Shokri-Mashhadi, N.; Kazemi, M.; Saadat, S.; Moradi, S. Effects of select dietary supplements on the prevention and treatment of viral respiratory tract infections: a systematic review of randomized controlled trials. Expert. Rev. Respir. Med. 2021, 15(6), 805–21. doi:10.1080/17476348.2021.1918546
DOI: https://doi.org/10.1080/17476348.2021.1918546
Evans, M.; Falcone, P.H.; Crowley, D.C.; et al. Effect of a Euglena gracilis Fermentate on Immune Function in Healthy, Active Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2019, 11(12), Art. No: 2926. doi:10.3390/nu11122926
DOI: https://doi.org/10.3390/nu11122926
Pasternak, G.; Lewandowicz-Uszyńska, A.; Królak-Olejnik, B. Recurrent respiratory tract infections in children. Pol. Merkur. Lek. Organ. Pol. Tow. Lek. 2020, 49(286), 260-266.
Chiappini, E.; Santamaria, F.; Marseglia, G.L.; et al. Prevention of recurrent respiratory infections : Inter-society Consensus. Ital. J. Pediatr. 2021, 47(1), Art. No:211. doi: 10.1186/s13052-021-01150-0
DOI: https://doi.org/10.1186/s13052-021-01150-0
Cuppari, C.; Colavita, L.; Miraglia Del Giudice, M.; Chimenz, R.; Salpietro, C. Recurrent respiratory infections between immunity and atopy. Pediatr. Allergy Immunol. Off Publ. Eur. Soc. Pediatr. Allergy Immunol. 2020, Suppl 24, 19-21. doi: 10.1111/pai.13160
DOI: https://doi.org/10.1111/pai.13160
Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak GP. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377-390. doi: 10.1016/j.jff.2017.11.025
DOI: https://doi.org/10.1016/j.jff.2017.11.025
Domínguez, R.; Zhang, L.; Rocchetti, G.; et al. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, Art. No: 127266. doi: 10.1016/j.foodchem.2020.127266
DOI: https://doi.org/10.1016/j.foodchem.2020.127266
Hawkins, J.; Baker, C.; Cherry, L.; Dunne, E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complement. Ther. Med. 2019, 42, 361-365. doi: 10.1016/j.ctim.2018.12.004
DOI: https://doi.org/10.1016/j.ctim.2018.12.004
Stępień, AE.; Trojniak, J.; Tabarkiewicz J. Health-Promoting Properties: Anti-Inflammatory and Anticancer Properties of Sambucus nigra L. Flowers and Fruits. Molecules 2023, 28(17), Art. No: 6235. doi: 10.3390/molecules28176235
DOI: https://doi.org/10.3390/molecules28176235
Vujanović, M.; Majkić, T.; Zengin, G.; Beara, I.; Tomović, V.; Šojić, B.; Đurović, S.; Radojković, M. Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Adv. 2020, 10(73), 44805-44814. doi: 10.1039/d0ra09129d
DOI: https://doi.org/10.1039/D0RA09129D
Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food – a review. J. Funct. Foods 2015, 18, 941-958. doi: 10.1016/j.jff.2014.07.012
DOI: https://doi.org/10.1016/j.jff.2014.07.012
Przybylska-Balcerek, A.; Szablewski, T.; Szwajkowska-Michałek, L., Świerk, D.; Cegielska-Radziejewska R.; Krejpcio Z.; Suchowilska, E.; Tomczyk, Ł.; Sambucus Nigra Extracts-Natural Antioxidants and Antimicrobial Compounds. Molecules 2021, 26(10), Art. No: 2910. doi: 10.3390/molecules26102910
DOI: https://doi.org/10.3390/molecules26102910
Marțiș Petruț, GS.; Mureșan, V.; Marc Vlaic, RM.; et al. The Physicochemical and Antioxidant Properties of Sambucus nigra L. and Sambucus nigra Haschberg during Growth Phases: From Buds to Ripening. Antioxidants (Basel). 2021, 10(7), Art. No: 1093. doi: 10.3390/antiox10071093
DOI: https://doi.org/10.3390/antiox10071093
Elderberry. In: Drugs and Lactation Database (LactMed®) . National Institute of Child Health and Human Development.. Available online: https://www.ncbi.nlm.nih.gov/books/NBK501835/ (accessed on day 18th June, 2024).
