1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858, doi:10.1016/S0140-6736(18)32279-7.
DOI: https://doi.org/10.1016/S0140-6736(18)32279-7
2. Clynes, M.A.; Jameson, K.A.; Edwards, M.H.; Cooper, C.; Dennison, E.M. Impact of Osteoarthritis on Activities of Daily Living: Does Joint Site Matter? Aging Clin. Exp. Res. 2019, 31, 1049–1056, doi:10.1007/s40520-019-01163-0.
DOI: https://doi.org/10.1007/s40520-019-01163-0
3. Ranjithkumar, N.; Paul, J.; Alagesan, J.; Viswanathan, R. Comparative Effectiveness of Extracorporeal Short Wave Therapy, Low-Level Laser Therapy, and Ultrasound in the Treatment of Rotator Cuff Tendinopathy. Biomed. Pharmacol. J. 2025, 18, 849–866, doi:10.13005/bpj/3134.
DOI: https://doi.org/10.13005/bpj/3134
4. Oleshchuk, O.; Pinyazhko, O.; Klantsa, M.; Posokhova, K.; Lukanyuk, M.; Mahanova, T.; Shanaida, M. Critical Assessment of Effectiveness and Safety of Tramadol and Evaluation of Its Market in Ukraine. Biomed. Pharmacol. J. 2024, 17, 2087–2109, doi:10.13005/bpj/3010.
DOI: https://doi.org/10.13005/bpj/3010
5. Fu, K.; Si, S.; Jin, X.; Zhang, Y.; Duong, V.; Cai, Q.; Li, G.; Oo, W.M.; Zheng, X.; Boer, C.G.; et al. Exploring Antidiabetic Drug Targets as Potential Disease-Modifying Agents in Osteoarthritis. EBioMedicine 2024, 107, 105285, doi:10.1016/j.ebiom.2024.105285.
DOI: https://doi.org/10.1016/j.ebiom.2024.105285
6. Li, S.; Cao, P.; Chen, T.; Ding, C. Latest Insights in Disease-Modifying Osteoarthritis Drugs Development. Ther. Adv. Musculoskelet. Dis. 2023, 15, 1759720X231169839, doi:10.1177/1759720X231169839.
DOI: https://doi.org/10.1177/1759720X231169839
7. Kim, H.; Seo, J.; Lee, Y.; Park, K.; Perry, T.A.; Arden, N.K.; Mobasheri, A.; Choi, H. The Current State of the Osteoarthritis Drug Development Pipeline: A Comprehensive Narrative Review of the Present Challenges and Future Opportunities. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221085952, doi:10.1177/1759720X221085952.
DOI: https://doi.org/10.1177/1759720X221085952
8. Maouche, A.; Boumediene, K.; Baugé, C. Bioactive Compounds in Osteoarthritis: Molecular Mechanisms and Therapeutic Roles. Int. J. Mol. Sci. 2024, 25, 11656, doi:10.3390/ijms252111656.
DOI: https://doi.org/10.3390/ijms252111656
9. Azam, Z.; Sapra, L.; Baghel, K.; Sinha, N.; Gupta, R.K.; Soni, V.; Saini, C.; Mishra, P.K.; Srivastava, R.K. Cissus Quadrangularis (Hadjod) Inhibits RANKL-Induced Osteoclastogenesis and Augments Bone Health in an Estrogen-Deficient Preclinical Model of Osteoporosis via Modulating the Host Osteoimmune System. Cells 2023, 12, 216, doi:10.3390/cells12020216.
DOI: https://doi.org/10.3390/cells12020216
10. Nath, R.; Kar, B.K.; Dhadiwal, R.K.; Daftary, G.V.; Khemnar, B.M.; Patil, N.N. Role of Cissus Quadrangularis in Bone Loss Pathologies. Int J Orthop Sci 2024, 10, 196–201.
DOI: https://doi.org/10.22271/ortho.2024.v10.i1c.3521
11. Alluri, V.K.; Kundimi, S.; Sengupta, K.; Golakoti, T.; Kilari, E.K. An Anti-Inflammatory Composition of Boswellia Serrata Resin Extracts Alleviates Pain and Protects Cartilage in Monoiodoacetate-Induced Osteoarthritis in Rats. Evid. Based. Complement. Alternat. Med. 2020, 2020, 7381625, doi:10.1155/2020/7381625.
DOI: https://doi.org/10.1155/2020/7381625
12. Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Swierczek-Zieba, G. Structure and Antioxidant Activity of Polyphenols Derived from Propolis. Molecules 2013, 19, 78–101, doi:10.3390/molecules19010078.
DOI: https://doi.org/10.3390/molecules19010078
13. Branković, M.; Gmizić, T.; Dukić, M.; Zdravković, M.; Daskalović, B.; Mrda, D.; Nikolić, N.; Brajković, M.; Gojgić, M.; Lalatović, J.; et al. Therapeutic Potential of Palmitoylethanolamide in Gastrointestinal Disorders. Antioxidants (Basel) 2024, 13, 600, doi:10.3390/antiox13050600.
DOI: https://doi.org/10.3390/antiox13050600
14. Costa, B.; Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G. The Endogenous Fatty Acid Amide, Palmitoylethanolamide, Has Anti-Allodynic and Anti-Hyperalgesic Effects in a Murine Model of Neuropathic Pain: Involvement of CB(1), TRPV1 and PPARgamma Receptors and Neurotrophic Factors. Pain 2008, 139, 541–550, doi:10.1016/j.pain.2008.06.003.
DOI: https://doi.org/10.1016/j.pain.2008.06.003
15. Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic Signaling Pathways and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 56, doi:10.1038/s41392-023-01330-w.
DOI: https://doi.org/10.1038/s41392-023-01330-w
16.Yunus, M.H.M.; Nordin, A.; Kamal, H. Pathophysiological Perspective of Osteoarthritis. Medicina (Kaunas) 2020, 56, 614, doi:10.3390/medicina56110614.
DOI: https://doi.org/10.3390/medicina56110614
17. Berenbaum, F. Osteoarthritis as an Inflammatory Disease (Osteoarthritis Is Not Osteoarthrosis!). Osteoarthritis Cartilage 2013, 21, 16–21, doi:10.1016/j.joca.2012.11.012.
DOI: https://doi.org/10.1016/j.joca.2012.11.012
18. Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediators Inflamm. 2014, 2014, 561459, doi:10.1155/2014/561459.
DOI: https://doi.org/10.1155/2014/561459
19. Zheng, L.; Zhang, Z.; Sheng, P.; Mobasheri, A. The Role of Metabolism in Chondrocyte Dysfunction and the Progression of Osteoarthritis. Ageing Res. Rev. 2021, 66, 101249, doi:10.1016/j.arr.2020.101249.
DOI: https://doi.org/10.1016/j.arr.2020.101249
20. Chen, C.; Xie, J.; Rajappa, R.; Deng, L.; Fredberg, J.; Yang, L. Interleukin-1β and Tumor Necrosis Factor-α Increase Stiffness and Impair Contractile Function of Articular Chondrocytes. Acta Biochim. Biophys. Sin. (Shanghai) 2015, 47, 121–129, doi:10.1093/abbs/gmu116.
DOI: https://doi.org/10.1093/abbs/gmu116
21. Pratta, M.A.; Yao, W.; Decicco, C.; Tortorella, M.D.; Liu, R.-Q.; Copeland, R.A.; Magolda, R.; Newton, R.C.; Trzaskos, J.M.; Arner, E.C. Aggrecan Protects Cartilage Collagen from Proteolytic Cleavage. J. Biol. Chem. 2003, 278, 45539–45545, doi:10.1074/jbc.M303737200.
