1. Simon, G. G. Impacts of Neglected Tropical Disease on Incidence and Progression of HIV/AIDS, Tuberculosis, and Malaria: Scientific Links. Int. J. Inf. Dis. 2016, 42,54–57. DOI: 10.1016/j.ijid.2015.11.006
2. Kourbeli, V.; Chontzopoulou, E.; Moschovou, K.; Pavlos, D.; Mavromoustakos, T.; Papanastasiou, I. P. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021, 26 (15), Art. No: 4629. DOI: 10.3390/molecules26154629
3. Mukherjee, S. The United States Food and Drug Administration (FDA) Regulatory Response to Combat Neglected Tropical Diseases (NTDs): A Review. PLoS Negl. Trop. Dis. 2023, 17 (1), Art. No: e0011010. DOI: 10.1371/journal.pntd.0011010
4. Lin, Y.; Fang, K.; Zheng, Y.; Wang, H.; Wu, J. Global Burden and Trends of Neglected Tropical Diseases from 1990 to 2019. J. Travel Med. 2022, 29 (3), Art. No: taac031. DOI: 10.1093/jtm/taac031
5. Ca, J.; Kumar P, V. B.; Kandi, V.; N, G.; K, S.; Dharshini, D.; Batchu, S. V. C.; Bhanu, P. Neglected Tropical Diseases: A Comprehensive Review. Cureus. 2024,16(2), Art. No: e53933 DOI: 10.7759/cureus.53933
6. Pandian, S. R. K.; Panneerselvam, T.; Pavadai, P.; Govindaraj, S.; Ravishankar, V.; Palanisamy, P.; Sampath, M.; Sankaranarayanan, M.; Kunjiappan, S. Nano Based Approach for the Treatment of Neglected Tropical Diseases. Front. Nanotechnol. 2021, 3, Art. No: 665274. DOI: 10.3389/fnano.2021.665274
7. Ayon, N. J. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023, 13 (5), Art. No: 625. DOI: 10.3390/metabo13050625
8. Blay, V.; Tolani, B.; Ho, S. P.; Arkin, M. R. High-Throughput Screening: Today’s Biochemical and Cell-Based Approaches. Drug Dis. Today 2020, 25 (10), 1807–1821. DOI: 10.1016/j.drudis.2020.07.024
9. Vatansever, S.; Schlessinger, A.; Wacker, D.; Kaniskan, H. Ü.; Jin, J.; Zhou, M.; Zhang, B. Artificial Intelligence and Machine Learning‐aided Drug Discovery in Central Nervous System Diseases: State‐of‐the‐arts and Future Directions. Med. Res. Rev. 2021, 41 (3), 1427–1473. DOI: 10.1002/med.21764
10. Makhoba, X. H.; Viegas, C.; Mosa, R. A.; Viegas, F. P. D.; Pooe, O. J. Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases. Drug Des. Devel. Ther. 2020, 14, 3235–3249. DOI: 10.2147/DDDT.S257494
11. Gao, K.; Shaabani, S.; Xu, R.; Zarganes-Tzitzikas, T.; Gao, L.; Ahmadianmoghaddam, M.; Groves, M. R.; Dömling, A. Nanoscale, Automated, High Throughput Synthesis and Screening for the Accelerated Discovery of Protein Modifiers. RSC Med. Chem. 2021, 12 (5), 809–818. DOI: 10.1039/D1MD00087J
12. Quarleri, J.; Cevallos, C.; Delpino, M. V. Apoptosis in Infectious Diseases as a Mechanism of Immune Evasion and Survival. In Advances in Protein Chemistry and Structural Biology; Elsevier, 2021; Vol. 125, pp 1–24. DOI: 10.1016/bs.apcsb.2021.01.001
13. Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M.; Sankaranarayanan, M. A Medicinal Chemistry Perspective of Drug Repositioning: Recent Advances and Challenges in Drug Discovery. Eur. J. Med. Chem. 2020, 195, Art. No: 112275. DOI: 10.1016/j.ejmech.2020.112275