Viapiana, A.; Wesolowski, M. The Phenolic Contents and Antioxidant Activities of Infusions of Sambucus nigra L. Plant Foods Hum. Nutr. 2017, 72(1), 82-87. doi: 10.1007/s11130-016-0594-x
DOI: https://doi.org/10.1007/s11130-016-0594-x
16.Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT - Food Sci. Technol. 2016, 72, 182-188. doi: 10.1016/j.lwt.2016.04.056
DOI: https://doi.org/10.1016/j.lwt.2016.04.056
Sambuci flos - herbal medicinal product | European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/herbal/sambuci-flos (accessed on day 18th June, 2024).
Giannattasio, A.; Poggi, E.; Trapani, G.; et al. Primary care experience on Stimunex® gocce in children with recurrent respiratory infections: a real-world study during the COVID-19 pandemic era. Allergol. Immunopathol. (Madr). 2022, 50(3), 8-14. doi: 10.15586/aei.v50i3.562
DOI: https://doi.org/10.15586/aei.v50i3.562
Tiralongo, E.; Wee, S.S.; Lea, R.A. Elderberry Supplementation Reduces Cold Duration and Symptoms in Air-Travellers: A Randomized, Double-Blind Placebo-Controlled Clinical Trial. Nutrients 2016, 8(4), Art. No: 182. doi: 10.3390/nu8040182
DOI: https://doi.org/10.3390/nu8040182
Macknin, M.; Wolski, K.; Negrey, J.; Mace, S. Elderberry Extract Outpatient Influenza Treatment for Emergency Room Patients Ages 5 and Above: a Randomized, Double-Blind, Placebo-Controlled Trial. J. Gen. Intern. Med. 2020, 35(11), 3271-3277. doi: 10.1007/s11606-020-06170-w
DOI: https://doi.org/10.1007/s11606-020-06170-w
Mah, E.; Kaden, V.N.; Kelley, K.M.; Liska, D.J. Beverage Containing Dispersible Yeast β-Glucan Decreases Cold/Flu Symptomatic Days After Intense Exercise: A Randomized Controlled Trial. J. Diet. Suppl. 2020, 17(2), 200-210. doi: 10.1080/19390211.2018.1495676
DOI: https://doi.org/10.1080/19390211.2018.1495676
Zhong, K.; Liu, Z.; Lu, Y.; Xu, X. Effects of yeast β-glucans for the prevention and treatment of upper respiratory tract infection in healthy subjects: a systematic review and meta-analysis. Eur. J. Nutr. 2021, 60(8), 4175-4187. doi: 10.1007/s00394-021-02566-4
DOI: https://doi.org/10.1007/s00394-021-02566-4
Dharsono, T.; Rudnicka, K.; Wilhelm, M.; Schoen, C. Effects of Yeast (1,3)-(1,6)-Beta-Glucan on Severity of Upper Respiratory Tract Infections: A Double-Blind, Randomized, Placebo-Controlled Study in Healthy Subjects. J. Am. Coll. Nutr. 2019, 38(1), 40-50. doi: 10.1080/07315724.2018.1478339
DOI: https://doi.org/10.1080/07315724.2018.1478339
McFarlin, B.K.; Carpenter, K.C.; Davidson, T.; McFarlin, M.A. Baker’s yeast beta glucan supplementation increases salivary IgA and decreases cold/flu symptomatic days after intense exercise. J. Diet. Suppl. 2013, 10(3), 171-183. doi: 10.3109/19390211.2013.820248
DOI: https://doi.org/10.3109/19390211.2013.820248
Vlassopoulou, M.; Yannakoulia, M.; Pletsa, V.; Zervakis, G.I.; Kyriacou, A. Effects of fungal beta-glucans on health – a systematic review of randomized controlled trials. Food Funct. 2021, 12(8), 3366-3380. doi:10.1039/D1FO00122A
DOI: https://doi.org/10.1039/D1FO00122A
Jesenak, M.; Hrubisko, M.; Majtan, J.; Rennerova, Z.; Banovcin, P. Anti-allergic effect of Pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother. Res. PTR. 2014, 28(3), 471-474. doi: 10.1002/ptr.5020
DOI: https://doi.org/10.1002/ptr.5020