DOI: https://doi.org/10.1074/jbc.M303737200
22. Akkiraju, H.; Nohe, A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J. Dev. Biol. 2015, 3, 177–192, doi:10.3390/jdb3040177.
DOI: https://doi.org/10.3390/jdb3040177
23. Pulik, Ł.; Łęgosz, P.; Motyl, G. Matrix Metalloproteinases in Rheumatoid Arthritis and Osteoarthritis: A State of the Art Review. Reumatologia 2023, 61, 191–201, doi:10.5114/reum/168503.
DOI: https://doi.org/10.5114/reum/168503
24. Tajdari, M.; Peyrovinasab, A.; Bayanati, M.; Ismail Mahboubi Rabbani, M.; Abdolghaffari, A.H.; Zarghi, A. Dual COX-2/TNF-α Inhibitors as Promising Anti-Inflammatory and Cancer Chemopreventive Agents: A Review. Iran. J. Pharm. Res. 2024, 23, e151312, doi:10.5812/ijpr-151312.
DOI: https://doi.org/10.5812/ijpr-151312
25. Wang, Y.; Che, M.; Xin, J.; Zheng, Z.; Li, J.; Zhang, S. The Role of IL-1β and TNF-α in Intervertebral Disc Degeneration. Biomed. Pharmacother. 2020, 131, 110660, doi:10.1016/j.biopha.2020.110660.
DOI: https://doi.org/10.1016/j.biopha.2020.110660
26. Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-Grade Inflammation as a Key Mediator of the Pathogenesis of Osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 580–592, doi:10.1038/nrrheum.2016.136.
DOI: https://doi.org/10.1038/nrrheum.2016.136
27. Link, T.M.; Li, X. Establishing Compositional MRI of Cartilage as a Biomarker for Clinical Practice. Osteoarthritis Cartilage 2018, 26, 1137–1139, doi:10.1016/j.joca.2018.02.902.
DOI: https://doi.org/10.1016/j.joca.2018.02.902
28. Lepetsos, P.; Papavassiliou, A.G. ROS/Oxidative Stress Signaling in Osteoarthritis. Biochim. Biophys. Acta 2016, 1862, 576–591, doi:10.1016/j.bbadis.2016.01.003.
DOI: https://doi.org/10.1016/j.bbadis.2016.01.003
29. Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Oxidative Stress and Inflammation in Osteoarthritis Pathogenesis: Role of Polyphenols. Biomed. Pharmacother. 2020, 129, 110452, doi:10.1016/j.biopha.2020.110452.
DOI: https://doi.org/10.1016/j.biopha.2020.110452
30. Bolduc, J.A.; Collins, J.A.; Loeser, R.F. Reactive Oxygen Species, Aging and Articular Cartilage Homeostasis. Free Radic. Biol. Med. 2019, 132, 73–82, doi:10.1016/j.freeradbiomed.2018.08.038.
DOI: https://doi.org/10.1016/j.freeradbiomed.2018.08.038
31. Guo, P.; Alhaskawi, A.; Adel Abdo Moqbel, S.; Pan, Z. Recent Development of Mitochondrial Metabolism and Dysfunction in Osteoarthritis. Front. Pharmacol. 2025, 16, 1538662, doi:10.3389/fphar.2025.1538662.
DOI: https://doi.org/10.3389/fphar.2025.1538662
32. Li, S.; Xiong, Y.; Zhu, H.; Ma, T.; Sun, X.; Xiao, J. Microenvironment-Responsive Nanosystems for Osteoarthritis Therapy. Engineered Regeneration 2024, 5, 92–110, doi:10.1016/j.engreg.2023.12.002.
DOI: https://doi.org/10.1016/j.engreg.2023.12.002
33. Kim, J.-H.; Jeon, J.; Shin, M.; Won, Y.; Lee, M.; Kwak, J.-S.; Lee, G.; Rhee, J.; Ryu, J.-H.; Chun, C.-H.; et al. Regulation of the Catabolic Cascade in Osteoarthritis by the Zinc-ZIP8-MTF1 Axis. Cell 2014, 156, 730–743, doi:10.1016/j.cell.2014.01.007.
DOI: https://doi.org/10.1016/j.cell.2014.01.007
34. Fox, S.; Bedi, A.J.; Rodeo, A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health 2009, 1, 461–468.
DOI: https://doi.org/10.1177/1941738109350438
35. Troeberg, L.; Nagase, H. Proteases Involved in Cartilage Matrix Degradation in Osteoarthritis. Biochim. Biophys. Acta 2012, 1824, 133–145, doi:10.1016/j.bbapap.2011.06.020.
DOI: https://doi.org/10.1016/j.bbapap.2011.06.020
36. Ur Rehman, S.; Iqbal, S.; Shahid, U.; Jahangir, S.; Malik, L. Cartilage: Structure, Function, and the Pathogenesis of Osteoarthritis. In Advancements in Synovial Joint Science - Structure, Function, and Beyond. IntechOpen; 2024.
DOI: https://doi.org/10.5772/intechopen.1003264
37. Henao-Murillo, L.; Pastrama, M.-I.; Ito, K.; van Donkelaar, C.C. The Relationship between Proteoglycan Loss, Overloading-Induced Collagen Damage, and Cyclic Loading in Articular Cartilage. Cartilage 2021, 13, 1501S-1512S, doi:10.1177/1947603519885005.
DOI: https://doi.org/10.1177/1947603519885005
38. Mukherjee, A.; Das, B. The Role of Inflammatory Mediators and Matrix Metalloproteinases (MMPs) in the Progression of Osteoarthritis. Biomater. Biosyst. 2024, 13, 100090, doi:10.1016/j.bbiosy.2024.100090.
DOI: https://doi.org/10.1016/j.bbiosy.2024.100090
39. Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial Inflammation in Osteoarthritis Progression. Nat. Rev. Rheumatol. 2022, 18, 258–275, doi:10.1038/s41584-022-00749-9.
DOI: https://doi.org/10.1038/s41584-022-00749-9
40. Mathiessen, A.; Conaghan, P.G. Synovitis in Osteoarthritis: Current Understanding with Therapeutic Implications. Arthritis Res. Ther. 2017, 19, 18, doi:10.1186/s13075-017-1229-9.
DOI: https://doi.org/10.1186/s13075-017-1229-9
41. Schaible, H.-G.; Ebersberger, A.; Natura, G. Update on Peripheral Mechanisms of Pain: Beyond Prostaglandins and Cytokines. Arthritis Res. Ther. 2011, 13, 210, doi:10.1186/ar3305.
DOI: https://doi.org/10.1186/ar3305
42. Eitner, A.; Hofmann, G.O.; Schaible, H.-G. Mechanisms of Osteoarthritic Pain. Studies in Humans and Experimental Models. Front. Mol. Neurosci. 2017, 10, 349, doi:10.3389/fnmol.2017.00349.
DOI: https://doi.org/10.3389/fnmol.2017.00349
43. Volcheck, M.M.; Graham, S.M.; Fleming, K.C.; Mohabbat, A.B.; Luedtke, C.A. Central Sensitization, Chronic Pain, and Other Symptoms: Better Understanding, Better Management. Cleve. Clin. J. Med. 2023, 90, 245–254, doi:10.3949/ccjm.90a.22019.
DOI: https://doi.org/10.3949/ccjm.90a.22019
44. Wen, B.; Pan, Y.; Cheng, J.; Xu, L.; Xu, J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J. Pain Res. 2023, 16, 3061–3073, doi:10.2147/JPR.S423733.
