1. Dastan, S.D. Chemical and functional composition and biological activities of Anatolian Hypericum scabrum L. plant. J. Mol. Struct. 2023, 1275, Art. No: 134561. DOI: 10.1016/j.molstruc.2022.134561
DOI: https://doi.org/10.1016/j.molstruc.2022.134561
2. Mohammed, F. S.; Pehlivan, M.; Sevindik, E.; Akgul, H.; Sevindik, M.; Bozgeyik, I.; Yumrutas, O. Pharmacological properties of edible Asparagus acutifolius and Asparagus officinalis collected from North Iraq and Turkey (Hatay). Acta Aliment. 2021, 50(1), 136-143. DOI: 10.1556/066.2020.00204
DOI: https://doi.org/10.1556/066.2020.00204
3. Uysal, I.; Koçer, O.; Mohammed, F. S.; Lekesiz, Ö.; Doğan, M.; Şabik, A. E.; Sevindik, E.; Gerçeker, F.Ö.; Sevindik, M. Pharmacological and Nutritional Properties: Genus Salvia. Adv. Pharmacol. Pharm., 2023, 11(2), 140-155. DOI: 10.13189/app.2023.110206
DOI: https://doi.org/10.13189/app.2023.110206
4. Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. DOI: 10.1016/j.foodchem.2005.04.028
DOI: https://doi.org/10.1016/j.foodchem.2005.04.028
5. Mohammed, F. S.; Uysal, I.; Sevindik, M. A review on antiviral plants effective against different virus types. Prospects Pharm. Sci., 2023, 21(2), 1-21. DOI: 10.56782/pps.128
DOI: https://doi.org/10.56782/pps.128
6. Sevindik, M.; Mohammed, F.S.; Uysal, I. Autism: plants with neuro-psycho pharmacotherapeutic potential. Prospect. Pharm. Sci. 2023, 21(3), 38-48. DOI: 10.56782/pps.143
DOI: https://doi.org/10.56782/pps.143
7. El-Chaghaby, G.A.; Mohammed, F. S.; Rashad, S.; Uysal, I.; Koçer, O.; Lekesiz, Ö., FDoğan M.; Şabik A. E; Sevindik, M. Genus Hypericum: General Properties, Chemical Contents and Biological Activities. Egypt. J. Bot. 2024, 64(1), 1-26. DOI: 10.21608/ejbo.2023.217116.2378
DOI: https://doi.org/10.21608/ejbo.2023.217116.2378
8. Cullen, J.; Coode, M.J.E. Flora of Turkey and the East Aegean Islands, Volume 2 (P.H. Davis, Ed.; Vol. 2). Edinburgh University Press. 1967.
9. Watson, A.J.; Bakker, D.C.E.; Ridgwell, A.J.; Boyd, P.W.; Law, C.S. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 2000, 407(6805), 730-733. DOI: 10.1038/35037561
DOI: https://doi.org/10.1038/35037561
10. Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493-96.
DOI: https://doi.org/10.1093/ajcp/45.4_ts.493
11. Hindler, J.; Hochstein, L.; Howell, A. Preparation of routine media and reagents used in antimicrobial susceptibility testing. Part 1. McFarland standards, p. 5.19.1-5.19.6. In H. D. Isenberg (ed) Clinical microbiology procedures handbook, vol. 1. American Society for Microbiology, Washington, D.C, 1992.
12. Matuschek, E.; Brown, D.F.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect., 2014, 20, 255-266. DOI: 10.1111/1469-0691.12373
DOI: https://doi.org/10.1111/1469-0691.12373
13. Baba, H.; Sevindik, M.; Dogan, M.; Akgül, H. Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes. Fresenius Environ. Bull. 2020, 29(09), 7840-7846.
14. Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37(4), 277-285. DOI: 10.1016/j.clinbiochem.2003.11.015
DOI: https://doi.org/10.1016/j.clinbiochem.2003.11.015
15. Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38(12), 1103-1111. DOI: 10.1016/j.clinbiochem.2005.08.008
DOI: https://doi.org/10.1016/j.clinbiochem.2005.08.008
16. Sevindik, M.; Gürgen, A.; Khassanov, V.T.; Bal, C. Biological Activities of Ethanol Extracts of Hericium erinaceus Obtained as a Result of Optimization Analysis. Foods 2024, 13(10), Art. No: 1560. DOI: 10.3390/foods13101560
DOI: https://doi.org/10.3390/foods13101560
17. Caponio, F.; Alloggio, V.; Gomes, T. Phenolic Compounds of Virgin Olive Oil: Influence of Paste Preparation Techniques. Food Chem. 1999, 64, 203-209. DOI: 10.1016/S0308-8146(98)00146-0
DOI: https://doi.org/10.1016/S0308-8146(98)00146-0
18. Sevindik, M.; Bal, C.; Eraslan, E. C.; Uysal, I.; Mohammed, F. S. Medicinal mushrooms: a comprehensive study on their antiviral potential. Prospects Pharm. Sci. 2023, 21(2), 42-56. DOI: 10.56782/pps.141
DOI: https://doi.org/10.56782/pps.141
19. Bal, C.; Eraslan, E. C.; Sevindik, M. Antioxidant, antimicrobial activities, total phenolic and element contents of wild edible mushroom Bovista nigrescens. Prospect. Pharm. Sci.2023, 21(2), 37-41. DOI: 10.56782/pps.139
DOI: https://doi.org/10.56782/pps.139
20. Saridogan, B.G.O.; Islek, C.; Baba, H.; Akata, I.; Sevindik, M. Antioxidant antimicrobial oxidant and elements contents of Xylaria polymorpha and X. hypoxylon (Xylariaceae). Fresenius Environ. Bull. 2021, 30(5), 5400-5404.
21. Islek, C.; Saridogan, B.G.O.; Sevindik, M.; Akata, I. Biological activities and heavy metal contents of some Pholiota species. Fresenius Environ. Bull. 2021, 30(6), 6109-6114.
22. Elagaily, M.; Senussi, N.A. Assessment of the antimicrobial activity of three Silene species (Caryophyllaceae) against some microorganisms. Scientific Journal for Faculty of Science-Sirte University. 2023, 3(1), 115-121. DOI: 10.37375/sjfssu.v3i1.1089
23. Zengin, G.; Mahomoodally, M.F.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Yilmaz, M.A.; Allain, C.M.N.P.; Ćirić, A.; Glamočlija, J.; Soković, M. Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties. Food Biosci. 2018, 23, 75-82. DOI: 10.1016/j.fbio.2018.03.010
DOI: https://doi.org/10.1016/j.fbio.2018.03.010
24. Mushtaq, W.; Baba, H.; Akata, I.; Sevindik, M. Antioxidant potential and element contents of wild edible mushroom Suillus granulatus. KSU J. Agric. Nat. 2020, 23(3), 592-595. DOI: 10.18016/ksutarimdoga.vi.653241
DOI: https://doi.org/10.18016/ksutarimdoga.vi.653241
25. Sevindik, M. Anticancer, antimicrobial, antioxidant and DNA protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl. Indian J. Exp. Biol., 2021, 59(05), 310-315. DOI: 10.56042/ijeb.v59i05.50501
DOI: https://doi.org/10.56042/ijeb.v59i05.50501
26. Çömlekçioğlu, N.; Korkmaz, N.; Yüzbaşıoğlu, M.A.; Uysal, İ.; Sevindik, M. Mistletoe (Loranthus europaeus Jacq.): antioxidant, antimicrobial and anticholinesterase activities. Prospect. Pharm. Sci. 2024, 22(3), 164-169. DOI: 10.56782/pps.213
DOI: https://doi.org/10.56782/pps.213
27. Eraslan, E.C.; Altuntas, D.; Baba, H.; Bal, C.; Akgül, H.; Akata, I.; Sevindik, M. Some biological activities and element contents of ethanol extract of wild edible mushroom Morchella esculenta. Sigma J. Eng. Nat. Sci. 2021, 39(1), 24-28.
28. Korkmaz, N.; Koçer, O.; Fathi, S.; Uysal, I.; Sevindik, M. Branched horsetail (Equisetum ramosissimum): some biological activities and total phenolic and flavonoid contents. Prospect. Pharm. Sci. 2024, 22(3), 69-75. DOI: 10.56782/pps.209
DOI: https://doi.org/10.56782/pps.209
29. Golea, L.; Benkhaled, M.; Lavaud, C.; Long, C.; Haba, H. Phytochemical components and biological activities of Silene arenarioides Desf. Nat. Prod. Res. 2017, 31(23), 2801-2805. DOI: 10.1080/14786419.2017.1294174
DOI: https://doi.org/10.1080/14786419.2017.1294174
30. Mouffouk, C.; Mouffouk, S.; Dekkiche, S.; Hambaba, L.; Mouffouk, S. Antioxidant and Antibacterial Activities of the species Silene inflata Sm. Biological activities of S. inflata. Biol Res. 2019, 4(2), 74-86.
