1. Richard MA, Paul C, Nijsten T, et al. Prevalence of most common skin diseases in Europe : a population-based study. J Eur Acad Dermatology Venerelogy 2022; 1088–1096. DOI: 10.1111/jdv.18050
DOI: https://doi.org/10.1111/jdv.18050
2. Hoffmann AR. The cutaneous ecosystem : the roles of the skin microbiome in health and its association with inflammatory skin conditions in humans and animals. Vet Dermatol 2017; 28: 60-e15. DOI: 10.1111/vde.12408
DOI: https://doi.org/10.1111/vde.12408
3. Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144: 2377–2398. DOI: 10.1016/j.jid.2024.06.1280
DOI: https://doi.org/10.1016/j.jid.2024.06.1280
4. Atit R, Thulabandu V, Chen D. Dermal fibroblast in cutaneus development and healing. Wiley Interdiscip Rev Dev Biol 2018; 7: 1–19. DOI: 10.1002/wdev.307.Dermal
DOI: https://doi.org/10.1002/wdev.307
5. Khan H. Medicinal Plants in Light of History : Recognized Therapeutic Modality. J Evidence-Based Compementary Altern Med 2014; 19: 216–219. DOI: 10.1177/2156587214533346
DOI: https://doi.org/10.1177/2156587214533346
6. Marelli M. Medicinal Plants. Plants 2021; 10. DOI: 10.3390/plants10071355
DOI: https://doi.org/10.3390/plants10071355
7. Proestos C. The Benefits of Plant Extracts for Human Health. Foods 2020; 10–12. DOI: 10.3390/plants10071355
DOI: https://doi.org/10.3390/foods9111653
8. Khumaidi A, Murwanti R, Damayanti E, et al. Empirical use, phytochemical, and pharmacological effects in wound healing activities of compounds in Diospyros leaves: A review of traditional medicine for potential new plant-derived drugs Akhmad Khumaidi. J Ethnopharmacol 2025; 337. DOI: 10.1016/j.jep.2024.118966
DOI: https://doi.org/10.1016/j.jep.2024.118966
9. Fernandes A, Rodrigues PM, Pintado M, et al. Phytomedicine A systematic review of natural products for skin applications : Targeting inflammation , wound healing , and photo-aging. Phytomedicine 2023; 115. DOI: 10.1016/j.phymed.2023.154824
DOI: https://doi.org/10.1016/j.phymed.2023.154824
10. Nicolaus C, Junghanns S, Hartmann A, et al. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J Ethnopharmacol 2017; 196. DOI: 10.1016/j.jep.2016.12.006
DOI: https://doi.org/10.1016/j.jep.2016.12.006
11. Santos DS dos, Barreto R de SS, Serafini MR, et al. Phytomedicines containing Matricaria species for the treatment of skin diseases: A biotechnological approach. Fitoterapia 2019; 138. DOI : 10.1016/j.fitote.2019.104267
DOI: https://doi.org/10.1016/j.fitote.2019.104267
12. Flemming M, Kraus B, Rascle A, et al. Revisited anti-inflammatory activity of matricine in vitro: Comparison with chamazulene. Fitoterapia 2015; 106: 122–128. DOI: 10.1016/j.fitote.2015.08.010
DOI: https://doi.org/10.1016/j.fitote.2015.08.010
13. Krizkovska B, Hoang L, Brdova D, et al. Modulation of the bacterial virulence and resistance by well-known European medicinal herbs. J Ethnopharmacol 2023; 312. DOI: 10.1016/j.jep.2023.116484
DOI: https://doi.org/10.1016/j.jep.2023.116484
14. Skowrońska W, Pawłowska KA, Obrębski M, et al. Chemical composition, skin microbiota metabolism, antimicrobial potential and anti-inflammatory properties of witch hazel bark (Hamamelis virginiana L.). J Ethnopharmacol 2025; 353: 120433. DOI: 10.1016/j.jep.2025.120433
DOI: https://doi.org/10.1016/j.jep.2025.120433
15. Piwowarski JP, Granica S, Zwierzyńska M, et al. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials Jakub P. Piwowarski. J Ethnopharmacol 2014; 155: 801–809. DOI: 10.1016/j.jep.2014.06.032
DOI: https://doi.org/10.1016/j.jep.2014.06.032
16. Polish Pharmacopoeia, 12th Edition. Monograph 04/2020:1297 Calendulae flos , Warsaw: Office for Registration of Medicinal Products, Medical Devices and Biocidal Products; 2020.