14. Debbarma, S.; Talukdar, J.; Maurya, P.; Barkalita, L. M.; Brahma, A. Neglected Parasitic Infections: History to Current Status. In Parasitic Infections; Mishra, A. P., Nigam, M., Eds.; Wiley, 2023; pp 156–175. DOI: 10.1002/9781119878063.ch8
15. Profiro De Oliveira, J. H.; Arruda, I. E. S.; Izak Ribeiro De Araújo, J.; Chaves, L. L.; De La Rocca Soares, M. F.; Soares-Sobrinho, J. L. Why Do Few Drug Delivery Systems to Combat Neglected Tropical Diseases Reach the Market? An Analysis from the Technology’s Stages. Expert Opin. Ther. Pat. 2022, 32 (1), 89–114. DOI: 10.1080/13543776.2021.1970746
16. Borgo, J.; Laurella, L. C.; Nápoles Rodríguez, R.; De Almeida Fiuza, L.; Sülsen, V. P. The Potential Use of Natural Products as Sources of Bioactive Compounds: Searching for New Treatments for Neglected Tropical Diseases. In Studies in Natural Products Chemistry; Elsevier, 2024; Vol. 81, pp 133–212. DOI: 10.1016/B978-0-443-15628-1.00018-0
17. Jayawardene, K. L. T. D.; Palombo, E. A.; Boag, P. R. Natural Products Are a Promising Source for Anthelmintic Drug Discovery. Biomolecules 2021, 11 (10), Art. No: 1457. DOI: 10.3390/biom11101457.
18. Ndjonka, D.; Rapado, L. N.; Silber, A. M.; Liebau, E.; Wrenger, C. Natural Products as a Source for Treating Neglected Parasitic Diseases. Int. J. Mol. Sci. 2013, 14 (2), 3395–3439. DOI: 10.3390/ijms14023395
19. Carter, N. S.; Stamper, B. D.; Elbarbry, F.; Nguyen, V.; Lopez, S.; Kawasaki, Y.; Poormohamadian, R.; Roberts, S. C. Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms 2021, 9 (2), Art. No: 267. DOI: 10.3390/microorganisms9020267
20. Liu, M.; Panda, S. K.; Luyten, W. Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics against Nematodes. Biomolecules 2020, 10 (3), Art. No: 426. DOI: 10.3390/biom10030426
21. Mustapha, T.; Daskum, A.; Chessed, G.; A. Qadeer, M. Antimarial Chemotherapy, Mechanism of Action and Resistance to Major Antimalarial Drugs in Clinical Use: A Review. Microbes Infect. Dis. 2021, 2(1), 130-142. DOI: 10.21608/mid.2020.43941.1064
22. Darko, B. A.; Owusu-Asenso, C. M.; Mensah, A.; Seyram, A. C.; Dzotefe, G.B.; Ebobabaara, T.B.; Opoku-Gyebi, F.; Gordor, B.Y.; Obeng, B.C. Global Trends in the Burden of Malaria: Contemporary Diagnostic Approaches, and Treatment Strategies. World J. Adv. Res. Rev. 2023, 20 (1), 258–272. DOI: 10.30574/wjarr.2023.20.1.2038
23. The Lancet Infectious Diseases. A New Dawn for Malaria Prevention. Lancet Infect. Dis. 2024, 24 (2), Art. No: 107. DOI: 10.1016/S1473-3099(24)00012-4
24. Shi, D.; Wei, L.; Liang, H.; Yan, D.; Zhang, J.; Wang, Z. Trends of the Global, Regional and National Incidence, Mortality, and Disability-Adjusted Life Years of Malaria, 1990–2019: An Analysis of the Global Burden of Disease Study 2019. Risk Manag. Healthc. Policy 2023, 16, 1187–1201. DOI: 10.2147/RMHP.S419616
25. Aschale, Y.; Getachew, A.; Yewhalaw, D.; De Cristofaro, A.; Sciarretta, A.; Atenafu, G. Systematic Review of Sporozoite Infection Rate of Anopheles Mosquitoes in Ethiopia, 2001–2021. Parasit. Vectors 2023, 16 (1), Art. No: 437. DOI: 10.1186/s13071-023-06054-y
