1) Borst, M.L.G.; Ouairy, C.M.J.; Fokkema, S.C.; Cecchi, A.; Kerckhoffs, J.M.C.A.; De Boer, V.L.; van den Boogaard, P.J.; Bus, R.F.; Ebens, R.; van der Hulst, R.; Knol, J.; Libbers, R.; Lion, Z.M.; Settels, B.W.; de Wever, E.; Attia, K.A.; Sinnema, P.-J.; de Gooijer, J.M.; Harkema, K.; Hazewinkel, M.; Snijder, S.; Pouwer, K. Polycyclic Sulfoximines as New Scaffolds for Drug Discovery. ACS Comb. Sci. 2018, 20(6), 335–343. Available online: https://doi.org/10.1021/acscombsci.7b00150
2) Manning, J.M.; Moore, S.; Rowe, W.B.; Meister, A. Identification of L-Methionine S-Sulfoximine as the Diastereoisomer of L-Methionine SR-Sulfoximine That Inhibits Glutamine Synthetase. Biochemistry 1969, 8[6], 2681–2685. Available online: https://doi.org/10.1021/bi00834a066
DOI: https://doi.org/10.1021/bi00834a066
3) Bailey, H.H. L-S,R-buthionine sulfoximine: Historical development and clinical issues. Chem. Biol. Interact. 1998, 111–112, 239–254. Available online: https://doi.org/10.1016/S0009-2797(97)00164-6
DOI: https://doi.org/10.1016/S0009-2797(97)00164-6
4) Rao, S.L.N.; Meister, A. In Vivo Formation of Methionine Sulfoximine Phosphate, a Protein-Bound Metabolite of Methionine Sulfoximine. Biochemistry 1972, 11[7], 1123–1127. Available online: https://pubs.acs.org/doi/abs/10.1021/bi00757a001
DOI: https://doi.org/10.1021/bi00757a001
5) Reggelin, M.; Zur, C. Sulfoximines: Structures, properties and synthetic applications. Synthesis [Stuttg]. 2000, [1], 1–64.. Available online: https://www.thieme- connect.com/products/ejournals/abstract/10.1055/s-2000-6217
DOI: https://doi.org/10.1055/s-2000-6217
6) Park, S.J.; Buschmann, H.; Bolm, C. Bioactive sulfoximines: Syntheses and properties of Vioxx® analogs. Bioorg. Med. Chem. Lett. 2011, 21[16], 4888–4890. Available online: https://doi.org/10.1016/j.bmcl.2011.06.029
DOI: https://doi.org/10.1016/j.bmcl.2011.06.029
7) Johnson, C.R. The Utilization of Sulfoximines and Derivatives as Reagents for Organic Synthesis. Acc. Chem. Res. 1973, 6[10], 341–347. Available online: https://doi.org/10.1021/ar50070a003
DOI: https://doi.org/10.1021/ar50070a003
8) Mäder, P.; Kattner, L. Sulfoximines as Rising Stars in Modern Drug Discovery? Current Status and Perspective on an Emerging Functional Group in Medicinal Chemistry. J. Med. Chem. 2020, 63, 14243–14275. Available online: https://doi.org/10.1021/acs.jmedchem.0c00960
DOI: https://doi.org/10.1021/acs.jmedchem.0c00960
9) Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Sulfoximines from a Medicinal Chemist’s Perspective: Physicochemical and in vitro Parameters Relevant for Drug Discovery. Eur. J. Med. Chem. 2017, 126, 225–245. Available online: https://doi.org/10.1016/j.ejmech.2016.09.091
DOI: https://doi.org/10.1016/j.ejmech.2016.09.091
10) Borst, M.L.G.; Ouairy, C.M.J.; Fokkema, S.C.; Cecchi, A.; Kerckhoffs, J.M.C.A.; De Boer, V.L.; et al. Polycyclic Sulfoximines as New Scaffolds for Drug Discovery. ACS Comb. Sci. 2018, 20[6], 335–343. Available online: https://doi.org/10.1021/acscombsci.7b00150
DOI: https://doi.org/10.1021/acscombsci.7b00150