31. Bechkri, S.; Magid, A.A.; Khalfallah, A.; Voutquenne-Nazabadioko, L.; Kabouche, A.; Sayagh, C.; Harakat, D.; Kabouche, Z. Antioxidant activity-guided isolation of flavonoids from Silene gallica aerial parts. Phytochem. Lett. 2022, 50, 61-66. DOI: 10.1016/j.phytol.2022.05.002
DOI: https://doi.org/10.1016/j.phytol.2022.05.002
32. Gürgen, A.; Unal, O.; Sevindik, M. Biological Activities of the Golden Chantarelle Mushroom Cantharellus cibarius (Agaricomycetes) Extracts Obtained as a Result of Single and Multi-Objective Optimization Studies. Int. J. Med. Mushrooms 2024, 26(12), 63-74. DOI: 10.1615/IntJMedMushrooms.2024055569
DOI: https://doi.org/10.1615/IntJMedMushrooms.2024055569
33. Mohammed, F. S.; Günal, S.; Pehlivan, M.; Doğan, M.; Sevindik, M.; Akgül, H. Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi Univ. J. Sci. 2020, 33(4), 670-677. DOI: 10.35378/gujs.707555
DOI: https://doi.org/10.35378/gujs.707555
34. Mohammed, F. S.; Kına, E.; Sevindik, M.; Doğan, M.; Pehlivan, M. Antioxidant and antimicrobial activities of ethanol extract of Helianthemum salicifolium (Cistaceae). Indian Journal of Natural Products and Resources (IJNPR) [Formerly Natural Product Radiance (NPR)]. 2021, 12(3), 459-462.
35. Mohammed, F.S.; Sevindik, M.; Uysal, I.; Sevindik, E.; Akgül, H. A Natural Material for Suppressing the Effects of Oxidative Stress: Biological Activities of Alcea kurdica. Biol. Bull. 2022, 49(Suppl 2), S59-S66. DOI: 10.1134/S1062359022140102
DOI: https://doi.org/10.1134/S1062359022140102
36. Unal, O.; Eraslan, E.C.; Uysal, I.; Mohammed, F.S.; Sevindik, M.; Akgul, H. Biological activities and phenolic contents of Rumex scutatus collected from Turkey. Fresenius Environ. Bull. 2022, 31(7), 7341-7346.
37. Korkmaz, N.; Mohammed, F.S.; Uysal, İ.; Sevindik, M. Antioxidant, antimicrobial and anticholinesterase activity of Dittrichia graveolens. Prospect. Pharm. Sci. 2023, 21(4), 48-53. DOI: 10.56782/pps.169
DOI: https://doi.org/10.56782/pps.169
38. Mohammed, F. S.; Sevindik, M.; Uysal, İ.; Çesko, C.; Koraqi, H. (2024). Chemical Composition, Biological Activities, Uses, Nutritional and Mineral Contents of Cumin (Cuminum cyminum). Measurement: Food 2024, 14, Art. No: 100157. DOI: 10.1016/j.meafoo.2024.100157
DOI: https://doi.org/10.1016/j.meafoo.2024.100157
39. Aksenov, D.A.; Aksenov, A.V.; Prityko, L.A.; Aksenov, N.A.; Frolova, L.V.; Rubin, M. Methylation of 2-Aryl-2-(3-indolyl) acetohydroxamic Acids and Evaluation of Cytotoxic Activity of the Products. Molbank. 2021, 2022(1), M1307. DOI: 10.3390/M1307
DOI: https://doi.org/10.3390/M1307
40. Liu, J.; Lu, J.F.; Kan, J.; Wen, X.Y.; Jin, C.H. Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. Int. J. Biol. Macromol. 2014, 64, 76-83. DOI: 10.1016/j.ijbiomac.2013.11.028
DOI: https://doi.org/10.1016/j.ijbiomac.2013.11.028
41. Almeida, I.V.; Cavalcante, F.; Vicentini, V. Different responses of vanillic acid, a phenolic compound, in htc cells: Cytotoxicity, antiproliferative activity, and protection from DNA-induced damage. Genet. Mol. Res. 2016, 15(4). DOI: 10.4238/gmr15049388
DOI: https://doi.org/10.4238/gmr15049388
42. Vo, Q.V.; Bay, M.V.; Nam, P.C.; Quang, D.T.; Flavel, M.; Hoa, N.T.; Mechler, A. Theoretical and experimental studies of the antioxidant and antinitrosant activity of syringic acid. J. Org. Chem. 2020, 85(23), 15514-15520. DOI: 10.1021/acs.joc.0c02258
DOI: https://doi.org/10.1021/acs.joc.0c02258
43. Paulo, L.; Ferreira, S.; Gallardo, E.; Queiroz, J.A.; Domingues, F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 2010, 26, 1533-1538. DOI: 10.1007/s11274-010-0325-7
DOI: https://doi.org/10.1007/s11274-010-0325-7