26. Tang, Y.-Q.; Ye, Q.; Huang, H.; Zheng, W.-Y. An Overview of Available Antimalarials: Discovery, Mode of Action and Drug Resistance. Curr. Mol. Med. 2020, 20 (8), 583–592. DOI: 10.2174/1566524020666200207123253
27. Voorberg-van Der Wel, A.; Kocken, C. H. M.; Zeeman, A.-M. Modeling Relapsing Malaria: Emerging Technologies to Study Parasite-Host Interactions in the Liver. Front. Cell. Infect. Microbiol. 2021, 10, Art. No: 606033. DOI: 10.3389/fcimb.2020.606033
28. Turner, T.C., Arama, C., Ongoiba, A., Doumbo, S., Doumtabé, D., Kayentao, K., Skinner, J., Li, S., Traore, B., Crompton, P.D., Götz, A. Dendritic cell responses to Plasmodium falciparum in a malaria-endemic setting. Malar. J. 2021, 20(1), Art. No: 9. DOI: 10.1186/s12936-020-03533-w
29. Yadav, G. P.; Arukha, A. P.; Kothapalli, Y.; Singh, U. S. Antimalarial Drugs: Discovery, Mechanism of Action, and Drug Resistance. In Falciparum Malaria; Elsevier, 2024; pp 89–112. DOI: 10.1016/B978-0-323-95328-3.00008-8
30. Shandilya, C.; Singh, S.; Bala, K.; Singh, A.; Jha, S. K.; Singh, I. K. Malaria Drug Discovery: How to Tackle the Problem of Drug Resistance. In Natural Product Based Drug Discovery Against Human Parasites; Singh, A., Rathi, B., Verma, A. K., Singh, I. K., Eds.; Springer Nature Singapore: Singapore, 2023; pp 491–510. DOI: 10.1007/978-981-19-9605-4_22
31. Kofi Turkson, B.; Ofori Agyemang, A.; Nkrumah, D.; Isaac Nketia, R.; Frimpong Baidoo, M.; Lincoln Kwao Mensah, M. Treatment of Malaria Infection and Drug Resistance. In Plasmodium Species and Drug Resistance; K. Tyagi, R., Ed.; IntechOpen, 2021. DOI: 10.5772/intechopen.98373
32. López-Vélez, R.; Norman, F. F.; Bern, C. American Trypanosomiasis (Chagas Disease). In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier, 2020; pp 762–775. DOI: 10.1016/B978-0-323-55512-8.00103-4
33. Malone, C. J.; Nevis, I.; Fernández, E.; Sanchez, A. A Rapid Review on the Efficacy and Safety of Pharmacological Treatments for Chagas Disease. Trop. Med. Infect. Dis. 2021, 6 (3), Art. No: 128. DOI: 10.3390/tropicalmed6030128
34. Ramos, L. G.; De Souza, K. R.; Júnior, P. A. S.; Câmara, C. C.; Castelo-Branco, F. S.; Boechat, N.; Carvalho, S. A. Tackling the Challenges of Human Chagas Disease: A Comprehensive Review of Treatment Strategies in the Chronic Phase and Emerging Therapeutic Approaches. Acta Trop. 2024, 256, Art. No: 107264. DOI: 10.1016/j.actatropica.2024.107264
35. Álvarez-Hernández, D.-A.; Castro-Rico, Z.-L.; García-Rodríguez-Arana, R.; González-Chávez, A.-M.; González-Chávez, M.-A.; Martínez-Juárez, L.-A.; Ferreira, C.; Vázquez-López, R. Current Treatment of Chagas Disease. Curr. Treat. Options Infect. Dis. 2020, 12 (4), 438–457. DOI: 10.1007/s40506-020-00238-1
36. Chaudhary, J.; Rajge, R. R.; Khandale, N.; Kumari, Y.; Singh, I. Alternative Approaches for the Treatment of Chagas Disease. ChemistrySelect. 2024, 9 (18), Art. No: e202303983. DOI: 10.1002/slct.202303983