Talbott, S.M.; Talbott, J.A. Baker’s yeast beta-glucan supplement reduces upper respiratory symptoms and improves mood state in stressed women. J. Am. Coll. Nutr. 2012, 31(4), 295-300. doi: 10.1080/07315724.2012.10720441
DOI: https://doi.org/10.1080/07315724.2012.10720441
Arslan, A.; Kaplan, M.; Duman, H.; et al. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front. Nutr. 2021, 8, Art. No: 651721. doi: 10.3389/fnut.2021.651721
DOI: https://doi.org/10.3389/fnut.2021.651721
Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13(1), Art. No: 265. doi: 10.3390/nu13010265
DOI: https://doi.org/10.3390/nu13010265
Baśkiewicz-Hałasa, M.; Stachowska, E.; Grochans, E.; et al. Moderate Dose Bovine Colostrum Supplementation in Prevention of Upper Respiratory Tract Infections in Medical University Students: A Randomized, Triple Blind, Placebo-Controlled Trial. Nutrients 2023, 15(8), Art. No: 1925. doi: 10.3390/nu15081925
DOI: https://doi.org/10.3390/nu15081925
Patıroğlu, T.; Kondolot, M. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. Clin. Respir. J. 2013, 7(1), 21-26. doi: 10.1111/j.1752-699X.2011.00268.x
DOI: https://doi.org/10.1111/j.1752-699X.2011.00268.x
Hałasa, M.; Skonieczna-Żydecka, K.; Machaliński, B.; Bühner, L.; Baśkiewicz-Hałasa, M. Six Weeks of Supplementation with Bovine Colostrum Effectively Reduces URTIs Symptoms Frequency and Gravity for Up to 20 Weeks in Pre-School Children. Nutrients 2023, 15(16), Art. No: 3626. doi: 10.3390/nu15163626
DOI: https://doi.org/10.3390/nu15163626
Jones, A.W.; Cameron, S.J.S.; Thatcher, R.; Beecroft, M.S.; Mur, L.A.J.; Davison, G. Effects of bovine colostrum supplementation on upper respiratory illness in active males. Brain Behav. Immun. 2014, 39, 194-203. doi: 10.1016/j.bbi.2013.10.032
DOI: https://doi.org/10.1016/j.bbi.2013.10.032
Jones, A.W.; March, D.S.; Curtis, F.; Bridle, C. Bovine colostrum supplementation and upper respiratory symptoms during exercise training: a systematic review and meta-analysis of randomised controlled trials. BMC. Sports Sci. Med. Rehabil. 2016, 8, Art. No: 21. doi: 10.1186/s13102-016-0047-8
DOI: https://doi.org/10.1186/s13102-016-0047-8
Główka, N.; Durkalec-Michalski, K.; Woźniewicz, M. Immunological Outcomes of Bovine Colostrum Supplementation in Trained and Physically Active People: A Systematic Review and Meta-Analysis. Nutrients 2020, 12(4), Art. No: 1023. doi: 10.3390/nu12041023
DOI: https://doi.org/10.3390/nu12041023
Sinopoli, A.; Isonne, C.; Santoro, M.M.; Baccolini, V. The effects of orally administered lactoferrin in the prevention and management of viral infections: A systematic review. Rev. Med. Virol. 2022, 32(1), Art. No: e2261. doi: 10.1002/rmv.2261
DOI: https://doi.org/10.1002/rmv.2261
Berthon, B.S.; Williams, L.M.; Williams, E.J.; Wood, L.G. Effect of Lactoferrin Supplementation on Inflammation, Immune Function, and Prevention of Respiratory Tract Infections in Humans: A Systematic Review and Meta-analysis. Adv. Nutr. Bethesda. Md. 2022, 13(5), 1799-1819. doi: 10.1093/advances/nmac047
DOI: https://doi.org/10.1093/advances/nmac047
Oda, H.; Wakabayashi, H.; Tanaka, M.; et al. Effects of lactoferrin on infectious diseases in Japanese summer: A randomized, double-blinded, placebo-controlled trial. J. Microbiol. Immunol. Infect. Wei. Mian. Yu. Gan. Ran. Za. Zhi. 2021, 54(4), 566-574. doi: 10.1016/j.jmii.2020.02.010
DOI: https://doi.org/10.1016/j.jmii.2020.02.010