DOI: https://doi.org/10.2147/JPR.S423733
45. Yang, D.; Xu, J.; Xu, K.; Xu, P. Skeletal Interoception in Osteoarthritis. Bone Res. 2024, 12, 22, doi:10.1038/s41413-024-00328-6.
DOI: https://doi.org/10.1038/s41413-024-00328-6
46. Hu, Y.; Chen, X.; Wang, S.; Jing, Y.; Su, J. Subchondral Bone Microenvironment in Osteoarthritis and Pain. Bone Res. 2021, 9, 20, doi:10.1038/s41413-021-00147-z.
DOI: https://doi.org/10.1038/s41413-021-00147-z
47. Zhu, S.; Zhu, J.; Zhen, G.; Hu, Y.; An, S.; Li, Y.; Zheng, Q.; Chen, Z.; Yang, Y.; Wan, M.; et al. Subchondral Bone Osteoclasts Induce Sensory Innervation and Osteoarthritis Pain. J. Clin. Invest. 2019, 129, 1076–1093, doi:10.1172/JCI121561.
DOI: https://doi.org/10.1172/JCI121561
48. Singh, P.; Gupta, A.; Qayoom, I.; Singh, S.; Kumar, A. Orthobiologics with Phytobioactive Cues: A Paradigm in Bone Regeneration. Biomed. Pharmacother. 2020, 130, 110754, doi:10.1016/j.biopha.2020.110754.
DOI: https://doi.org/10.1016/j.biopha.2020.110754
49. Mishra, G.; Srivastava, S.; Nagori, B.P. Pharmacological and Therapeutic Activity of Cissus Quadrangularis: An Overview. International Journal of PharmTech Research 2010, 2, 1298–1310.
50. Bhujade, A.M.; Talmale, S.; Kumar, N.; Gupta, G.; Reddanna, P.; Das, S.K.; Patil, M.B. Evaluation of Cissus Quadrangularis Extracts as an Inhibitor of COX, 5-LOX, and Proinflammatory Mediators. J. Ethnopharmacol. 2012, 141, 989–996, doi:10.1016/j.jep.2012.03.044.
DOI: https://doi.org/10.1016/j.jep.2012.03.044
51. Bloomer, R.J.; Farney, T.M.; McCarthy, C.G.; Lee, S.-R. Cissus Quadrangularis Reduces Joint Pain in Exercise-Trained Men: A Pilot Study. Phys. Sportsmed. 2013, 41, 29–35, doi:10.3810/psm.2013.09.2021.
DOI: https://doi.org/10.3810/psm.2013.09.2021
52. Kanwar, J.; Samarasinghe, R.; Kumar, K.; Arya, R.; Sharma, S.; Zhou, S.-F.; Sasidharan, S.; Kanwar, R. Cissus Quadrangularis Inhibits IL-1β Induced Inflammatory Responses on Chondrocytes and Alleviates Bone Deterioration in Osteotomized Rats via P38 MAPK Signaling [Corrigendum]. Drug Des. Devel. Ther. 2017, 11, 2683–2684, doi:10.2147/dddt.s148615.
DOI: https://doi.org/10.2147/DDDT.S148615
53. Banu, J.; Varela, E.; Bahadur, A.N.; Soomro, R.; Kazi, N.; Fernandes, G. Inhibition of Bone Loss by Cissus Quadrangularis in Mice: A Preliminary Report. J. Osteoporos. 2012, 2012, 101206, doi:10.1155/2012/101206.
DOI: https://doi.org/10.1155/2012/101206
54. Iram, F.; Khan, S.A.; Husain, A. Phytochemistry and Potential Therapeutic Actions of Boswellic Acids: A Mini-Review. Asian Pac. J. Trop. Biomed. 2017, 7, 513–523, doi:10.1016/j.apjtb.2017.05.001.
DOI: https://doi.org/10.1016/j.apjtb.2017.05.001
55. Siddiqui, M.Z. Boswellia Serrata, a Potential Antiinflammatory Agent: An Overview. Indian J. Pharm. Sci. 2011, 73, 255–261, doi:10.4103/0250-474X.93507.
56. Sengupta, K.; Alluri, K.V.; Satish, A.R.; Mishra, S.; Golakoti, T.; Sarma, K.V.; Dey, D.; Raychaudhuri, S.P. A Double Blind, Randomized, Placebo Controlled Study of the Efficacy and Safety of 5-Loxin for Treatment of Osteoarthritis of the Knee. Arthritis Res. Ther. 2008, 10, R85, doi:10.1186/ar2461.
DOI: https://doi.org/10.1186/ar2461
57. Yu, G.; Xiang, W.; Zhang, T.; Zeng, L.; Yang, K.; Li, J. Effectiveness of Boswellia and Boswellia Extract for Osteoarthritis Patients: A Systematic Review and Meta-Analysis. BMC Complement. Med. Ther. 2020, 20, 225, doi:10.1186/s12906-020-02985-6.
DOI: https://doi.org/10.1186/s12906-020-02985-6
58. Vishal, A.A.; Mishra, A.; Raychaudhuri, S.P. A Double Blind, Randomized, Placebo Controlled Clinical Study Evaluates the Early Efficacy of Aflapin in Subjects with Osteoarthritis of Knee. Int. J. Med. Sci. 2011, 8, 615–622, doi:10.7150/ijms.8.615.
DOI: https://doi.org/10.7150/ijms.8.615
59. Sukhikh, S.; Noskova, S.; Ivanova, S.; Ulrikh, E.; Izgaryshev, A.; Babich, O. Chondroprotection and Molecular Mechanism of Action of Phytonutraceuticals on Osteoarthritis. Molecules 2021, 26, 2391, doi:10.3390/molecules26082391.
DOI: https://doi.org/10.3390/molecules26082391
60. Hossain, R.; Quispe, C.; Khan, R.A.; Saikat, A.S.M.; Ray, P.; Ongalbek, D.; Yeskaliyeva, B.; Jain, D.; Smeriglio, A.; Trombetta, D.; et al. Propolis: An Update on Its Chemistry and Pharmacological Applications. Chin. Med. 2022, 17, 100, doi:10.1186/s13020-022-00651-2.
DOI: https://doi.org/10.1186/s13020-022-00651-2
61. Oršolić, N.; Jazvinšćak Jembrek, M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024, 16, doi:10.3390/nu16213741.
DOI: https://doi.org/10.3390/nu16213741
62. Altabbal, S.; Athamnah, K.; Rahma, A.; Wali, A.F.; Eid, A.H.; Iratni, R.; Al Dhaheri, Y. Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms. Pharmaceuticals (Basel) 2023, 16, doi:10.3390/ph16030450.
DOI: https://doi.org/10.3390/ph16030450
63. Arias, C.; Vásquez, B.; Salazar, L.A. Propolis as a Potential Therapeutic Agent to Counteract Age-Related Changes in Cartilage: An in Vivo Study. Int. J. Mol. Sci. 2023, 24, doi:10.3390/ijms241814272.
DOI: https://doi.org/10.3390/ijms241814272
64. Petrosino, S.; Marzo, D. The Pharmacology of Palmitoylethanolamide and First Data on the Therapeutic Efficacy of Some of Its New Formulations: Palmitoylethanolamide and Its New Formulations. Br J Pharmacol 2017, 174, 1349–1365.
DOI: https://doi.org/10.1111/bph.13580
65. Skaper, S.D.; Facci, L.; Fusco, M.; Della Valle, M.F.; Zusso, M.; Costa, B.; Giusti, P. Palmitoylethanolamide, a Naturally Occurring Disease-Modifying Agent in Neuropathic Pain. Inflammopharmacology 2014, 22, 79–94, doi:10.1007/s10787-013-0191-7.