37. Nunes, M. C. P.; Bern, C.; Clark, E. H.; Teixeira, A. L.; Molina, I. Clinical Features of Chagas Disease Progression and Severity. Lancet Reg. Health Am. 2024, 37, Art. No: 100832. DOI: 10.1016/j.lana.2024.100832
38. Sabino, E. C.; Nunes, M. C. P.; Blum, J.; Molina, I.; Ribeiro, A. L. P. Cardiac Involvement in Chagas Disease and African Trypanosomiasis. Nat. Rev. Cardiol. 2024, 21 (12), 865–879. DOI: 10.1038/s41569-024-01057-3
39. Goldenberg, S. Chagas Disease Treatment: A 120-Year-Old Challenge to Public Health. Mem. Inst. Oswaldo Cruz. 2022, 117, Art. No: e210501chgsa. DOI: 10.1590/0074-02760210501chgsa
40. Suárez, C.; Nolder, D.; García-Mingo, A.; Moore, D. A.; Chiodini, P. L. Diagnosis and Clinical Management of Chagas Disease: An Increasing Challenge in Non-Endemic Areas. Res. Rep. Trop. Med. 2022, 13, 25–40. DOI: 10.2147/RRTM.S278135
41. Tripathi, L. K.; Nailwal, T. K. Leishmaniasis: An Overview of Evolution, Classification, Distribution, and Historical Aspects of Parasite and Its Vector. In Pathogenesis, Treatment and Prevention of Leishmaniasis; Elsevier, 2021; pp 1–25. DOI: 10.1016/B978-0-12-822800-5.00004-4
42. Saini, I.; Joshi, J.; Kaur, S. Unwelcome Prevalence of Leishmaniasis with Several Other Infectious Diseases. Int. Immunopharmacol. 2022, 110, Art. No: 109059. DOI: 10.1016/j.intimp.2022.109059
43. Mohan, S.; Revill, P.; Malvolti, S.; Malhame, M.; Sculpher, M.; Kaye, P. M. Estimating the Global Demand Curve for a Leishmaniasis Vaccine: A Generalisable Approach Based on Global Burden of Disease Estimates. PLoS Negl. Trop. Dis. 2022, 16 (6), Art. No: e0010471. DOI: 10.1371/journal.pntd.0010471
44. Wijnant, G.-J.; Dumetz, F.; Dirkx, L.; Bulté, D.; Cuypers, B.; Van Bocxlaer, K.; Hendrickx, S. Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. Front. Trop. Dis. 2022, 3, Art. No: 837460. DOI: 10.3389/fitd.2022.837460
45. Sundar, S.; Singh, J.; Singh, V. K.; Agrawal, N.; Kumar, R. Current and Emerging Therapies for the Treatment of Leishmaniasis. Expert Opin. Orphan Drugs 2024, 12 (1), 19–32. DOI: 10.1080/21678707.2024.2335248
46. Jain, S.; Sahu, U.; Kumar, A.; Khare, P. Metabolic Pathways of Leishmania Parasite: Source of Pertinent Drug Targets and Potent Drug Candidates. Pharmaceutics 2022, 14 (8), 1590. DOI: 10.3390/pharmaceutics14081590
47. Kourbeli, V.; Chontzopoulou, E.; Moschovou, K.; Pavlos, D.; Mavromoustakos, T.; Papanastasiou, I. P. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021, 26 (15), Art. No: 4629. DOI: 10.3390/molecules26154629
48. Rout, U. K.; Sanket, A. S.; Sisodia, B. S.; Mohapatra, P. K.; Pati, S.; Kant, R.; Dwivedi, G. R. A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria. Curr. Drug Targets 2020, 21 (8), 736–775. DOI: 10.2174/1389450121666200129103618
49. Chulanetra, M.; Chaicumpa, W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front. Cell. Infect. Microbiol. 2021, 11, Art. No: 702125. DOI: 10.3389/fcimb.2021.702125