Chen, K.; Chai, L.; Li, H.; et al. Effect of bovine lactoferrin from iron-fortified formulas on diarrhea and respiratory tract infections of weaned infants in a randomized controlled trial. Nutr. Burbank. Los Angel. Cty. Calif. 2016, 32(2), 222-227. doi: 10.1016/j.nut.2015.08.010
DOI: https://doi.org/10.1016/j.nut.2015.08.010
Gualdi, L.; Mertz, S.; Gomez, A.M.; Ramilo, O.; Wittke, A.; Mejias, A. Lack of effect of bovine lactoferrin in respiratory syncytial virus replication and clinical disease severity in the mouse model. Antiviral. Res. 2013, 99(2), 188-195. doi: 10.1016/j.antiviral.2013.05.013
DOI: https://doi.org/10.1016/j.antiviral.2013.05.013
Vitetta, L.; Coulson, S.; Beck, S.L.; Gramotnev, H.; Du, S.; Lewis, S. The clinical efficacy of a bovine lactoferrin/whey protein Ig-rich fraction (Lf/IgF) for the common cold: a double blind randomized study. Complement. Ther. Med. 2013, 21(3), 164-171. doi: 10.1016/j.ctim.2012.12.006
DOI: https://doi.org/10.1016/j.ctim.2012.12.006
Ciesielska-Figlon, K.; Wojciechowicz, K.; Wardowska, A.; Lisowska, K.A. The Immunomodulatory Effect of Nigella sativa. Antioxid. Basel. Switz. 2023, 12(7), Art. No: 1340. doi: 10.3390/antiox12071340
DOI: https://doi.org/10.3390/antiox12071340
Hannan, MdA.; Rahman, MdA.; Sohag, AAM. et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13(6), Art. No: 1784. doi: 10.3390/nu13061784
DOI: https://doi.org/10.3390/nu13061784
Ojueromi, O.O.; Oboh, G.; Ademosun, A.O. Black Seed (Nigella sativa): A Favourable Alternative Therapy for Inflammatory and Immune System Disorders. Inflammopharmacol. 2022, 30(5), 1623-1643. doi: 10.1007/s10787-022-01035-6
DOI: https://doi.org/10.1007/s10787-022-01035-6
Montazeri, R.S.; Fatahi, S.; Sohouli, M.H.; et al. The effect of nigella sativa on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Food Biochem. 2021, 45(4), Art. No: e13625. doi: 10.1111/jfbc.13625
DOI: https://doi.org/10.1111/jfbc.13625
Kavyani, Z.; Musazadeh, V.; Golpour-Hamedani, S.; Moridpour, A.H.; Vajdi, M.; Askari, G. The effect of Nigella sativa (black seed) on biomarkers of inflammation and oxidative stress: an updated systematic review and meta-analysis of randomized controlled trials. Inflammopharmacol. 2023, 31(3), 1149-1165. doi: 10.1007/s10787-023-01213-0
DOI: https://doi.org/10.1007/s10787-023-01213-0
Salem, A.; Bamosa, A.; Alam, M.; et al. Effect of Nigella sativa on general health and immune system in young healthy volunteers; a randomized, placebo-controlled, double-blinded clinical trial. F1000Research 2021, 10, Art. No: 1199. doi: 10.12688/f1000research.73524.2
DOI: https://doi.org/10.12688/f1000research.73524.1
Koshak, A.E.; Koshak, E.A.; Mobeireek, A.F.; et al. Nigella sativa for the treatment of COVID-19: An open-label randomized controlled clinical trial. Complement. Ther. Med. 2021, 61, Art. No: 102769. doi: 10.1016/j.ctim.2021.102769
DOI: https://doi.org/10.1016/j.ctim.2021.102769
Ashraf, S.; Ashraf, S.; Ashraf, M.; et al. Honey and Nigella sativa against COVID-19 in Pakistan (HNS-COVID-PK): A multicenter placebo-controlled randomized clinical trial. Phytother. Res. PTR. 2023, 37(2), 627-644. doi: 10.1002/ptr.7640
DOI: https://doi.org/10.1002/ptr.7640
Bin Abdulrahman, K.A.; Bamosa, A.O.; Bukhari, A.I.; et al. The Effect of Short Treatment with Nigella Sativa on Symptoms, the Cluster of Differentiation (CD) Profile, and Inflammatory Markers in Mild COVID-19 Patients: A Randomized, Double-Blind Controlled Trial. Int. J. Environ. Res. Public. Health 2022, 19(18), Art. No: 11798. doi: 10.3390/ijerph191811798