DOI: https://doi.org/10.1007/s10787-013-0191-7
66. Gabrielsson, L.; Mattsson, S.; Fowler, C.J. Palmitoylethanolamide for the Treatment of Pain: Pharmacokinetics, Safety and Efficacy. Br. J. Clin. Pharmacol. 2016, 82, 932–942, doi:10.1111/bcp.13020.
DOI: https://doi.org/10.1111/bcp.13020
67. Sengupta, K.; Kolla, J.N.; Krishnaraju, A.V.; Yalamanchili, N.; Rao, C.V.; Golakoti, T.; Raychaudhuri, S.; Raychaudhuri, S.P. Cellular and Molecular Mechanisms of Anti-Inflammatory Effect of Aflapin: A Novel Boswellia Serrata Extract. Mol. Cell. Biochem. 2011, 354, 189–197, doi:10.1007/s11010-011-0818-1.
DOI: https://doi.org/10.1007/s11010-011-0818-1
68. Sengupta, K.; Krishnaraju, A.V.; Vishal, A.A.; Mishra, A.; Trimurtulu, G.; Sarma, K.V.S.; Raychaudhuri, S.K.; Raychaudhuri, S.P. Comparative Efficacy and Tolerability of 5-Loxin and AflapinAgainst Osteoarthritis of the Knee: A Double Blind, Randomized, Placebo Controlled Clinical Study. Int. J. Med. Sci. 2010, 7, 366–377, doi:10.7150/ijms.7.366.
DOI: https://doi.org/10.7150/ijms.7.366
69. Bannuru, R.R.; Osani, M.C.; Al-Eid, F.; Wang, C. Efficacy of Curcumin and Boswellia for Knee Osteoarthritis: Systematic Review and Meta-Analysis. Semin. Arthritis Rheum. 2018, 48, 416–429, doi:10.1016/j.semarthrit.2018.03.001.
DOI: https://doi.org/10.1016/j.semarthrit.2018.03.001
70. Umar, S.; Umar, K.; Sarwar, A.H.M.G.; Khan, A.; Ahmad, N.; Ahmad, S.; Katiyar, C.K.; Husain, S.A.; Khan, H.A. Boswellia Serrata Extract Attenuates Inflammatory Mediators and Oxidative Stress in Collagen Induced Arthritis. Phytomedicine 2014, 21, 847–856, doi:10.1016/j.phymed.2014.02.001.
DOI: https://doi.org/10.1016/j.phymed.2014.02.001
71. Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved Oral Absorption of Quercetin from Quercetin Phytosome®, a New Delivery System Based on Food Grade Lecithin. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 169–177, doi:10.1007/s13318-018-0517-3.
DOI: https://doi.org/10.1007/s13318-018-0517-3
72. Lang-Illievich, K.; Klivinyi, C.; Lasser, C.; Brenna, C.T.A.; Szilagyi, I.S.; Bornemann-Cimenti, H. Palmitoylethanolamide in the Treatment of Chronic Pain: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. Nutrients 2023, 15, doi:10.3390/nu15061350.
DOI: https://doi.org/10.3390/nu15061350
73. Steels, E.; Venkatesh, R.; Steels, E.; Vitetta, G.; Vitetta, L. A Double-Blind Randomized Placebo Controlled Study Assessing Safety, Tolerability and Efficacy of Palmitoylethanolamide for Symptoms of Knee Osteoarthritis. Inflammopharmacology 2019, 27, 475–485, doi:10.1007/s10787-019-00582-9.
DOI: https://doi.org/10.1007/s10787-019-00582-9
74. Jung, J.I.; Lee, H.S.; Jeon, Y.E.; Kim, S.M.; Hong, S.H.; Moon, J.M.; Lim, C.Y.; Kim, Y.H.; Kim, E.J. Anti-Inflammatory Activity of Palmitoylethanolamide Ameliorates Osteoarthritis Induced by Monosodium Iodoacetate in Sprague-Dawley Rats. Inflammopharmacology 2021, 29, 1475–1486, doi:10.1007/s10787-021-00870-3.
DOI: https://doi.org/10.1007/s10787-021-00870-3
75.Gugliandolo, E.; Fusco, R.; Biundo, F.; D’Amico, R.; Benedetto, F.; Di Paola, R.; Cuzzocrea, S. Palmitoylethanolamide and Polydatin Combination Reduces Inflammation and Oxidative Stress in Vascular Injury. Pharmacol. Res. 2017, 123, 83–92, doi:10.1016/j.phrs.2017.06.014.
DOI: https://doi.org/10.1016/j.phrs.2017.06.014
76.Marini, I.; Bartolucci, M.L.; Bortolotti, F.; Gatto, M.R.; Bonetti, G.A. Palmitoylethanolamide versus a Nonsteroidal Anti-Inflammatory Drug in the Treatment of Temporomandibular Joint Inflammatory Pain. J. Orofac. Pain 2012, 26, 99–104.
77.Berretta, A.A.; Silveira, M.A.D.; Cóndor Capcha, J.M.; De Jong, D. Propolis and Its Potential against SARS-CoV-2 Infection Mechanisms and COVID-19 Disease: Running Title: Propolis against SARS-CoV-2 Infection and COVID-19. Biomed. Pharmacother. 2020, 131, 110622, doi:10.1016/j.biopha.2020.110622.
DOI: https://doi.org/10.1016/j.biopha.2020.110622
78.Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee Products in Dermatology and Skin Care. Molecules 2020, 25, 556, doi:10.3390/molecules25030556.
DOI: https://doi.org/10.3390/molecules25030556
79.Pahlavani, N.; Malekahmadi, M.; Firouzi, S.; Rostami, D.; Sedaghat, A.; Moghaddam, A.B.; Ferns, G.A.; Navashenaq, J.G.; Reazvani, R.; Safarian, M.; et al. Molecular and Cellular Mechanisms of the Effects of Propolis in Inflammation, Oxidative Stress and Glycemic Control in Chronic Diseases. Nutr. Metab. (Lond.) 2020, 17, 65, doi:10.1186/s12986-020-00485-5.
DOI: https://doi.org/10.1186/s12986-020-00485-5
80.Xuan, H.; Yuan, W.; Chang, H.; Liu, M.; Hu, F. Anti-Inflammatory Effects of Chinese Propolis in Lipopolysaccharide-Stimulated Human Umbilical Vein Endothelial Cells by Suppressing Autophagy and MAPK/NF-κB Signaling Pathway. Inflammopharmacology 2019, 27, 561–571, doi:10.1007/s10787-018-0533-6.
DOI: https://doi.org/10.1007/s10787-018-0533-6
81.Zulhendri, F.; Lesmana, R.; Tandean, S.; Christoper, A.; Chandrasekaran, K.; Irsyam, I.; Suwantika, A.A.; Abdulah, R.; Wathoni, N. Recent Update on the Anti-Inflammatory Activities of Propolis. Molecules 2022, 27, 8473, doi:10.3390/molecules27238473.
DOI: https://doi.org/10.3390/molecules27238473
82.Majeed, M.; Majeed, S.; Narayanan, N.K.; Nagabhushanam, K. A Pilot, Randomized, Double-Blind, Placebo-Controlled Trial to Assess the Safety and Efficacy of a Novel Boswellia Serrata Extract in the Management of Osteoarthritis of the Knee: A Novel B. Serrata Extract for Knee Osteoarthritis. Phytother Res 2019, 33, 1457–1468.
