1. Kalyniukova, A.; Holuša, J.; et al. Application of deep eutectic solvents for separation and determination of bioactive compounds in medicinal plants. Ind. Crops Prod., 2021, 172, Art. No: 114047. DOI: 10.1016/j.indcrop.2021.114047
DOI: https://doi.org/10.1016/j.indcrop.2021.114047
2. Gusain, P.; Uniyal, D. P.; et al. Conservation and sustainable use of medicinal plants. In Preparation of Phytopharmaceuticals for the Management of Disorders. Egbuna, C., Mishra, A.P., Eds.; Elsevier, 2021; pp. 409–427.
DOI: https://doi.org/10.1016/B978-0-12-820284-5.00026-5
3. Xie, S.; Wang, Y.; et al. Mechanisms of the antiangiogenic effects of aspirin in cancer. Eur. J. Pharmacol. 2021, 898, 173989. DOI: 10.1016/j.ejphar.2021.173989
DOI: https://doi.org/10.1016/j.ejphar.2021.173989
4. Rates, S. M. Plants as source of drugs. Toxicon. 2001, 39 (5), 603–613. DOI: 10.1016/s0041-0101(00)00154-9
DOI: https://doi.org/10.1016/S0041-0101(00)00154-9
5. Pascali, J. P.; Fai, P. Opiates. In Encyclopedia of Forensic Sciences, 3rd ed.; Houck, M.H., Eds.; Elseiver, 2023; 7-16.
DOI: https://doi.org/10.1016/B978-0-12-823677-2.00049-0
6. Molassiotis, A.; Smith, J.A. Symptomatic Treatment of Cough Among Adult Patients With Lung Cancer: CHEST Guideline and Expert Panel Report. Chest 2017, 151 (4), 861-874. DOI: 10.1016/j.chest.2016.12.028
DOI: https://doi.org/10.1016/j.chest.2016.12.028
7. Akpomie, T. M.; Augustine, A. U.; et al. Determination of Caffeine Content in Two Varieties of Kola Nut and Some Tea Products Sold in Lafia, North Central Nigeria. Pacific J. Sci. Technol. 2020, 21 (2), 272–278. DOI: 10.13140/RG.2.2.17376.71680
8. John, D. K.; Souza, K. D. S.; et al. Overview of cocaine identification by vibrational spectroscopy and chemometrics. Forensic Sci. Int. 2023, 342, Art. No: 111540. DOI: 10.1016/j.forsciint.2022.111540
DOI: https://doi.org/10.1016/j.forsciint.2022.111540
9. Chaki, R.; Ghosh, N.; et al. Phytopharmacology of herbal biomolecules. In Herbal Biomolecules in Healthcare Applications. Mandal, S.C., Nayak, A.K., Eds. Academic Press, 2022; pp. 101–119.
DOI: https://doi.org/10.1016/B978-0-323-85852-6.00026-3
10. Kelik, M. Tapak Liman (Elephantopus scaber L) As Immunostimulant and Its Effect on Lymphocyte Differentiation in Mice BALB/C. Biol. Med. Nat. Prod. Chem. 2015, 4 (2), 49-51. DOI: 10.14421/biomedich.2015.42.49-51
DOI: https://doi.org/10.14421/biomedich.2015.42.49-51
11. Jamal, R. K.; Jose, V. Determination of phytochemicals by GC-MS in methanol extract of Elephantopus scaber L. J. Pharmacogn. Phytochem. 2017, 6 (6), 807–813.