DOI: https://doi.org/10.3390/ijerph191811798
Dobrange, E.; Peshev, D.; Loedolff, B.; Van den Ende, W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules. 2019, 9(10), Art. No: 615. doi: 10.3390/biom9100615
DOI: https://doi.org/10.3390/biom9100615
Burlou-Nagy, C.; Bănică, F.; Jurca, T.; et al. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. Plants Basel Switz. 2022, 11(9), Art. No: 1244. doi:10.3390/plants11091244
DOI: https://doi.org/10.3390/plants11091244
Ahmadi, F.; Kariman, K.; Mousavi, M.; Rengel, Z. Echinacea: Bioactive Compounds and Agronomy. Plants (Basel). 2024, 13(9), Art. No: 1235. doi: 10.3390/plants13091235
DOI: https://doi.org/10.3390/plants13091235
Bruni, R.; Brighenti, V.; Caesar, LK.; Bertelli, D.; Cech, NB.; Pellati, F. Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J Pharm Biomed Anal. 2018, 160, 443-477. doi: 10.1016/j.jpba.2018.07.044
DOI: https://doi.org/10.1016/j.jpba.2018.07.044
Ogal, M.; Johnston, S.L.; Klein, P.; Schoop, R. Echinacea reduces antibiotic usage in children through respiratory tract infection prevention: a randomized, blinded, controlled clinical trial. Eur. J. Med. Res. 2021, 26(1), Art. No: 33. doi: 10.1186/s40001-021-00499-6
DOI: https://doi.org/10.1186/s40001-021-00499-6
Barth, A.; Hovhannisyan, A.; Jamalyan, K.; Narimanyan, M. Antitussive effect of a fixed combination of Justicia adhatoda, Echinacea purpurea and Eleutherococcus senticosus extracts in patients with acute upper respiratory tract infection: A comparative, randomized, double-blind, placebo-controlled study. Phytomedicine Int. J. Phytother. Phytopharm. 2015, 22(13), 1195-1200. doi: 10.1016/j.phymed.2015.10.001
DOI: https://doi.org/10.1016/j.phymed.2015.10.001
Mesri, M.; Esmaeili, Saber, S.S.; Godazi, M.; et al. The effects of combination of Zingiber officinale and Echinacea on alleviation of clinical symptoms and hospitalization rate of suspected COVID-19 outpatients: a randomized controlled trial. J. Complement. Integr. Med. 2021, 18(4), 775-781. doi: 10.1515/jcim-2020-0283
DOI: https://doi.org/10.1515/jcim-2020-0283
Abdel-Naby, Awad, O.G. Echinacea can help with Azithromycin in prevention of recurrent tonsillitis in children. Am. J. Otolaryngol. 2020, 41(4), Art. No: 102344. doi: 10.1016/j.amjoto.2019.102344
DOI: https://doi.org/10.1016/j.amjoto.2019.102344
David, S.; Cunningham, R. Echinacea for the prevention and treatment of upper respiratory tract infections: A systematic review and meta-analysis. Complement. Ther. Med. 2019, 44, 18-26. doi: 10.1016/j.ctim.2019.03.011
DOI: https://doi.org/10.1016/j.ctim.2019.03.011
Karsch-Völk, M.; Barrett, B.; Kiefer, D.; Baue,r R.; Ardjomand-Woelkart, K.; Linde, K. Echinacea for preventing and treating the common cold. Cochrane Database Syst. Rev. 2014, 2014(2), Art. No: 000530. doi: 10.1002/14651858.CD000530.pub3
DOI: https://doi.org/10.1002/14651858.CD000530.pub3
Haefeli, WE.; Carls, A. Drug interactions with phytotherapeutics in oncology. Expert Opinion on Drug Metabolism & Toxicology. 2014, 10(3), 359-377. doi: 10.1517/17425255.2014.873786
DOI: https://doi.org/10.1517/17425255.2014.873786
Rombolà, L.; Scuteri, D.; Marilisa, S.; et al. Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life 2020, 10(7), Art. No: 106. doi: 10.3390/life10070106