50. Gabaldón-Figueira, J. C.; Martinez-Peinado, N.; Escabia, E.; Ros-Lucas, A.; Chatelain, E.; Scandale, I.; Gascon, J.; Pinazo, M.-J.; Alonso-Padilla, J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res. Rep. Trop. Med. 2023, 14, 1–19. DOI: 10.2147/RRTM.S415273
51. Gilbert, I.H. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches. J. Med. Chem. 2013, 56(20), 7719-26. DOI: 10.1021/jm400362b
52. Belmont-Díaz, J.; Vázquez, C.; Encalada, R.; Moreno-Sánchez, R.; Michels, P. A. M.; Saavedra, E. Metabolic Control Analysis for Drug Target Selection Against Human Diseases. In Drug Target Selection and Validation; Scotti, M. T., Bellera, C. L., Eds.; Book Series: Computer-Aided Drug Discovery and Design; Springer International Publishing: Cham, 2022; Vol. 1, pp 201–226. DOI: 10.1007/978-3-030-95895-4_8
53. Parthasarathy, A.; Kalesh, K. Defeating the Trypanosomatid Trio: Proteomics of the Protozoan Parasites Causing Neglected Tropical Diseases. RSC Med. Chem. 2020, 11 (6), 625–645. DOI: 10.1039/D0MD00122H
54. Koul, S. Divergent Approaches Toward Drug Discovery and Development. In The Quintessence of Basic and Clinical Research and Scientific Publishing; Jagadeesh, G., Balakumar, P., Senatore, F., Eds.; Springer Nature Singapore: Singapore, 2023; pp 557–578. DOI: 10.1007/978-981-99-1284-1_34
55. Pant, A. M.; Pelham, C. J.; Jadhav, G. P. Epigenetic Drug Discovery: Recent Advances through Structure-Activity Relationships and Phenotypic Profiling Studies. In Epigenetics in Organ Specific Disorders; Elsevier, 2023; pp 615–630. DOI: 10.1016/B978-0-12-823931-5.00009-8
56. Kotadiya, M. Drug Repurposing: Scopes in Herbal/Natural Products-Based Drug Discovery and Role of in Silico Techniques. In Drug Repurposing - Advances, Scopes and Opportunities in Drug Discovery; Rudrapal, M., Ed.; IntechOpen, 2023. DOI: 10.5772/intechopen.109821.
57. Shaivi, L.; Turabi, K. S.; Aich, J.; Devarajan, S.; Unni, D.; Garse, S. In Silico Approaches in the Repurposing of Bioactive Natural Products for Drug Discovery. In Phytochemistry, Computational Tools and Databases in Drug Discovery; Elsevier, 2023; pp 125–147. DOI: 10.1016/B978-0-323-90593-0.00010-1
58. Camicia, F.; Vaca, H. R.; Park, S.-K.; Bivona, A. E.; Naidich, A.; Preza, M.; Koziol, U.; Celentano, A. M.; Marchant, J. S.; Rosenzvit, M. C. Characterization of a New Type of Neuronal 5-HT G- Protein Coupled Receptor in the Cestode Nervous System. PLoS ONE 2021, 16 (11), Art. No: e0259104. DOI: 10.1371/journal.pone.0259104
59. Montazeri, M.; Fakhar, M.; Keighobadi, M. The Potential Role of the Serotonin Transporter as a Drug Targetagainst Parasitic Infections: A Scoping Review of the Literature. Recent Adv .Antiinfect. Drug Discov. 2022, 17 (1), 23–33. DOI: 10.2174/1574891X16666220304232301
60. Sutkeviciute, I.; Vilardaga, J.-P. Structural Insights into Emergent Signaling Modes of G Protein–Coupled Receptors. J. Biol. Chem. 2020, 295 (33), 11626–11642. DOI: 10.1074/jbc.REV120.009348
