthalmol. 2018, 59 (6), 582-588. DOI: 10.3341/jkos.2018.59.6.582
140. Hachiya, O.; Sato, T.; Toda, M.; Kimura, W. An Easy and Safe Method of Liver Retraction Using a Silicone Disc and Needle Forceps for Laparoscopic Gastrectomy. JLAST 2019, 29 (4), 484-488. DOI: 10.1089/lap.2018.0379
141. Jain, S.; Bhandari, M. Endoscopic removal of an eroded silicone ring after banded sleeve gastrectomy using argon plasma coagulation. Endoscopy 2019, 51 (10), E312-E313. DOI: 10.1055/a-0889-7394
142. Gasab, M.T.I.; Uchiyama, M.; Nakatani, T. Advanced DLC coating technique on silicone-based tubular medical devices. In Surface and Coatings Technology. Surf. Coat. Technol. 2016, 307, Part B, 1084-1087. DOI: 10.1016/j.surfcoat.2016.06.067
143. Nonfoux, L.; Chiaruzzi, M.; Badiou, C.; Tristan, A.; Thioulouse, J.; Muller, D.; Prigent-Combaret, C.; Lina, G. Impact of Currently Marketed Tampons and Menstrual Cups on Staphylococcus aureus Growth and Toxic Shock Syndrome Toxin 1 Production In Vitro. Appl. Environ. Microbiol. 2018, 84 (12), AEM.00351-18. DOI: 10.1128/AEM.00351-18.
144. Phillips-Howard, P.A.; Nyothach, E.; ter Kuile F.O.; Omoto, J.; Wang, D.; Zeh, C.; Onyango, C.; Mason, L.; Alexander, K.T.; Odhiambo, F.O.; Eleveld, A.; Mohammed, A.; van Eijk, A.M.; Edwards, R.T.; Vulule, J.; Faragher, B.; Laserson, K.F. Menstrual cups and sanitary pads to reduce school attrition, and sexually transmitted and reproductive tract infections: a cluster randomised controlled feasibility study in rural Western Kenya. BMJ Open 2016, 6 (11) e013229. DOI: 10.1136/bmjopen-2016-013229.
145. van Eijk, A.M.; Zulaika, G.; Lenchner, M.; Manson, L., Sivakami, M.; Nyothach, E.; Unger, H.; Laserson, K.; Phillips-Howard, P.A. Menstrual cup use, leakage, acceptability, safety, and availability: a systematic review and meta-analysis. Lancet. Pub. Health. 2019, 4(8), E376-E393. DOI: 10.1016/S2468-2667(19)30111-2
146. Madziyire, M.G.; Magure, T.M.; Madziwa, C.F. Menstrual Cups as a Menstrual Management Method for Low Socioeconomic Status Women and Girls in Zimbabwe: A Pilot Study. Women's Reprod. Health 2018, 5 (1), 59-65. DOI: 10.1080/23293691.2018.1429371
147. Cacciamani, G.E.; Okhunov, Z.; Dourado Meneses, A.; Rodriguez-Socarras, M.E.; Rivas, J.G.; Porpiglia, F.; Liatsikos, E.; Veneziano, D. Impact of Three-dimensional Printing in Urology: State of the Art and Future Perspectives. A Systematic Review by ESUT-YAUWP Group. Eur. Urol. 2019, 76 (2), 209-221. DOI: 10.1016/j.eururo.2019.04.044
148. Özgür, B.C.; Ayyıldız, A. 3D printing in urology: Is it really promising? Turk. J. Urol. 2018, 44 (1), 6-9. DOI: 10.5152/tud.2018.20856
149. Parikh, N.; Sharma, P. Three-Dimensional Printing in Urology: History, Current Applications, and Future Directions. Urology 2018, 121, 3-10. DOI: 10.1016/j.urology.2018.08.004
150. Pawlak, W.; Wieleba, W.; Wróblewski, R. Research of tribological properties of polylactide (PLA) in the 3D printing process in comparison to the injection process. Tribologia 2019, 283 (1), 25-28. DOI:10.5604/01.3001.0013.1432
151. Tino, R.; Moore, R.; Antoline, S.; Ravi, P.; Wake, N.; Ionita, C.N.; Morris, J.M.; Decker, S.J.; Sheikh, A.; Rybicki, F.J.; Chepelev, L.L. COVID-19 and the role of 3D printing in medicine. 3D Print. Med. 2020, 6 (1), Art. No. 11. DOI: 10.1186/s41205-020-00064-7
152. Tarfaoui, M.; Nachtane, M.; Goda, I.; Qureshi, Y.; Benyahia, H. 3D Printing to Support the Shortage in Personal Protective Equipment Caused by COVID-19 Pandemic. Materials 2020, 13 (15), Art. No. 3339. DOI: 10.3390/ma13153339
153. Sang, L.; Han, S.; Li, Z. Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Compos. Part B: Eng. 2019, 164, 629-639. DOI: 10.1016/j.compositesb.2019.01.085
154. Petrovskaya, T.S.; Toropkov, N.E.; Mironov, E.G.; Azarmi, F. 3D printed biocompatible polylactide-hydroxyapatite based material for bone implants. Mater. 2018, 33 (16), 1899-1904. DOI: 10.1080/10426914.2018.1476764
155. Ritz, U.; Gerke, R.; Götzi, H.; Stein, S.; Rommens, P.M. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study. Int. J. Mol. Sci. 2017, 18 (12), Art. No. 2569. DOI: 10.3390/ijms18122569.