12. Aldi, Y.; Dillasamola, D.; et al. Immunomodulator activity of ethanol extract of tapak liman leaves (Elephantopus scaber Linn.). Pharmacogn. J. 2019, 11 (6), 1419–1427. DOI: 10.5530/PJ.2019.11.220
DOI: https://doi.org/10.5530/pj.2019.11.220
13. Sheeba, K. O.; Wills, P. J.; et al. Antioxidant and antihepatotoxic efficacy of methanolic extract of Elephantopus scaber Linn in Wistar rats. Asian Pacific J. Trop. Dis. 2012, 2 (2), S904–S908. DOI: 10.1016/S2222-1808(12)60289-8
DOI: https://doi.org/10.1016/S2222-1808(12)60289-8
14. Phumthum, M.; Sadgrove, N.J. High-value plant species used for the treatment of ‘fever’ by the karen hill tribe people. Antibiotics 2020, 9 (5), Art. No: 220. DOI: 10.3390/antibiotics9050220
DOI: https://doi.org/10.3390/antibiotics9050220
15. Nguyen, P.A.T.; Khang, D.T.; et al. The complete chloroplast genome of Elephantopus scaber L. (Vernonioideae, Asteraceae), a useful ethnomedicinal plant in asia. Mitochondrial DNA Part B Resour. 2023, 8 (9), 936–941. DOI: 10.1080/23802359.2023.2252944
DOI: https://doi.org/10.1080/23802359.2023.2252944
16. Kabeer, F. A.; Prathapan, R. Phytopharmacological Profile of Elephantopus scaber. Pharmacologia 2014, 5 (8), 272–285. DOI: 10.5567/pharmacologia.2014.272.285
DOI: https://doi.org/10.5567/pharmacologia.2014.272.285
17. Daisy, P. A study on the regenerative potential of the root and leaf extracts of Elephantopus scaber L.: An antidiabetic approachats through up-regulated heme oxygenase-1 (HO-1) expression. African J. Pharm. Pharmacol. 2011, 5 (16), 1832–1837. DOI: 10.5897/ajpp10.332
DOI: https://doi.org/10.5897/AJPP10.332
18. Singh, S. D. J.; Krishna, V.; et al. Wound healing activity of the leaf extracts and deoxyelephantopin isolated from Elephantopus scaber Linn. Indian J. Pharmacol. 2005, 37 (4), 238–242. DOI: 10.4103/0253-7613.16570
DOI: https://doi.org/10.4103/0253-7613.16570
19. Silalahi, M. Utilization of Elephantopus scaber as traditional medicine and its bioactivity. GSC Biol. Pharm. Sci. 2021, 15 (1), 112–118. DOI: 10.30574/gscbps.2021.15.1.0106
DOI: https://doi.org/10.30574/gscbps.2021.15.1.0106
20. Yulia, M.; Aldi, Y.; et al. Viability Study of Tapak Liman (Elephantopus scaber Linn) Leaves Toward Raw 264.7 Cells. African J. Biol. Sci. 2024, 6 (7), 3226–3232. DOI: 10.48047/AFJBS.6.7.2024
21. Mendhulkar, V. D.; Kharat, S. N. HPLC Assay, Phytochemical, FTIR Characterization and Studies on Antioxidant Activity of Elephantopus scaber (Linn) Using Six Different Soxhlet Leaf Extract. Der Pharma Chemica. 2017, 9 (23), 18–28.
22. Kabiru, A.; Por, L. Y. Elephantopus Species : Traditional Uses, Pharmacological Actions and Chemical Composition. Adv. Life Sci. Technol. 2013, 15, 6–14.
23. Wang, J.; Li, P.; et al. Bioactivities of compounds from Elephantopus scaber, an ethnomedicinal plant from Southwest China. Evid. Based Complement. Altern. Med. 2014, 2014, Art. No: 569594. DOI: 10.1155/2014/ 569594
DOI: https://doi.org/10.1155/2014/569594
24. Fazil, W. F. W. M.; Amanah, A.; et al. The Effects of Deoxyelephantopin on the Akt/mTOR/P70S6K Signaling Pathway in MCF-7 Breast Carcinoma Cells In Vitro. J. Pharmacol. Pharmacother. 2022, 13 (2), 148–159. DOI: 10.1177/0976500X221114003
DOI: https://doi.org/10.1177/0976500X221114003
25. Than, N. N.; Fotso, S., et al. Sesquiterpene lactones from Elephantopus scaber. Z. Naturforsch. Sect. B 2005, 60 (2), 200–204. DOI: 10.1515/znb-2005-0212
DOI: https://doi.org/10.1515/znb-2005-0212
26. Hiradeve, S.; Rangari, V. Elephantopus scaber Linn.: A review on its ethnomedical, phytochemical and pharmacological profile. J. Appl. Biomed. 2014, 12 (2), 49–61. DOI: 10.1016/j.jab.2014.01.008
27. Chan, C. K.; Supriady, H.; et al. Elephantopus scaber induces apoptosis through ROS-dependent mitochondrial signaling pathway in HCT116 human colorectal carcinoma cells. J. Ethnopharmacol. 2015, 168, 291–304. DOI: 10.1016/j.jep.2015.03.072