DOI: https://doi.org/10.3390/life10070106
Zulhendri, F.; Perera, C.O.; Tandean, S.; et al. The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review. Biomed. Pharmacother. Biomedecine Pharmacother. 2022, 146, Art. No: 112595. doi: 10.1016/j.biopha.2021.112595
DOI: https://doi.org/10.1016/j.biopha.2021.112595
Zulhendri, F.; Lesmana, R.; Tandean, S.; et al. Recent Update on the Anti-Inflammatory Activities of Propolis. Mol. Basel. Switz. 2022, 27(23), Art. No: 8473. doi: 10.3390/molecules27238473
DOI: https://doi.org/10.3390/molecules27238473
Esposito, C.; Garzarella, E.U.; Bocchino, B.; et al. A standardized polyphenol mixture extracted from poplar-type propolis for remission of symptoms of uncomplicated upper respiratory tract infection (URTI): A monocentric, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine Int. J. Phytother. Phytopharm. 2021, 80, Art. No: 153368. doi: 10.1016/j.phymed.2020.153368
DOI: https://doi.org/10.1016/j.phymed.2020.153368
66.Dilokthornsakul, W.; Kosiyaporn, R.; Wuttipongwaragon, R.; Dilokthornsakul, P. Potential effects of propolis and honey in COVID-19 prevention and treatment: A systematic review of in silico and clinical studies. J. Integr. Med. 2022, 20(2), 114-125. doi: 10.1016/j.joim.2022.01.008
DOI: https://doi.org/10.1016/j.joim.2022.01.008
Arentz, S.; Hunter, J.; Khamba, B.; et al. Honeybee products for the treatment and recovery from viral respiratory infections including SARS-COV-2: A rapid systematic review. Integr. Med. Res. 2021, 10, Art. No: 100779. doi: 10.1016/j.imr.2021.100779
DOI: https://doi.org/10.1016/j.imr.2021.100779
Silveira, M.A.D.; De Jong, D.; Berretta, A.A.; et al. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed. Pharmacother. Biomedecine Pharmacother. 2021, 138, Art. No: 111526. doi: 10.1016/j.biopha.2021.111526
DOI: https://doi.org/10.1016/j.biopha.2021.111526
Di Pierro, F.; Colombo, M.; Zanvit, A.; Risso, P.; Rottoli, A.S. Use of Streptococcus salivarius K12 in the prevention of streptococcal and viral pharyngotonsillitis in children. Drug Healthc. Patient Saf. 2014, 6, 15-20. doi: 10.2147/DHPS.S59665
DOI: https://doi.org/10.2147/DHPS.S59665
Bertuccioli, A.; Gervasi, M.; Annibalini, G.; et al. Use of Streptococcus salivarius K12 in supporting the mucosal immune function of active young subjects: A randomised double-blind study. Front. Immunol. 2023, 14, Art. No: 1129060. doi: 10.3389/fimmu.2023.1129060
DOI: https://doi.org/10.3389/fimmu.2023.1129060
Babina, K.; Salikhova, D.; Polyakova, M.; et al. The Effect of Oral Probiotics (Streptococcus Salivarius k12) on the Salivary Level of Secretory Immunoglobulin A, Salivation Rate, and Oral Biofilm: A Pilot Randomized Clinical Trial. Nutrients 2022, 14(5), Art. No: 1124. doi: 10.3390/nu14051124
DOI: https://doi.org/10.3390/nu14051124
Laws, G.L.; Hale, J.D.F.; Kemp, R.A. Human Systemic Immune Response to Ingestion of the Oral Probiotic Streptococcus salivarius BLIS K12. Probiotics Antimicrob. Proteins 2021, 13(6), 1521-1529. doi: 10.1007/s12602-021-09822-3
DOI: https://doi.org/10.1007/s12602-021-09822-3
Di Pierro, F.; Colombo, M.; Giuliani, M.G.; et al. Effect of administration of Streptococcus salivarius K12 on the occurrence of streptococcal pharyngo-tonsillitis, scarlet fever and acute otitis media in 3 years old children. Eur. Rev. Med. Pharmacol. Sci. 2016, 20(21), 4601-4606.