17. Polish Pharmacopoeia, 12th Edition. Monograph 07/2019:0404 Matricariae flos , Warsaw: Office for Registration of Medicinal Products, Medical Devices and Biocidal Products; 2020.
18. Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011; 27: 2194–2200. DOI : 10.1093/bioinformatics/btr381
DOI: https://doi.org/10.1093/bioinformatics/btr381
19. Rognes T, Flouri T, Nichols B, et al. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016; 1–22. DOI: 10.7717/peerj.2584
DOI: https://doi.org/10.7287/peerj.preprints.2409v1
20. Eren AM, Esen C, Quince C, et al. Anvi’o : an advanced analysis and visualization platform for ‘omics data. PeerJ 2015; 1–29. DOI: 10.7717/peerj.1319
DOI: https://doi.org/10.7287/peerj.preprints.1275v1
21. Chao A, Chiu C. Species Richness : Estimation and Comparison. Wiley StatsRef Stat Ref Online 2014; DOI: 10.1002/9781118445112.stat03432.pub2
DOI: https://doi.org/10.1002/9781118445112.stat03432.pub2
22. Thukral AK. A review on measurement of Alpha diversity in biology. Agric Res J 2017; 54: 1–10. DOI: 10.5958/2395-146X.2017.00001.1
DOI: https://doi.org/10.5958/2395-146X.2017.00001.1
23. Olennikov DN, Kashchenko NI, Chirikova NK. Isorhamnetin and Quercetin Derivatives as Anti-Acetylcholinesterase Principles of Marigold (Calendula officinalis ) Flowers and Preparations. Int J Mol Sci 2017; 18: 1–17. DOI: 10.3390/ijms18081685
DOI: https://doi.org/10.3390/ijms18081685
24. Skowrońska W, Granica S, Piwowarski JP, et al. Wound healing potential of extract from Sambucus nigra L. leaves and its fractions. J Ethnopharmacol 2024; 320. DOI: 10.1016/j.jep.2023.117423
DOI: https://doi.org/10.1016/j.jep.2023.117423
25. Budan A, Bellenot D, Freuze I, et al. Potential of extracts from Saponaria officinalis and Calendula officinalis to modulate in vitro rumen fermentation with respect to their content in saponins. Biosci Biotechnol Biochem 2014; 78: 288–295. DOI : 10.1080/09168451.2014.882742
DOI: https://doi.org/10.1080/09168451.2014.882742
26. Liu J, Guo Y, Zhang J, et al. Phytomedicine Systematic chemical analysis of flavonoids in the Nelumbinis stamen. Eur J Integr Med 2014; 21: 1753–1758. DOI : 10.1016/j.phymed.2014.09.003
DOI: https://doi.org/10.1016/j.phymed.2014.09.003
27. Tsivelika N, Irakli M, Mavromatis A, et al. Phenolic Profile by HPLC-PDA-MS of Greek Chamomile Populations and Commercial Varieties and Their Antioxidant Activity. Foods 2021; DOI: :10.3390/ foods10102345
DOI: https://doi.org/10.3390/foods10102345
28. Lin L, Harnly JM. LC-PDA-ESI/MS Identification of the Phenolic Components of Three Compositae Spices: Chamomile, Tarragon, and Mexican Arnica. Nat Prod Commun 2012; 7: 749–752
DOI: https://doi.org/10.1177/1934578X1200700615
29. Caleja C, Barros L, Amilcar LA, et al. Development of a functional dairy food : Exploring bioactive and preservation effects of chamomile (Matricaria recutita L .). J Funct Foods 2015; 16: 114–124. DOI: 10.1016/j.jff.2015.04.033