DOI: https://doi.org/10.1002/ptr.6338
83.Minoretti, P.; Santiago Sáez, A.; Liaño Riera, M.; Gómez Serrano, M.; García Martín, Á. Efficacy and Safety of Two Chondroprotective Supplements in Patients with Knee Osteoarthritis: A Randomized, Single-Blind, Pilot Study. Cureus 2024, 16, e57579, doi:10.7759/cureus.57579.
DOI: https://doi.org/10.7759/cureus.57579
84.Hussain, H.; Wang, D.; El-Seedi, H.R.; Rashan, L.; Ahmed, I.; Abbas, M.; Mamadalieva, N.Z.; Sultani, H.N.; Hussain, M.I.; Shah, S.T.A. Therapeutic Potential of Boswellic Acids: An Update Patent Review (2016-2023). Expert Opin. Ther. Pat. 2024, 34, 723–732, doi:10.1080/13543776.2024.2369626.
DOI: https://doi.org/10.1080/13543776.2024.2369626
85.Villalvilla, A.; da Silva, J.A.; Largo, R.; Gualillo, O.; Vieira, P.C.; Herrero-Beaumont, G.; Gómez, R. 6-Shogaol Inhibits Chondrocytes’ Innate Immune Responses and Cathepsin-K Activity. Mol. Nutr. Food Res. 2014, 58, 256–266, doi:10.1002/mnfr.201200833.
DOI: https://doi.org/10.1002/mnfr.201200833
86.Shin, M.-R.; Kim, H.-Y.; Choi, H.-Y.; Park, K.S.; Choi, H.J.; Roh, S.-S. Boswellia Serrata Extract, 5-Loxin®, Prevents Joint Pain and Cartilage Degeneration in a Rat Model of Osteoarthritis through Inhibition of Inflammatory Responses and Restoration of Matrix Homeostasis. Evid. Based. Complement. Alternat. Med. 2022, 2022, 3067526, doi:10.1155/2022/3067526.
DOI: https://doi.org/10.1155/2022/3067526
87.Potu, B.K.; Bhat, K.M.R.; Rao, M.S.; Nampurath, G.K.; Chamallamudi, M.R.; Nayak, S.R.; Muttigi, M.S. Petroleum Ether Extract of Cissus Quadrangularis (Linn.) Enhances Bone Marrow Mesenchymal Stem Cell Proliferation and Facilitates Osteoblastogenesis. Clinics (Sao Paulo) 2009, 64, 993–998, doi:10.1590/S1807-59322009001000010.
DOI: https://doi.org/10.1590/S1807-59322009001000010
88.Bafna, P.S.; Patil, P.H.; Maru, S.K.; Mutha, R.E. Cissus Quadrangularis L: A Comprehensive Multidisciplinary Review. J. Ethnopharmacol. 2021, 279, 114355, doi:10.1016/j.jep.2021.114355.
DOI: https://doi.org/10.1016/j.jep.2021.114355
89.Sawangjit, R.; Puttarak, P.; Saokaew, S.; Chaiyakunapruk, N. Efficacy and Safety of Cissus Quadrangularis L. in Clinical Use: A Systematic Review and Meta-Analysis of Randomized Controlled Trials: Efficacy and Safety of Cissus in Clinical Use. Phytother Res 2017, 31, 555–567.
DOI: https://doi.org/10.1002/ptr.5783
90.Sen, M.; Dash, B. A Review on Phytochemical and Pharmacological Aspects ofCissus quadrangularisL. Int. J. Green Pharm. 2012, 6, 169, doi:10.4103/0973-8258.104924.
DOI: https://doi.org/10.4103/0973-8258.104924
91.Martinotti, S.; Ranzato, E. Propolis: A New Frontier for Wound Healing? Burns Trauma 2015, 3, 9, doi:10.1186/s41038-015-0010-z.
DOI: https://doi.org/10.1186/s41038-015-0010-z
92.Bolfa, P.; Vidrighinescu, R.; Petruta, A.; Dezmirean, D.; Stan, L.; Vlase, L.; Damian, G.; Catoi, C.; Filip, A.; Clichici, S. Photoprotective Effects of Romanian Propolis on Skin of Mice Exposed to UVB Irradiation. Food Chem. Toxicol. 2013, 62, 329–342, doi:10.1016/j.fct.2013.08.078
DOI: https://doi.org/10.1016/j.fct.2013.08.078
93. Miryan, M.; Soleimani, D.; Dehghani, L.; Sohrabi, K.; Khorvash, F.; Bagherniya, M.; Sayedi, S.M.; Askari, G. The Effect of Propolis Supplementation on Clinical Symptoms in Patients with Coronavirus (COVID-19): A Structured Summary of a Study Protocol for a Randomised Controlled Trial. Trials 2020, 21, 996, doi:10.1186/s13063-020-04934-7.
DOI: https://doi.org/10.1186/s13063-020-04934-7
94.Nazari-Bonab, H.; Jamilian, P.; Radkhah, N.; Zarezadeh, M.; Ebrahimi-Mameghani, M. The Effect of Propolis Supplementation in Improving Antioxidant Status: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Phytother. Res. 2023, 37, 3712–3723, doi:10.1002/ptr.7899.
DOI: https://doi.org/10.1002/ptr.7899
95.Hori, J.I.; Zamboni, D.S.; Carrão, D.B.; Goldman, G.H.; Berretta, A.A. The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF). Evid. Based. Complement. Alternat. Med. 2013, 2013, 418508, doi:10.1155/2013/418508.
DOI: https://doi.org/10.1155/2013/418508
96.Dalmonte, T.; Andreani, G.; Rudelli, C.; Isani, G. Efficacy of Extracts of Oleogum Resin of Boswellia in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Phytother. Res. 2024, 38, 5672–5689, doi:10.1002/ptr.8336.
DOI: https://doi.org/10.1002/ptr.8336
97.Abdel-Tawab, M.; Werz, O.; Schubert-Zsilavecz, M. Boswellia Serrata: An Overall Assessment of in Vitro, Preclinical, Pharmacokinetic and Clinical Data: An Overall Assessment of in Vitro, Preclinical, Pharmacokinetic and Clinical Data. Clin Pharmacokinet 2011, 50, 349–369.
DOI: https://doi.org/10.2165/11586800-000000000-00000
98.Doaee, P.; Rajaei, Z.; Roghani, M.; Alaei, H.; Kamalinejad, M. Effects of Boswellia Serrata Resin Extract on Motor Dysfunction and Brain Oxidative Stress in an Experimental Model of Parkinson’s Disease. Avicenna J. Phytomed. 2019, 9, 281–290.
99.Sailer, E.R.; Subramanian, L.R.; Rall, B.; Hoernlein, R.F.; Ammon, H.P.; Safayhi, H. Acetyl-11-Keto-Beta-Boswellic Acid (AKBA): Structure Requirements for Binding and 5-Lipoxygenase Inhibitory Activity. Br. J. Pharmacol. 1996, 117, 615–618, doi:10.1111/j.1476-5381.1996.tb15235.x.
DOI: https://doi.org/10.1111/j.1476-5381.1996.tb15235.x
100.Hesselink, K.; De Boer, J.M.; Witkamp, T. Palmitoylethanolamide: A Natural Body-Own Anti-Inflammatory Agent, Effective and Safe against Influenza and Common Cold. Int J Inflam 2013.
DOI: https://doi.org/10.1155/2013/151028
101.Clayton, P.; Subah, S.; Venkatesh, R.; Hill, M.; Bogoda, N. Palmitoylethanolamide: A Potential Alternative to Cannabidiol. J. Diet. Suppl. 2023, 20, 505–530, doi:10.1080/19390211.2021.2005733.