Karpova, E.P.; Karpycheva, I.E.; Tulupov, D.A. Prophylaxis of chronic adenoiditis in the children. Vestn. Otorinolaringol. 2015, 80(6), 43-45. doi: 10.17116/otorino201580643-45
DOI: https://doi.org/10.17116/otorino201580643-45
Doyle, H.; Pierse, N.; Tiatia, R.; Williamson, D.; Baker, M.; Crane, J. Effect of Oral Probiotic Streptococcus salivarius K12 on Group A Streptococcus Pharyngitis: A Pragmatic Trial in Schools. Pediatr. Infect. Dis. J. 2018, 37(7), 619-623. doi: 10.1097/INF.0000000000001847
DOI: https://doi.org/10.1097/INF.0000000000001847
Beran, J.; Šalapová, E.; Špajdel, M. Isoprinosine Study (EWO ISO-2014/1) Team. Inosine pranobex is safe and effective for the treatment of subjects with confirmed acute respiratory viral infections: analysis and subgroup analysis from a Phase 4, randomised, placebo-controlled, double-blind study. BMC. Infect. Dis. 2016, 16(1), Art. No: 648. doi: 10.1186/s12879-016-1965-5
DOI: https://doi.org/10.1186/s12879-016-1965-5
Lao, Z gang.; Wu, H.; Wang, S ning.; Song, F.; Ru, H yao.; Dai, L cheng. Amelioration of inflammatory reaction in patients with severe sepsis with inosine. Zhonghua. Wei. Zhong. Bing. Ji. Jiu. Yi. Xue. 2013, 25(4), 204-206. doi: 10.3760/cma.j.issn.2095-4352.2013.04.006
Lee, D.K.; Park, S.; Long, N.P.; et al. Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng. Nutrients 2020, 12(9), Art. No: 2590. doi: 10.3390/nu12092590
DOI: https://doi.org/10.3390/nu12092590
Ratan, Z.A.; Youn, S.H.; Kwak, Y.S.; et al. Adaptogenic effects of Panax ginseng on modulation of immune functions. J. Ginseng Res. 2021, 45(1), 32-40. doi: 10.1016/j.jgr.2020.09.004
DOI: https://doi.org/10.1016/j.jgr.2020.09.004
Mancuso, C.; Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol. 2017, 107, 362-372. doi:10.1016/j.fct.2017.07.019
DOI: https://doi.org/10.1016/j.fct.2017.07.019
Park, SY.; Park, JH.; Kim, HS.; et al. Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach. J. Ginseng Res. 2018, 42(1), 98-106. doi: 10.1016/j.jgr.2017.09.001
DOI: https://doi.org/10.1016/j.jgr.2017.09.001
Kim, JS. Investigation of Phenolic, Flavonoid, and Vitamin Contents in Different Parts of Korean Ginseng (Panax ginseng C.A. Meyer). Prev. Nutr. Food Sci. 2016, 21(3), 263-270. doi: 10.3746/pnf.2016.21.3.263
DOI: https://doi.org/10.3746/pnf.2016.21.3.263
Cho, Y.J.; Son, H.J.; Kim, K.S. A 14-week randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75). J. Transl. Med. 2014, 12, Art. No: 283. doi: 10.1186/s12967-014-0283-1
DOI: https://doi.org/10.1186/s12967-014-0283-1
Antonelli, M.; Donelli, D.; Firenzuoli, F. Ginseng integrative supplementation for seasonal acute upper respiratory infections: A systematic review and meta-analysis. Complement. Ther. Med. 2020, 52, Art. No: 102457. doi: 10.1016/j.ctim.2020.102457