DOI: https://doi.org/10.1016/j.jep.2015.03.072
28. Nakagawa-Goto, K.; Chen, J-Y.; et al. Novel sesquiterpene lactone analogues as potent anti-breast cancer agents. Mol. Oncol. 2016, 10 (6), 921–937. DOI: 10.1016/j.molonc.2016.03.002
DOI: https://doi.org/10.1016/j.molonc.2016.03.002
29. Verma, S. S.; Rai, V.; et al. Isodeoxyelephantopin, a Sesquiterpene Lactone Induces ROS Generation, Suppresses NF-κB Activation, Modulates LncRNA Expression and Exhibit Activities Against Breast Cancer. Sci. Rep. 2019, 9 (1), Art. No: 17980. DOI: 10.1038/s41598-019-52971-3
DOI: https://doi.org/10.1038/s41598-019-52971-3
30. Kabeer, F. A.; Sreedevi, G. B.; et al. Antineoplastic effects of deoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber, on lung adenocarcinoma (A549) cells. J. Integr. Med. 2013, 11(4), 269–277. DOI: 10.3736/jintegrmed2013040
DOI: https://doi.org/10.3736/jintegrmed2013040
31. Wang, Y.; Zhang, J.; et al. Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop. Cell Death Dis. 2017, 8 (6), Art. No: e2876. DOI: 10.1038/cddis.2017.265
DOI: https://doi.org/10.1038/cddis.2017.265
32. Cvetanova, B.; Li, M-Y.; at al. Sesquiterpene lactone deoxyelephantopin isolated from Elephantopus scaber and its derivative detd-35 suppress BRAFV600E mutant melanoma lung metastasis in mice. Int. J. Mol. Sci. 2021, 22 (6), Art. No: 3226. DOI: 10.3390/ijms22063226
DOI: https://doi.org/10.3390/ijms22063226
33. Sandra, F.; Hayuningtyas, R. A.; et al. Elephantopus scaber Linn. Leaf Extract Sensitizes Doxorubicin in Inducing Apoptosis in HSC-3 Tongue Cancer Cells through Inhibiting Survivin Activity at Thr34. Indones. Biomed. J. 2024, 16 (4), 372–378. DOI: 10.18585/inabj.v16i4.3096
DOI: https://doi.org/10.18585/inabj.v16i4.3096
34. Gao, Y.; Nie, Z.; et al. Scabertopin Derived from Elephantopus scaber L. Mediates Necroptosis by Inducing Reactive Oxygen Species Production in Bladder Cancer In Vitro. Cancers (Basel) 2022, 14 (23), Art. No: 5976. DOI: 10.3390/cancers14235976
DOI: https://doi.org/10.3390/cancers14235976
35. Sadeghalvad, M.; Mohammadi-Motlagh, H. R.; et al. Structure and Function of the Immune System, In Encyclopedia of Infection and Immunity.; Rezaei, N., Eds.; Elsevier, 2022; pp. 24–38.
DOI: https://doi.org/10.1016/B978-0-12-818731-9.00193-2
36. Rudd-Schmidt, J. A.; Trapani, J. A.; et al. Distinguishing perforin-mediated lysis and granzyme-dependent apoptosis, In Methods in Enzymology, L.; Galluzzi, Rudqvist, N. P., Eds., Academic Press, 2019; pp. 291–306.
DOI: https://doi.org/10.1016/bs.mie.2019.07.034
37. Trapani, J. A. Granzymes: family of lymphocyte granule serine proteases. Genome Biol. 2001, 2 (12), Art. No: REVIEWS3014. DOI: 10.1186/gb-2001-2-12-reviews3014
DOI: https://doi.org/10.1186/gb-2001-2-12-reviews3014
38. Hiradeve, S. M.; Rangari, V. D. Elephantopus scaber Linn.: A review on its ethnomedical, phytochemical and pharmacological profile J. Appl. Biomed. 2014, 12 (2), 49–61. DOI: 10.1016/j.jab.2014.01.008
DOI: https://doi.org/10.1016/j.jab.2014.01.008
39. Doan, H. V.; Hoseinifar, S. H.; et al. Effects of elephant’s foot (Elephantopus scaber) extract on growth performance, immune response, and disease resistance of nile tilapia (Oreochromis niloticus) fingerlings. Fish Shellfish Immunol. 2019, 93, 328–335. DOI: 10.1016/j.fsi.2019.07.061
DOI: https://doi.org/10.1016/j.fsi.2019.07.061
40. Aldi, Y.; Megaraswita.; et al. Effect of Elephantopus scaber linn. Leaf extract on mouse immune system. Trop. J. Pharm. Res. 2019, 18 (10), 2045–2050. DOI: 10.4314/tjpr.v18i10.7
DOI: https://doi.org/10.4314/tjpr.v18i10.7
41. Kementerian Kesehatan Republik Indonesia. Farmakope Herbal Indonesia.; Kementerian Kesehatan Republik Indonesia: Jakarta, Indonesia, 2017, 531.