DOI: https://doi.org/10.1080/19390211.2021.2005733
102.Varrassi, G.; Rekatsina, M.; Leoni, M.L.G.; Cascella, M.; Finco, G.; Sardo, S.; Corno, C.; Tiso, D.; Schweiger, V.; Fornasari, D.M.M.; et al. A Decades-Long Journey of Palmitoylethanolamide (PEA) for Chronic Neuropathic Pain Management: A Comprehensive Narrative Review. Pain Ther. 2025, 14, 81–101, doi:10.1007/s40122-024-00685-4.
DOI: https://doi.org/10.1007/s40122-024-00685-4
103.Petrosino, S.; Cordaro, M.; Verde, R.; Schiano Moriello, A.; Marcolongo, G.; Schievano, C.; Siracusa, R.; Piscitelli, F.; Peritore, A.F.; Crupi, R.; et al. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-Hyperalgesic Effect. Front. Pharmacol. 2018, 9, 249, doi:10.3389/fphar.2018.00249.
DOI: https://doi.org/10.3389/fphar.2018.00249
104.Passavanti, M.B.; Alfieri, A.; Pace, M.C.; Pota, V.; Sansone, P.; Piccinno, G.; Barbarisi, M.; Aurilio, C.; Fiore, M. Clinical Applications of Palmitoylethanolamide in Pain Management: Protocol for a Scoping Review. Syst. Rev. 2019, 8, 9, doi:10.1186/s13643-018-0934-z.
DOI: https://doi.org/10.1186/s13643-018-0934-z
105.Artukoglu, B.B.; Beyer, C.; Zuloff-Shani, A.; Brener, E.; Bloch, M.H. Efficacy of Palmitoylethanolamide for Pain: A Meta-Analysis. Pain Physician 2017, 20, 353–362.
106.Nestmann, E.R. Safety of Micronized Palmitoylethanolamide (microPEA): Lack of Toxicity and Genotoxic Potential. Food Sci. Nutr. 2017, 5, 292–309, doi:10.1002/fsn3.392.
DOI: https://doi.org/10.1002/fsn3.392
107.Schweiger, V.; Schievano, C.; Martini, A.; Polati, L.; Del Balzo, G.; Simari, S.; Milan, B.; Finco, G.; Varrassi, G.; Polati, E. Extended Treatment with Micron-Size Oral Palmitoylethanolamide (PEA) in Chronic Pain: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1653, doi:10.3390/nu16111653.
DOI: https://doi.org/10.3390/nu16111653
108.Shamraiz, U.; Hussain, H.; Ur Rehman, N.; Al-Shidhani, S.; Saeed, A.; Khan, H.Y.; Khan, A.; Fischer, L.; Csuk, R.; Badshah, A.; et al. Synthesis of New Boswellic Acid Derivatives as Potential Antiproliferative Agents. Nat. Prod. Res. 2020, 34, 1845–1852, doi:10.1080/14786419.2018.1564295.
DOI: https://doi.org/10.1080/14786419.2018.1564295
109.Sharma, S.; Gupta, S.; Khajuria, V.; Bhagat, A.; Ahmed, Z.; Shah, B.A. Analogues of Boswellic Acids as Inhibitors of Pro-Inflammatory Cytokines TNF-α and IL-6. Bioorg. Med. Chem. Lett. 2016, 26, 695–698, doi:10.1016/j.bmcl.2015.11.035.
DOI: https://doi.org/10.1016/j.bmcl.2015.11.035
110.Mbiantcha, M.; Khalid, R.; Atsamo, D.A.; Njoku, I.S.; Mehreen, A.; Ateufack, G.; Hamza, D.; Nana, W.Y.; Naeem, R.U.; Izhar, A. Anti-Hypernociceptive Effects of Methanol Extract of Boswellia Dalzielii on STZ-Induced Diabetic Neuropathic Pain. Advances in Traditional Medicine 2020, 20, 405–417, doi:10.1007/s13596-019-00411-y.
DOI: https://doi.org/10.1007/s13596-019-00411-y
111.Majeed, A.; Majeed, S.; Satish, G.; Manjunatha, R.; Rabbani, S.N.; Patil, N.V.P.; Mundkur, L. A Standardized Boswellia Serrata Extract Shows Improvements in Knee Osteoarthritis within Five Days-a Double-Blind, Randomized, Three-Arm, Parallel-Group, Multi-Center, Placebo-Controlled Trial. Front. Pharmacol. 2024, 15, 1428440, doi:10.3389/fphar.2024.1428440.
DOI: https://doi.org/10.3389/fphar.2024.1428440
112.Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; et al. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int. J. Mol. Sci. 2019, 20, 4101, doi:10.3390/ijms20174101.
DOI: https://doi.org/10.3390/ijms20174101
113.Machado, J.L.; Assunção, A.K.M.; da Silva, M.C.P.; Dos Reis, A.S.; Costa, G.C.; Arruda, D. de S.; Rocha, B.A.; Vaz, M.M. de O.L.L.; Paes, A.M. de A.; Guerra, R.N.M.; et al. Brazilian Green Propolis: Anti-Inflammatory Property by an Immunomodulatory Activity. Evid. Based. Complement. Alternat. Med. 2012, 2012, 157652, doi:10.1155/2012/157652.
DOI: https://doi.org/10.1155/2012/157652
114.Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical Diversity and Challenges in Quality Control. Phytochem. Rev. 2022, 21, 1887–1911, doi:10.1007/s11101-022-09816-1.
DOI: https://doi.org/10.1007/s11101-022-09816-1
115.Katiyar, D. Propolis: A Natural Biomaterial. Mater. Today 2023, doi:10.1016/j.matpr.2023.05.522.
DOI: https://doi.org/10.1016/j.matpr.2023.05.522
116.Xu, W.; Lu, H.; Yuan, Y.; Deng, Z.; Zheng, L.; Li, H. The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways. Foods 2022, 11, 2439, doi:10.3390/foods11162439.
DOI: https://doi.org/10.3390/foods11162439
117.Muthusami, S.; Ramachandran, I.; Krishnamoorthy, S.; Govindan, R.; Narasimhan, S. Cissus Quadrangularis Augments IGF System Components in Human Osteoblast like SaOS-2 Cells. Growth Horm. IGF Res. 2011, 21, 343–348, doi:10.1016/j.ghir.2011.09.002.
DOI: https://doi.org/10.1016/j.ghir.2011.09.002
118.Dhanasekaran, S. Phytochemical Characteristics of Aerial Part of Cissus Quadrangularis (L) and Its in-Vitro Inhibitory Activity against Leukemic Cells and Antioxidant Properties. Saudi J. Biol. Sci. 2020, 27, 1302–1309, doi:10.1016/j.sjbs.2020.01.005.
DOI: https://doi.org/10.1016/j.sjbs.2020.01.005
119.Guerra, J.M.; Hanes, M.A.; Rasa, C.; Loganathan, N.; Innis-Whitehouse, W.; Gutierrez, E.; Nair, S.; Banu, J. Modulation of Bone Turnover by Cissus Quadrangularis after Ovariectomy in Rats. J. Bone Miner. Metab. 2019, 37, 780–795, doi:10.1007/s00774-018-0983-3.
DOI: https://doi.org/10.1007/s00774-018-0983-3
120.Tasadduq, R.; Gordon, J.; Al-Ghanim, K.A.; Lian, J.B.; Van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Shakoori, A.R. Ethanol Extract of Cissus Quadrangularis Enhances Osteoblast Differentiation and Mineralization of Murine Pre-Osteoblastic MC3T3-E1 Cells: Effect of Herbal Extract on Osteoblast Differentiation. J. Cell. Physiol. 2017, 232, 540–547, doi:10.1002/jcp.25449.