DOI: https://doi.org/10.1016/j.jff.2015.04.033
30. Luan Y, Cui J, Zhai J. High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. Planta 2015; 1405–1416. DOI: 10.1007/s00425-015-2267-7
DOI: https://doi.org/10.1007/s00425-015-2267-7
31. Melnyk N, Popowski D, Strawa JW, et al. Skin microbiota metabolism of natural products from comfrey root (Symphytum officinale L .). J Ethnopharmacol 2024; 318. DOI: 10.1016/j.jep.2023.116968
DOI: https://doi.org/10.1016/j.jep.2023.116968
32. Orellana EA, Kasinski AL. Sulforhodamine B (SRB) Assay in Cell Culture to Investigate Cell Prolifiration. Bio Protoc 2016; 6. DOI: 10.21769/BioProtoc.1984.Sulforhodamine
DOI: https://doi.org/10.21769/BioProtoc.1984
33. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006; 1: 1112–1116. DOI: 10.1038/nprot.2006.179
DOI: https://doi.org/10.1038/nprot.2006.179
34. Verma PK, Raina R, Agarwal S, et al. Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn. Pharm Biomed Res 2018; 4: 1–17. DOI: 10.1007/s11101-005-4053-9
DOI: https://doi.org/10.18502/pbr.v4i2.214
35. Mihyaoui A El, Esteves JCG, Charfi S, et al. Chamomile (Matricaria chamomilla L .): A Review of Ethnomedicinal Use , Phytochemistry and Pharmacological Uses. Life 2022; 12: 1–41. DOI: 10.3390/life12040479
DOI: https://doi.org/10.3390/life12040479
36. Dong L, Lee H, Liu Z, et al. Anti-Inflammatory Activity of Compounds Isolated from Digitalis purpurea L . in TNF- α / IFN- γ -Induced HaCaT Keratinocytes and a Three-Dimensionally Reconstructed Human Skin Model. Molucular Sci 2022; 26: 1088–1069. DOI: 10.3390/ijms26167747
DOI: https://doi.org/10.3390/ijms26167747
37. Grebenciucova E, Vanhaerents S. Interleukin 6 : at the interface of human health and disease. Front Immunol 2023; 6: 1–10. DOI: 10.3389/fimmu.2023.1255533
DOI: https://doi.org/10.3389/fimmu.2023.1255533
38. Prokop A, Magiera A, Olszewska MA. Proanthocyanidins as Therapeutic Agents in Inflammation -Related Skin Disorders. Int J Mol Sci 2025; DOI: 10.3390/ijms262010116
DOI: https://doi.org/10.3390/ijms262010116
39. Clausen ML, Kezic S, Olesen CM, et al. Cytokine concentration across the stratum corneum in atopic dermatitis and healthy controls. Sci Rep 2020; 2–9. DOI: 10.1038/s41598-020-78943-6
DOI: https://doi.org/10.1038/s41598-020-78943-6
40. Zheng Z. Cellular and Molecular Mechanisms of Phytochemicals Against Inflammation ‐ Associated Diseases and Viral Infection. Cell Biol Int 2025; 606–633. DOI: 10.1002/cbin.70011
DOI: https://doi.org/10.1002/cbin.70011
41. Kopalli SR, Annamneedi VP, Koppula S. Potential Natural Biomolecules Targeting JAK / STAT / SOCS Signaling in the Management of Atopic Dermatitis. Molecules 2022; 27: 1–23. DOI: 10.3390/molecules27144660
DOI: https://doi.org/10.3390/molecules27144660
42. Yin Q, Wang L, Yu H, et al. Pharmacological Effects of Polyphenol Phytochemicals on the JAK-STAT Signaling Pathw. Front Pharmacol 2021; 12. DOI: 10.3389/fphar.2021.716672
DOI: https://doi.org/10.3389/fphar.2021.716672