42. Dillasamola, D.; Aldi, Y.; et al. Study of Active Isolated Compounds From Sungkai Leaf (Peronema Canescens Jack) As Immunostimulant From Exposure of the Sars-Cov-2 Virus Antigen To Natural Killer Cells. Int. J. Appl. Pharm. 2024, 16 (1), 11–16. DOI: 10.22159/ijap.2024.v16s1.02
DOI: https://doi.org/10.22159/ijap.2024.v16s1.02
43. Dita, M. C. Enzyme-Linked Immunosorberat Assay (ELISA): A Narrative Literature Review. Nat. Sci. Eng. Technol. J. 2021, 1 (2), 24–31. DOI: 10.37275/nasetjournal.v1i2.6
DOI: https://doi.org/10.37275/nasetjournal.v1i2.6
44. Sakamoto, S.; Putalun, W.; et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72 (1), 32–42. DOI: 10.1007/s11418-017-1144-z
DOI: https://doi.org/10.1007/s11418-017-1144-z
45. Prager, I.; Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 2019, 105 (6), 1319–1329. DOI: 10.1002/JLB.MR0718-269R
DOI: https://doi.org/10.1002/JLB.MR0718-269R
46. Wang, Z.; Guan, D.; et al. Glycolysis and Oxidative Phosphorylation Play Critical Roles in Natural Killer Cell Receptor-Mediated Natural Killer Cell Functions. Front. Immunol. 2020, 11, Art. No: 202. DOI: 10.3389/fimmu.2020.00202
DOI: https://doi.org/10.3389/fimmu.2020.00202
47. Osuna-Espinoza, K. Y.; Rosas-Taraco, A. G. Metabolism of NK cells during viral infections. Front. Immunol. 2023, 14, Art. No: 1064101. DOI: 10.3389/fimmu.2023.1064101
DOI: https://doi.org/10.3389/fimmu.2023.1064101
48. Toffoli, E. C.; Sheikhi, A.; et al. Natural killer cells and anti-cancer therapies: Reciprocal effects on immune function and therapeutic response. Cancers (Basel) 2021, 13 (4), Art. No: 711. DOI: 10.3390/cancers13040711
DOI: https://doi.org/10.3390/cancers13040711
49. Radziszewska, A.; Moulder, Z.; et al. CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. Int. J. Mol. Sci. 2022, 23 (19), Art. No: 11431. DOI: 10.3390/ijms231911431
DOI: https://doi.org/10.3390/ijms231911431
50. Berg, R. E.; Forman, J. The role of CD8 T cells in innate immunity and in antigen non-specific protection. Curr. Opin. Immunol. 2006, 18 (3), 338–343. DOI: 10.1016/j.coi.2006.03.010
DOI: https://doi.org/10.1016/j.coi.2006.03.010
51. Murali-Krishna, K.; Altman, J.; et al. Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection. Immunity 1998, 8 (2), 177–187. DOI: 10.1016/S1074-7613(00)80470-7
DOI: https://doi.org/10.1016/S1074-7613(00)80470-7
52. Osińska, I.; Popko, K.; et al. Perforin: An important player in immune response. Cent. Eur. J. Immunol. 2014, 39 (1), 109–115. DOI: 10.5114/ceji.2014.42135
DOI: https://doi.org/10.5114/ceji.2014.42135
53. Al Moussawy, M.; Abdelsamed, H. A. Non-cytotoxic functions of CD8 T cells: ‘repentance of a serial killer. Front. Immunol. 2022, 13, Art. No: 1001129. DOI: 10.3389/fimmu.2022.1001129
DOI: https://doi.org/10.3389/fimmu.2022.1001129
54. Chu, J.; Gao, F.; et al. Natural killer cells: a promising immunotherapy for cancer. J. Transl. Med. 2022, 20 (1), Art. No: 240. DOI: 10.1186/s12967-022-03437-0
DOI: https://doi.org/10.1186/s12967-022-03437-0
55. Spicer, J. A.; Huttunen, K. M.; et al. Small Molecule Inhibitors of Lymphocyte Perforin as Focused Immunosuppressants for Infection and Autoimmunity. J. Med. Chem. 2022, 65 (21), 14305–14325. DOI: 10.1021/acs.jmedchem.2c01338
DOI: https://doi.org/10.1021/acs.jmedchem.2c01338