61. Kumar, A.; Deepika; Sharda, S.; Avasthi, A. Recent Advances in the Treatment of Parasitic Diseases: Current Status and Future. In Natural Product Based Drug Discovery Against Human Parasites; Singh, A., Rathi, B., Verma, A. K., Singh, I. K., Eds.; Springer Nature Singapore: Singapore, 2023; pp 249–286. DOI: 10.1007/978-981-19-9605-4_13
62. J. Timson, D. Metabolic Enzymes of Helminth Parasites: Potential as Drug Targets. Curr. Protein Pept. Sci. 2016, 17 (3), 280–295. DOI: 10.2174/1389203717999160226180733
63. Lautens, M. J.; Tan, J. H.; Serrat, X.; Del Borrello, S.; Schertzberg, M. R.; Fraser, A. G. Identification of Enzymes That Have Helminth-Specific Active Sites and Are Required for Rhodoquinone-Dependent Metabolism as Targets for New Anthelmintics. PLoS Negl. Trop. Dis. 2021, 15 (11), Art. No: e0009991. DOI: 10.1371/journal.pntd.0009991
64. Taylor, C. M.; Wang, Q.; Rosa, B. A.; Huang, S. C.-C.; Powell, K.; Schedl, T.; Pearce, E. J.; Abubucker, S.; Mitreva, M. Discovery of Anthelmintic Drug Targets and Drugs Using Chokepoints in Nematode Metabolic Pathways. PLoS Pathog. 2013, 9 (8), Art. No: e1003505. DOI: 10.1371/journal.ppat.1003505
65. Jampilek, J. Design of Antimalarial Agents Based on Natural Products. Curr. Org. Chem. 2017, 21 (18), 1824-1846. DOI: 10.2174/1385272821666161214121512
66. Ahad, B.; Shahri, W.; Rasool, H.; Reshi, Z. A.; Rasool, S.; Hussain, T. Medicinal Plants and Herbal Drugs: An Overview. In Medicinal and Aromatic Plants; Aftab, T., Hakeem, K. R., Eds.; Springer International Publishing: Cham., 2021; pp 1–40. DOI: 10.1007/978-3-030-58975-2_1
67. El Sayed, A. M.; Egbuna, C. Novel Bioactive Lead Compounds for Drug Discovery Against Neglected Tropical Diseases, Leishmaniasis, Lymphatic Filariasis, Trypanosomiasis (African Sleeping Sickness and Chagas Disease), and Schistosomiasis. In Neglected Tropical Diseases and Phytochemicals in Drug Discovery; Egbuna, C., Akram, M., Ifemeje, J. C., Eds.; Wiley, 2021; pp 75–134. DOI: 10.1002/9781119617143.ch3
68. Chithra, A.; Dhivya, K.; I., S. S.; Suresh, A. R.; Balasubramaniyan, M. Phytocompounds as Therapeutic Agents Against Neglected Tropical Diseases: In Advances in Medical Diagnosis, Treatment, and Care; Radhakrishnan, N., Vasantha, S., Pandurangan, A. K., Eds.; IGI Global, 2023; pp 200–224. DOI: 10.4018/978-1-6684-6737-4.ch012
69. Soto‐Sánchez, J. Could Natural Terpenes Be an Alternative for the Treatment of Neglected Tropical Diseases? Chem. Biol. Drug Des. 2024, 103 (2), Art. No: e14470. DOI: 10.1111/cbdd.14470
70. Adegboye, O.; Field, M. A.; Kupz, A.; Pai, S.; Sharma, D.; Smout, M. J.; Wangchuk, P.; Wong, Y.; Loiseau, C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin. Microbiol. Rev. 2021, 34 (4), e00348-20. DOI: 10.1128/CMR.00348-20
71. Raj, S.; Sasidharan, S.; Balaji, S. N.; Dubey, V. K.; Saudagar, P. Review on Natural Products as an Alternative to Contemporary Anti-Leishmanial Therapeutics. J. Proteins Proteom. 2020, 11 (2), 135–158. DOI: 10.1007/s42485-020-00035-w