DOI: https://doi.org/10.1016/j.ctim.2020.102457
Yoon, J.; Park, B.; Kim, H.; Choi, S.; Jung, D. Korean Red Ginseng Potentially Improves Maintaining Antibodies after COVID-19 Vaccination: A 24-Week Longitudinal Study. Nutrients 2023, 15(7), Art. No: 1584. doi: 10.3390/nu15071584
DOI: https://doi.org/10.3390/nu15071584
Lee, SO.; Lee, S.; Kim, SJ.; Rhee, DK. Korean Red Ginseng enhances pneumococcal Δpep27 vaccine efficacy by inhibiting reactive oxygen species production. J. Ginseng Res. 2019, 43(2), 218-225. doi: 10.1016/j.jgr.2017.11.007
DOI: https://doi.org/10.1016/j.jgr.2017.11.007
Yin, J.; Xu, B.; Zeng, X.; Shen, K. Broncho-Vaxom in pediatric recurrent respiratory tract infections: A systematic review and meta-analysis. Int. Immunopharmacol. 2018, 54, 198-209. doi: 10.1016/j.intimp.2017.10.032
DOI: https://doi.org/10.1016/j.intimp.2017.10.032
Cao, C.; Wang, J.; Li, Y.; et al. Efficacy and safety of OM-85 in paediatric recurrent respiratory tract infections which could have a possible protective effect on COVID-19 pandemic: A meta-analysis. Int. J. Clin. Pract. 2021, 75(5), Art. No: 13981. doi: 10.1111/ijcp.13981
DOI: https://doi.org/10.1111/ijcp.13981
Troiano, G.; Messina, G.; Nante, N. Bacterial lysates (OM-85 BV): a cost-effective proposal in order to contrast antibiotic resistance. J Prev. Med. Hyg. 2021, 62(2), E564-E573. doi: 10.15167/2421-4248/jpmh2021.62.2.1734
Zhang, W.; Huang, J.; Liu, H.; Wen, X.; Zheng, Q.; Li, L. Whether Immunostimulants Are Effective in Susceptible Children Suffering From Recurrent Respiratory Tract Infections: A Modeling Analysis Based on Literature Aggregate Data. J. Clin. Pharmacol. 2022, 62(2), 245-253. doi: 10.1002/jcph.1969
DOI: https://doi.org/10.1002/jcph.1969
Esposito, S.; Bianchini, S.; Bosis, S.; et al. A randomized, placebo-controlled, double-blinded, single-centre, phase IV trial to assess the efficacy and safety of OM-85 in children suffering from recurrent respiratory tract infections. J. Transl. Med. 2019, 17(1), Art. No: 284. doi: 10.1186/s12967-019-2040-y
DOI: https://doi.org/10.1186/s12967-019-2040-y
Souza, F.C.; de Mocellin, M.; Ongaratto, R.; et al. OM-85 BV for primary prevention of recurrent airway infections: a pilot randomized, double-blind, placebo-controlled study. Einstein. Sao. Paulo. Braz. 2020, 18, Art. No: eAO5262. doi: 10.31744/einstein_journal/2020AO5262
DOI: https://doi.org/10.31744/einstein_journal/2020AO5262
Esposito, S.; Marchisio, P.; Prada, E.; et al. Impact of a mixed bacterial lysate (OM-85 BV) on the immunogenicity, safety and tolerability of inactivated influenza vaccine in children with recurrent respiratory tract infection. Vaccine 2014, 32(22), 2546-2552. doi: 10.1016/j.vaccine.2014.03.055
DOI: https://doi.org/10.1016/j.vaccine.2014.03.055