DOI: https://doi.org/10.1002/jcp.25449
121.Liao, L.; Zhu, W.; Tao, C.; Li, D.; Mao, M. Cissus Quadrangularis L Extract-Loaded Tricalcium Phosphate Reinforced Natural Polymer Composite for Guided Bone Regeneration. J. Mater. Sci. Mater. Med. 2023, 34, 33, doi:10.1007/s10856-023-06739-x.
DOI: https://doi.org/10.1007/s10856-023-06739-x
122.Sadeghnia, H.R.; Arjmand, F.; Ghorbani, A. Neuroprotective Effect of Boswellia Serrata and Its Active Constituent Acetyl 11-Keto-β-Boswellic Acid against Oxygen-Glucose-Serum Deprivation-Induced Cell Injury. Acta Pol. Pharm. 2017, 74, 911–920.
123.Nakhaei, K.; Bagheri-Hosseini, S.; Sabbaghzade, N.; Behmadi, J.; Boozari, M. Boswellic Acid Nanoparticles: Promising Strategies for Increasing Therapeutic Effects. Rev. Bras. Farmacogn. 2023, 33, 713–723, doi:10.1007/s43450-023-00405-7.
DOI: https://doi.org/10.1007/s43450-023-00405-7
124.Li, W.; Ren, L.; Zheng, X.; Liu, J.; Wang, J.; Ji, T.; Du, G. 3-O-Acetyl-11-Keto- β -Boswellic Acid Ameliorated Aberrant Metabolic Landscape and Inhibited Autophagy in Glioblastoma. Acta Pharm. Sin. B. 2020, 10, 301–312, doi:10.1016/j.apsb.2019.12.012.
DOI: https://doi.org/10.1016/j.apsb.2019.12.012
125. Bartolucci, M.L.; Marini, I.; Bortolotti, F.; Impellizzeri, D.; Di Paola, R.; Bruschetta, G.; Crupi, R.; Portelli, M.; Militi, A.; Oteri, G.; et al. Micronized Palmitoylethanolamide Reduces Joint Pain and Glial Cell Activation. Inflamm. Res. 2018, 67, 891–901, doi:10.1007/s00011-018-1179-y.
DOI: https://doi.org/10.1007/s00011-018-1179-y
126. Loi, S.; Pontis, E.; Cofelice, A.; Pirarba, V.; Fais, S.; Daniilidis, M.F. Effect of Ultramicronized-Palmitoylethanolamide and Co-Micronized Palmitoylethanolamide/Polydatin on Chronic Pelvic Pain and Quality of Life in Endometriosis Patients: An Open-Label Pilot Study. Int J Womens Health 2019, 11, 443–449.
DOI: https://doi.org/10.2147/IJWH.S204275
127.Lama, A.; Pirozzi, C.; Severi, I.; Morgese, M.G.; Senzacqua, M.; Annunziata, C.; Comella, F.; Del Piano, F.; Schiavone, S.; Petrosino, S.; et al. Palmitoylethanolamide Dampens Neuroinflammation and Anxiety-like Behavior in Obese Mice. Brain Behav. Immun. 2022, 102, 110–123, doi:10.1016/j.bbi.2022.02.008.
DOI: https://doi.org/10.1016/j.bbi.2022.02.008
128.Bueno-Silva, B.; Kawamoto, D.; Ando-Suguimoto, E.S.; Casarin, R.C.V.; Alencar, S.M.; Rosalen, P.L.; Mayer, M.P.A. Brazilian Red Propolis Effects on Peritoneal Macrophage Activity: Nitric Oxide, Cell Viability, pro-Inflammatory Cytokines and Gene Expression. J. Ethnopharmacol. 2017, 207, 100–107, doi:10.1016/j.jep.2017.06.015.
DOI: https://doi.org/10.1016/j.jep.2017.06.015
129. Šuran, J.; Cepanec, I.; Mašek, T.; Radić, B.; Radić, S.; Tlak Gajger, I.; Vlainić, J. Propolis Extract and Its Bioactive Compounds-from Traditional to Modern Extraction Technologies. Molecules 2021, 26, 2930, doi:10.3390/molecules26102930.
DOI: https://doi.org/10.3390/molecules26102930
130.Javed, S.; Mangla, B.; Ahsan, W. From Propolis to Nanopropolis: An Exemplary Journey and a Paradigm Shift of a Resinous Substance Produced by Bees. Phytother. Res. 2022, 36, 2016–2041, doi:10.1002/ptr.7435.
DOI: https://doi.org/10.1002/ptr.7435
131.Lv, L.; Cui, H.; Ma, Z.; Liu, X.; Yang, L. Recent Progresses in the Pharmacological Activities of Caffeic Acid Phenethyl Ester. Naunyn. Schmiedebergs. Arch. Pharmacol. 2021, 394, 1327–1339, doi:10.1007/s00210-021-02054-w.
DOI: https://doi.org/10.1007/s00210-021-02054-w
132.Kumar, R.; Singh, S.; Saksena, A.K.; Pal, R.; Jaiswal, R.; Kumar, R. Effect of Boswellia Serrata Extract on Acute Inflammatory Parameters and Tumor Necrosis Factor-α in Complete Freund’s Adjuvant-Induced Animal Model of Rheumatoid Arthritis. Int. J. Appl. Basic Med. Res. 2019, 9, 100–106, doi:10.4103/ijabmr.IJABMR_248_18.
DOI: https://doi.org/10.4103/ijabmr.IJABMR_248_18
133.Choi, Y.-J.; Jung, J.I.; Bae, J.; Lee, J.K.; Kim, E.J. Evaluating the Anti-Osteoarthritis Potential of Standardized Boswellia Serrata Gum Resin Extract in Alleviating Knee Joint Pathology and Inflammation in Osteoarthritis-Induced Models. Int. J. Mol. Sci. 2024, 25, 3218, doi:10.3390/ijms25063218.
DOI: https://doi.org/10.3390/ijms25063218
134.Majeed, M.; Nagabhushanam, K.; Lawrence, L.; Nallathambi, R.; Thiyagarajan, V.; Mundkur, L. Boswellia Serrata Extract Containing 30% 3-Acetyl-11-Keto-Boswellic Acid Attenuates Inflammatory Mediators and Preserves Extracellular Matrix in Collagen-Induced Arthritis. Front. Physiol. 2021, 12, 735247, doi:10.3389/fphys.2021.735247.
DOI: https://doi.org/10.3389/fphys.2021.735247
135.Ammon, H.P.T. Boswellic Acids and Their Role in Chronic Inflammatory Diseases. Adv. Exp. Med. Biol. 2016, 928, 291–327, doi:10.1007/978-3-319-41334-1_13.
DOI: https://doi.org/10.1007/978-3-319-41334-1_13
136.De Carvalho Fm De, A.; Schneider, J.K.; De Jesus, C.; De Andrade, L.N.; Amaral, R.G.; David, J.M. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules 2020, 10.
DOI: https://doi.org/10.3390/biom10050726
137.Fonseca, L.; Ribeiro, M.; Schultz, J.; Borges, N.A.; Cardozo, L.; Leal, V.O.; Ribeiro-Alves, M.; Paiva, B.R.; Leite, P.E.C.; Sanz, C.L.; et al. Effects of Propolis Supplementation on Gut Microbiota and Uremic Toxin Profiles of Patients Undergoing Hemodialysis. Toxins (Basel) 2024, 16, 416, doi:10.3390/toxins16100416.