11) Lücking, U. Neglected sulfur[vi] pharmacophores in drug discovery: Exploration of novel chemical space by the interplay of drug design and method development. Org. Chem. Front.2019, 6[8], 1319–1324; Available online: https://doi.org/10.1039/C8QO01233D
DOI: https://doi.org/10.1039/C8QO01233D
12) Sirvent, J.A.; Lücking, U. Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery: Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and Advanced Clinical Candidates. ChemMedChem 2017, 12[7], 487–501. Available online: https://doi.org/10.1002/cmdc.201700044
DOI: https://doi.org/10.1002/cmdc.201700044
13) Andresini, M.; Tota, A.; Degennaro, L.; Bull, J.A.; Luisi, R. Synthesis and Transformations of NH-Sulfoximines. Chem. Eur. J. 2021, 27[69], 17293–17321. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/chem.202102619
DOI: https://doi.org/10.1002/chem.202102619
14) O’Brien, P.; Phillips, D.W.; Towers, T.D. An azetidinium ion approach to 3-aryloxy-3-aryl-1-propanamines. Tetrahedron Lett. 2002. Available online: https://doi.org/10.1016/S0040-4039(02)01724-0
DOI: https://doi.org/10.1016/S0040-4039(02)01724-0
15) Tota, A.; Zenzola, M.; Chawner, S.J.; John-Campbell, S.S.; Carlucci, C.; Romanazzi, G.; et al. Synthesis of NH-sulfoximines from sulfides by chemoselective one-pot N- and O-transfers. Chem. Commun. [Camb] 2016, 53[2], 348–351. Available online: https://europepmc.org/article/med/27929152
DOI: https://doi.org/10.1039/C6CC08891K
16) Bizet, V.; Hendriks, C.M.M.; Bolm, C. Sulfur imidations: Access to sulfimides and sulfoximines. Chem. Soc. Rev. 2015, 44[11], 3378–3390. Available online: https://doi.org/10.1039/C5CS00208G
DOI: https://doi.org/10.1039/C5CS00208G
17) Gais, H.J. Development of new methods for asymmetric synthesis based on sulfoximines. Heteroatom Chem. 2007, 18[5], 472–481. Available online: https://doi.org/10.1002/hc.20331
DOI: https://doi.org/10.1002/hc.20331
18) Okamura, H.; Bolm, C. Sulfoximines: Synthesis and catalytic applications. Chem. Lett. 2004, 33[5], 482–487. Available online: https://doi.org/10.1246/cl.2004.482
DOI: https://doi.org/10.1246/cl.2004.482
19) Lücking, U.; Kosemund, D.; Böhnke, N.; Lienau, P.; Siemeister, G.; Denner, K.; Bohlmann, R.; Briem, H.; Terebesi, I.; Bömer, U.; Schäfer, M.; Ince, S.; Mumberg, D.; Scholz, A.; Izumi, R.; Hwang, S.; von Nussbaum, F; Changing for the Better: Discovery of the Highly Potent and Selective CDK9 Inhibitor VIP152 Suitable for Once Weekly Intravenous Dosing for the Treatment of Cancer. J. Med. Chem. 2021, 64[15], 11651–1674. https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.1c01000
DOI: https://doi.org/10.1021/acs.jmedchem.1c01000
20) Han, Y.; Xing, K.; Zhang, J.; Tong, T.; Shi, Y.; Cao, H.; et al. Application of sulfoximines in medicinal chemistry from 2013 to 2020. Eur. J. Med. Chem. 2021, 209, 112885. Available online: https://doi.org/10.1016/j.ejmech.2020.112885
DOI: https://doi.org/10.1016/j.ejmech.2020.112885
21) Goldberg, F.W.; Kettle, J.G.; Xiong, J.; Lin, D. General synthetic strategies towards N-alkyl sulfoximine building blocks for medicinal chemistry and the use of dimethylsulfoximine as a versatile precursor. Tetrahedron 2014, 70[37], 6613–6622. Available online: https://doi.org/10.1016/j.tet.2014.06.120
DOI: https://doi.org/10.1016/j.tet.2014.06.120