72. Abdullah; Khan, F.; Ali, G.; Naveed, A.; Shah, M. A.; Saleem, U.; Aman, W. Phytonutrients Standardization for Effective Therapeutic Outcomes. In Phytonutrients and Neurological Disorders; Elsevier, 2023; pp 19–31. DOI: 10.1016/B978-0-12-824467-8.00010-3
73. Barani, M.; Sangiovanni, E.; Angarano, M.; Rajizadeh, M. A.; Mehrabani, M.; Piazza, S.; Gangadharappa, H. V.; Pardakhty, A.; Mehrbani, M.; Dell’Agli, M.; et al. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int. J. Nanomedicine 2021, 16, 6983–7022. DOI: 10.2147/IJN.S318416
74. Estrella-Parra, E. A.; Arreola, R.; Álvarez-Sánchez, M. E.; Torres-Romero, J. C.; Rojas-Espinosa, O.; De La Cruz-Santiago, J. A.; Martinez-Benitez, M. B.; López-Camarillo, C.; Lara-Riegos, J. C.; Arana-Argáez, V. E.; et al. Natural Marine Products as Antiprotozoal Agents against Amitochondrial Parasites. Int. J. Parasitol. Drugs Drug Resist. 2022, 19, 40–46. DOI: 10.1016/j.ijpddr.2022.05.003
75. Venkateskumar, K.; Parasuraman, S.; Chuen, L. Y.; Ravichandran, V.; Balamurgan, S. Exploring Antimicrobials from the Flora and Fauna of Marine: Opportunities and Limitations. Curr. Drug Discov. Technol. 2020, 17 (4), 507–514. DOI: 10.2174/1570163816666190819141344
76. Santhiravel, S.; Dave, D.; Shahidi, F. Bioactives from Marine Resources as Natural Health Products: A Review. Pharmacol. Rev. 2024, Art. No: PHARMREV-AR-2024-001227. DOI: 10.1124/pharmrev.124.001227
77. Banday, A. H.; Azha, N. U.; Farooq, R.; Sheikh, S. A.; Ganie, M. A.; Parray, M. N.; Mushtaq, H.; Hameed, I.; Lone, M. A. Exploring the Potential of Marine Natural Products in Drug Development: A Comprehensive Review. Phytochem. Lett. 2024, 59, 124–135. DOI: 10.1016/j.phytol.2024.01.001
78. Mendoza-Muñoz, N.; Urbán-Morlán, Z.; Leyva-Gómez, G.; Zambrano-Zaragoza, M. D. L. L.; ¨Piñón-Segundo, E.; Quintanar-Guerrero, D. Solid Lipid Nanoparticles: An Approach to Improve Oral Drug Delivery. J. Pharm. Pharm. Sci. 2021, 24, 509–532. DOI: 10.18433/jpps31788.
79. De Carvalho Oliveira, S. S.; Branquinha, M. H.; Do Socorro Pires E Cruz, M.; Santos, A. L. S. D.; Sangenito, L. S. Trendings of Amphotericin B-Loaded Nanoparticles as Valuable Chemotherapeutic Approaches against Leishmaniasis. In Applications of Nanobiotechnology for Neglected Tropical Diseases; Elsevier, 2021; pp 291–327. DOI: 10.1016/B978-0-12-821100-7.00014-5
80. Muraca, G.; Berti, I. R.; Sbaraglini, M. L.; Fávaro, W. J.; Durán, N.; Castro, G. R.; Talevi, A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front. Chem. 2020, 8, Art. No: 601151. DOI: 10.3389/fchem.2020.601151
81. Ortega, M. Á.; Guzmán Merino, A.; Fraile-Martínez, O.; Recio-Ruiz, J.; Pekarek, L.; G. Guijarro, L.; García-Honduvilla, N.; Álvarez-Mon, M.; Buján, J.; García-Gallego, S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020, 12 (9), Art. No: 874. DOI: 10.3390/pharmaceutics12090874
82. Maddiboyina, B.; Ramaiah; Nakkala, R. K.; Roy, H. Perspectives on Cutting‐edge Nanoparticulate Drug Delivery Technologies Based on Lipids and Their Applications. Chem. Biol. Drug Des. 2023, 102 (2), 377–394. DOI: 10.1111/cbdd.14230.