156. Ezeh, O.H.; Susmel, L.; On the fatigue strength of 3D-printed polylactide (PLA). Procedia Struct. 2018, (9), 29-36. DOI: 10.1016/j.prostr.2018.06.007
157. Paspali, A.; Bao, Y.; Gawne, D.T. The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites. Compos. Part B- Eng. 2018, 152, 160-168. DOI: 10.1016/j.compositesb.2018.07.005
158. Potnuru A, Tadesse T.: Investigation of polylactide and carbon nanocomposite filament for 3D printing. PIAM 2019, 4, 23-41. DOI: 10.1007/s40964-018-0057-z
159. Cicala, G.; Giordano, D.; Tosto, C.; Filippone, G.; Recca, A.; Blanco, I. Polylactide (PLA) Filaments a Biobased Solution for Additive Manufacturing: Correlating Rheology and Thermomechanical Properties with Printing Quality. Materials (Basel) 2018, 11 (7), 1191. DOI: 10.3390/ma11071191.
160. He, Y.; Qin, S.; Dyer, B.A.; Zhang, H.; Zhao, L.; Chen, T.; Zheng, F.; Sun, Y.; Shi, L.; Rong, Y.; Qiu, J. Characterizing mechanical and medical imaging properties of polyvinyl chloride‐based tissue‐mimicking materials. J. Appl. Clin. Med. Phys. 2019, 20 (7), 176-183. DOI: 10.1002/acm2.12661.
161. Almousa, R.; Wen, X.; Na, S. A modified polyvinyl chloride surface with antibacterial and antifouling functions. Polym. Adv. Technol. 2019, 30 (5), 1216-1225. DOI: 10.1002/pat.4554
162. Feit, C.G.; Chug, M.K.; Brisbois, E.J. Development of S-Nitroso-N-Acetylpenicillamine Impregnated Medical Grade Polyvinyl Chloride for Antimicrobial Medical Device Interfaces. ACS Appl. Bio Mater. 2019, 2 (10), 4335–4345. DOI: 10.1021/acsabm.9b00593
163. Shumate, A.M.; Taylor, J.; McFarland, E.; Tan, C.; Duncan, M.A. Medical Response to a Vinyl Chloride Release From a Train Derailment: New Jersey, 2012. Disaster Med. Public Health Prep. 2017, 11 (5), 538-544. DOI: 10.1017/dmp.2016.191
164. Arahman, N.; Fahrina, A.; Wahab, M.Y.; Fathanah, U. Morphology and performance of polyvinyl chloride membrane modified with Pluronic F127. F1000Research 2018, 7, Art. No. 726. DOI: 10.12688/f1000research.15077.2
165. Almousa, R.; Wen, X.; Na, S.; Anderson, G; Xie, D. Polyvinylchloride surface with enhanced cell/bacterial adhesion-resistant and antibacterial functions. J. Biomaterials Applications 2019, 33 (10), 1415-1426. DOI: 10.1177/0885328219834680
166. Barczewski, M.; Matylkiewicz, D.; Sałasińska, K. Poly (vinyl chloride) powder as a low-cost flame retardant modifier for epoxy composites. Int. J. Polym. 2019, 24 (5), 447-456. DOI: 10.1080/1023666X.2019.1602915
167. Hong, H.R.; Tronstad, Z.C.; Yang, Y; Green, M.D. Characterization of PVC-soy protein nonwoven mats prepared by electrospinning. AIChE Journal 2018, 64 (7), 2737-2744. DOI: 10.1002/aic.16109
168. Tarus, B.K.; Fadel, N.; Al-Oufy, A.; El-Messiri, M. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alex. Eng. J. 2016, 55 (3), 2975-2984. DOI: 10.1016/j.aej.2016.04.025
169. Böttjer, R.; Grothe, T.; Ehrmann, A. Functional Nanofiber Mats for Medical and Biotechnological Applications. In Narrow and Smart Textiles; Kyosev, Y.; Mahltig, B.; Schwarz-Pfeiffer, A., Eds.; Springer Cham, Switzerland, 2019; pp. 203-214.