22) Yano, K.; Shiotani, B. Emerging strategies for cancer therapy by ATR inhibitors; Cancer Sci. 2023 May 15;114(7):2709–2721. doi: 10.1111/cas.15845. Available online: https://onlinelibrary.wiley.com/doi/10.1111/cas.15845
DOI: https://doi.org/10.1111/cas.15845
23) AstraZeneca; A Phase III, open-label, randomised, multicentre study of ceralasertib plus durvalumab versus docetaxel in patients with advanced or metastatic non-small cell lung cancer without actionable genomic alterations, and whose disease has progressed on or after prior anti PD (L)1 therapy and platinum based chemotherapy (LATIFY). ClinicalTrials.gov 2022. Available online: https://clinicaltrials.gov/study/NCT05450692
24) Bayer Aktiengesellschaft. Sulfoximine derivatives as CDK9 inhibitors. WO Patent WO2021143821A1, filed 18 March 2020, published 8 July 2021. Available online: https://patentimages.storage.googleapis.com/06/11/37/6bf766303dee6a/WO2021143821A1.pdf
25) Lücking, U. Sulfoximines: A neglected opportunity in medicinal chemistry. Angew. Chem. Int. Ed. 2013, 52, 2. Available online: https://doi.org/10.1002/anie.201302209
DOI: https://doi.org/10.1002/anie.201302209
26) Lücking, U. Sulfoximines in Medicinal Chemistry: Emerging Trends and Opportunities from the Drug Designer’s Perspective; doi: 10.26434/chemrxiv-2022-g58r5. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/6284b5a844bdd53592675638
27) Walker, D.P.; Zawistoski, M.P.; McGlynn, M.A.; Li, J.C.; Kung, D.W.; Bonnette, P.C.; et al. Sulfoximine-substituted trifluoromethylpyrimidine analogs as inhibitors of proline-rich tyrosine kinase 2 [PYK2] show reduced hERG activity. Bioorg. Med. Chem. Lett. 2009, 19[12], 3253–3258. Available online: https://doi.org/10.1016/j.bmcl.2009.04.093
DOI: https://doi.org/10.1016/j.bmcl.2009.04.093
28) Lu, D.; Vince, R. Discovery of potent HIV-1 protease inhibitors incorporating sulfoximine functionality. Bioorg. Med. Chem. Lett. 2007, 17[20], 5614–5619. Available online: https://doi.org/10.1016/j.bmcl.2007.07.095
DOI: https://doi.org/10.1016/j.bmcl.2007.07.095
29) Gnamm, C.; Jeanguenat, A.; Dutton, A.C.; Grimm, C.; Kloer, D.P.; Crossthwaite, A.J. Novel diamide insecticides: Sulfoximines, sulfonimidamides and other new sulfonimidoyl derivatives. Bioorg. Med. Chem. Lett. 2012, 22[11], 3800–3806. Available online: https://doi.org/10.1016/j.bmcl.2012.03.106
DOI: https://doi.org/10.1016/j.bmcl.2012.03.106
30) Aronson, J.K.; Ferner, R.E. Joining the DoTS: new approach to classifying adverse drug reactions. BMJ 2003, 327(7425), 1222–1225. Available online: https://doi.org/10.1136/bmj.327.7425.1222
DOI: https://doi.org/10.1136/bmj.327.7425.1222
31) Rothwell, P.M. External validity of randomised controlled trials: “To whom do the results of this trial apply?”. Lancet 2005, 365(9453), 82–93. Available online: https://doi.org/10.1016/S0140-6736(04)17670-8
DOI: https://doi.org/10.1016/S0140-6736(04)17670-8
32) Edwards, I.R.; Aronson, J.K. Adverse drug reactions: definitions, diagnosis, and management. Lancet 2000, 356(9237), 1255–1259. Available online: https://doi.org/10.1016/S0140-6736(00)02799-9
DOI: https://doi.org/10.1016/S0140-6736(00)02799-9