44. Kaur, G.; Shivanandappa, T.B.; Kumar, M.; Kushwah, A.S. Fumaric acid protect the cadmium-induced hepatotoxicity in rats: owing to its antioxidant, anti-inflammatory action and aid in recast the liver function. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 1911-1920. DOI: 10.1007/s00210-020-01900-7
DOI: https://doi.org/10.1007/s00210-020-01900-7
45. Şabik, A.E.; Mohammed, F.S.; Sevindik, M.; Uysal, I.; Bal, C. Gallic Acid: Derivatives and Biosynthesis, Pharmacological and Therapeutic Effect, Biological Activity. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2024, 81(1), 18-27. DOI: 10.15835/buasvmcn-fst:2023.0017
DOI: https://doi.org/10.15835/buasvmcn-fst:2023.0017
46. Wang, G.F.; Shi, L.P.; Ren, Y.D.; Liu, Q.F.; Liu, H.F.; Zhang, R.J.; Li, Z.; Zhu, F.H.; He, P.L.; Tang, W.; Tao, P.Z.; Li, C.; Zhao, W.M.; Zuo, J.P. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 2009, 83(2), 186-190. DOI: 10.1016/j.antiviral.2009.05.002
DOI: https://doi.org/10.1016/j.antiviral.2009.05.002
47. Razzaghi-Asl, N.; Garrido, J.; Khazraei, H.; Borges, F.; Firuzi, O. Antioxidant properties of hydroxycinnamic acids: a review of structure-activity relationships. Curr. Med. Chem. 2013, 20(36), 4436-4450. DOI: 10.2174/09298673113209990141
DOI: https://doi.org/10.2174/09298673113209990141
48. Yen, G.C.; Chen, C.S.; Chang, W.T.; Wu, M.F.; Cheng, F.T.; Shiau, D.K., Hsu, C.L. Antioxidant activity and anticancer effect of ethanolic and aqueous extracts of the roots of Ficus beecheyana and their phenolic components. J. Food Drug Anal. 2018, 26(1), 182-192. DOI: 10.1016/j.jfda.2017.02.002
DOI: https://doi.org/10.1016/j.jfda.2017.02.002
49. Ausina, P.; Branco, J.R.; Demaria, T.M.; Esteves, A.M.; Leandro, J.G.B.; Ochioni, A.C.; Mendonça, A.P.M.; Palhano, F.L.; Oliveira, M.F.; Abou‑Kheir, W.; Sola‑Penna, M.; Zancan, P. Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci. Rep. 2020, 10(1), Art. No: 19617. DOI: 10.1038/s41598-020-76824-6
DOI: https://doi.org/10.1038/s41598-020-76824-6
50. Kavaz Yüksel, A.; Dikici, E.; Yüksel, M.; Işık, M.; Tozoğlu, F.; Köksal, E. Phytochemical, phenolic profile, antioxidant, anticholinergic and antibacterial properties of Epilobium angustifolium (Onagraceae). J. Food Meas. Charact. 2021, 15, 4858-4867. DOI: 10.1007/s11694-021-01050-1
DOI: https://doi.org/10.1007/s11694-021-01050-1
51. Sun, F.; Zheng, X.Y.; Ye, J.; Wu, T.T.; Wang, J.L.; Chen, W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr. Cancer 2012, 64(4), 599-606. DOI: 10.1080/01635581.2012.665564
DOI: https://doi.org/10.1080/01635581.2012.665564
52. Ceci, C.; Lacal, P. M.; Tentori, L.; De Martino, M.G.; Miano, R.; Graziani, G. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 2018, 10(11), Art. No: 1756. DOI: 10.3390/nu10111756
DOI: https://doi.org/10.3390/nu10111756
53. Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules 2022, 27(8), Art. No: 2494. DOI: 10.3390/molecules27082494
DOI: https://doi.org/10.3390/molecules27082494
54. Sung, J.; Lee, J. Anti-inflammatory activity of butein and luteolin through suppression of NFκ B activation and induction of heme oxygenase-1. J. Med. Food. 2015, 18(5), 557-564. DOI: 10.1089/jmf.2014.3262
DOI: https://doi.org/10.1089/jmf.2014.3262
55. Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res. 2018, 135, 122-126. DOI: 10.1016/j.phrs.2018.08.002
DOI: https://doi.org/10.1016/j.phrs.2018.08.002
56. Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342-358. DOI: 10.1016/j.jep.2018.05.019
DOI: https://doi.org/10.1016/j.jep.2018.05.019
57. Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PloS one. 2018, 13(5), Art. No: e0197563. DOI: 10.1371/journal.pone.0197563
DOI: https://doi.org/10.1371/journal.pone.0197563