83. Ahmed, T.; Liu, F.-C. F.; Wu, X. Y. An Update on Strategies for Optimizing Polymer-Lipid Hybrid Nanoparticle-Mediated Drug Delivery: Exploiting Transformability and Bioactivity of PLN and Harnessing Intracellular Lipid Transport Mechanism. Expert Opin. Drug Deliv. 2024, 21 (2), 245–278. DOI: 10.1080/17425247.2024.2318459
84. Pundir, G. .; Morris, S. .; Jakhmola, V.; Parashar, T. P. . Microneedle Transdermal Patches - A Novel Painless Approach with Improved Bioavailability for the Treatment of Diseases with Special Prevalence to Neonatal Infection. IJDDT 2024, 14 (03), 1749–1757. DOI: 10.25258/ijddt.14.3.71
85. Sekar, L.; Seenivasan, R.; Reddy, M. V.; Varma, K. D.; Ahmed, S. S.; Pachiyappan, J. K.; Ganesh, G. Advancements in microneedle technology: comprehensive insights into versatile drug delivery mechanisms. Int. J. App. Pharm. 2024, 16, 1–11. DOI: 10.22159/ijap.2024v16i2.49564.
86. Martin-Plaza, J.; Chatelain, E. Novel Therapeutic Approaches for Neglected Infectious Diseases. SLAS Dis. 2015, 20 (1), 3–5. DOI: 10.1177/1087057114559907
87. Aldawood, F. K.; Parupelli, S. K.; Andar, A.; Desai, S. 3D Printing of Biodegradable Polymeric Microneedles for Transdermal Drug Delivery Applications. Pharmaceutics 2024, 16 (2), Art. No: 237. DOI: 10.3390/pharmaceutics16020237
88. Mendoza-León, A.; Serrano G., M. L.; Ponte-Sucre, A. Challenges in Drug Discovery and Description Targeting Leishmania Spp.: Enzymes, Structural Proteins, and Transporters. Front. Trop. Dis. 2023, 4, Art. No: 1241044. DOI: 10.3389/fitd.2023.1241044.
89. Bello‐Akinosho, M.; Afolabi, K. O.; Chandra, H.; Mayashinta, D. K.; Setia, Y. D.; Prakash Mishra, A.; Pohl‐Albertyn, C. Opportunities and Challenges in the Development of Antiparasitic Drugs. In Parasitic Infections; Mishra, A. P., Nigam, M., Eds.; Wiley, 2023; pp 227–250. DOI: 10.1002/9781119878063.ch11
90. Schmidt, H.; Mauer, K.; Glaser, M.; Dezfuli, B. S.; Hellmann, S. L.; Silva Gomes, A. L.; Butter, F.; Wade, R. C.; Hankeln, T.; Herlyn, H. Identification of Antiparasitic Drug Targets Using a Multi-Omics Workflow in the Acanthocephalan Model. BMC Genomics. 2022, 23 (1), Art. No: 677. DOI: 10.1186/s12864-022-08882-1
91. Kiriiri, G. K.; Njogu, P. M.; Mwangi, A. N. Exploring Different Approaches to Improve the Success of Drug Discovery and Development Projects: A Review. Futur. J. Pharm. Sci. 2020, 6 (1), Art. No: 27. DOI: 10.1186/s43094-020-00047-9
92. Yajima, A., Lin, Z., Mohamed, A.J., Dash, A.P., Rijal, S. Finishing the task of eliminating neglected tropical diseases (NTDs) in WHO South-East Asia Region: promises kept, challenges, and the way forward. Lancet Reg. Health Southeast Asia. 2023, 18, Art. No: 100302. DOI: 10.1016/j.lansea.2023.100302
93. Ungogo, M. A.; Ebiloma, G. U.; Ichoron, N.; Igoli, J. O.; De Koning, H. P.; Balogun, E. O. A Review of the Antimalarial, Antitrypanosomal, and Antileishmanial Activities of Natural Compounds Isolated From Nigerian Flora. Front. Chem. 2020, 8, Art. No: 617448. DOI: 10.3389/fchem.2020.617448