DOI: https://doi.org/10.3390/toxins16100416
138.Okamoto, Y.; Hara, T.; Ebato, T.; Fukui, T.; Masuzawa, T. Brazilian Propolis Ameliorates Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice by Inhibiting Th1 Differentiation. Int. Immunopharmacol. 2013, 16, 178–183, doi:10.1016/j.intimp.2013.04.004.
DOI: https://doi.org/10.1016/j.intimp.2013.04.004
139.Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants 2022, 11, 1203, doi:10.3390/plants11091203.
DOI: https://doi.org/10.3390/plants11091203
140.Cristiano, C.; Pirozzi, C.; Coretti, L.; Cavaliere, G.; Lama, A.; Russo, R.; Lembo, F.; Mollica, M.P.; Meli, R.; Calignano, A.; et al. Palmitoylethanolamide Counteracts Autistic-like Behaviours in BTBR T+tf/J Mice: Contribution of Central and Peripheral Mechanisms. Brain Behav. Immun. 2018, 74, 166–175, doi:10.1016/j.bbi.2018.09.003.
DOI: https://doi.org/10.1016/j.bbi.2018.09.003
141.Roviezzo, F.; Rossi, A.; Caiazzo, E.; Orlando, P.; Riemma, M.A.; Iacono, V.M.; Guarino, A.; Ialenti, A.; Cicala, C.; Peritore, A.; et al. Palmitoylethanolamide Supplementation during Sensitization Prevents Airway Allergic Symptoms in the Mouse. Front. Pharmacol. 2017, 8, 857, doi:10.3389/fphar.2017.00857.
DOI: https://doi.org/10.3389/fphar.2017.00857
142.Impellizzeri, D.; Di Paola, R.; Cordaro, M.; Gugliandolo, E.; Casili, G.; Morittu, V.M.; Britti, D.; Esposito, E.; Cuzzocrea, S. Adelmidrol, a Palmitoylethanolamide Analogue, as a New Pharmacological Treatment for the Management of Acute and Chronic Inflammation. Biochem. Pharmacol. 2016, 119, 27–41, doi:10.1016/j.bcp.2016.09.001.
DOI: https://doi.org/10.1016/j.bcp.2016.09.001
143.Pirozzi, C.; Coretti, L.; Opallo, N.; Bove, M.; Annunziata, C.; Comella, F.; Turco, L.; Lama, A.; Trabace, L.; Meli, R.; et al. Palmitoylethanolamide Counteracts High-Fat Diet-Induced Gut Dysfunction by Reprogramming Microbiota Composition and Affecting Tryptophan Metabolism. Front. Nutr. 2023, 10, 1143004, doi:10.3389/fnut.2023.1143004.
DOI: https://doi.org/10.3389/fnut.2023.1143004
144.Wang, Z.; Singh, A.; Jones, G.; Aitken, D.; Laslett, L.L.; Hussain, S. Boswellia for Osteoarthritis. Cochrane Libr; 2022;
DOI: https://doi.org/10.1002/14651858.CD014969
145.Ragab, E.A.; Abd El-Wahab, M.F.; Doghish, A.S.; Salama, R.M.; Eissa, N.; Darwish, S.F. The Journey of Boswellic Acids from Synthesis to Pharmacological Activities. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024, 397, 1477–1504, doi:10.1007/s00210-023-02725-w.
DOI: https://doi.org/10.1007/s00210-023-02725-w
146.Shen, J.; Abu-Amer, Y.; O’Keefe, R.J.; McAlinden, A. Inflammation and Epigenetic Regulation in Osteoarthritis. Connect. Tissue Res. 2017, 58, 49–63, doi:10.1080/03008207.2016.1208655.
DOI: https://doi.org/10.1080/03008207.2016.1208655
147.Gong, Y.; Jiang, X.; Yang, S.; Huang, Y.; Hong, J.; Ma, Y.; Fang, X.; Fang, Y.; Wu, J. The Biological Activity of 3-O-Acetyl-11-Keto-β-Boswellic Acid in Nervous System Diseases. Neuromolecular Med. 2022, 24, 374–384, doi:10.1007/s12017-022-08707-0.
DOI: https://doi.org/10.1007/s12017-022-08707-0
148.Rajeshkumar, S.; Menon, S.; Kumar, V.; Ponnanikajamideen, M.; Ali, D.; Arunachalam, K. Anti-Inflammatory and Antimicrobial Potential of Cissus Quadrangularis-Assisted Copper Oxide Nanoparticles. J. Nanomater. 2021, 2021, 1–11, doi:10.1155/2021/5742981.
DOI: https://doi.org/10.1155/2021/5742981
149.Coutinho de Almeida, R.; Ramos, Y.F.M.; Mahfouz, A.; den Hollander, W.; Lakenberg, N.; Houtman, E.; van Hoolwerff, M.; Suchiman, H.E.D.; Rodríguez Ruiz, A.; Slagboom, P.E.; et al. RNA Sequencing Data Integration Reveals an miRNA Interactome of Osteoarthritis Cartilage. Ann. Rheum. Dis. 2019, 78, 270–277, doi:10.1136/annrheumdis-2018-213882.
DOI: https://doi.org/10.1136/annrheumdis-2018-213882
150.Muthusami, S.; Senthilkumar, K.; Vignesh, C.; Ilangovan, R.; Stanley, J.; Selvamurugan, N.; Srinivasan, N. Effects of Cissus Quadrangularis on the Proliferation, Differentiation and Matrix Mineralization of Human Osteoblast like SaOS-2 Cells. J. Cell. Biochem. 2011, 112, 1035–1045, doi:10.1002/jcb.23016.
DOI: https://doi.org/10.1002/jcb.23016
151.Awari, V.S.; Barvkar, V.T.; Ade, A.B.; Borde, M.Y. Endophytic Fungi from Cissus Quadrangularis Plant a Promising Source of Bioactive Compounds. Braz. J. Microbiol. 2024, 55, 3733–3750, doi:10.1007/s42770-024-01500-0.
DOI: https://doi.org/10.1007/s42770-024-01500-0
152.Abdel-Tawab, M.; Werz, O.; Schubert-Zsilavecz, M. Boswellia Serrata: An Overall Assessment of Its Clinical Efficacy and Safety. Phytomedicine 2011, 18, 1207–1218.
153.Rajaab, K.M.; Surendran, S.; Vijayakumar, K. Efficacy of Boswellia Serrata Extract in Osteoarthritis Management: A Systematic Review. Complement Ther Med 2020, 50.
154.Daily, J.W.; Yang, M.; Park, S. Natural Products for the Management of Osteoarthritis: A Comprehensive Review. Evid Based Complement Alternat Med 2016.
155.Takeda, S.; Yamada, N.; Inaba, T. Propolis-Derived Compounds Exhibit Anti-Inflammatory and Antioxidant Properties in Osteoarthritis Model. Evid Based Complement Alternat Med 2014.
156.Sforcin, J.M. Propolis and the Immune System: A Review. J. Ethnopharmacol. 2007, 113, 1–14, doi:10.1016/j.jep.2007.05.012.
DOI: https://doi.org/10.1016/j.jep.2007.05.012
157.Mcalindon, T.E.; Lavalley, M.P.; Harvey, W.F. Effectiveness of Intra-Articular Corticosteroids for Knee Osteoarthritis: A Systematic Review. Ann Intern Med 2017, 166, 255–266.
158.Gopukumar, K.; Raveendran, R.; Rao, M.N. Bone Healing Potential of Cissus Quadrangularis: A Systematic Review. J Ayurveda Integr Med 2019, 10, 165–172.
159.Pande, S.; Pathak, P. Molecular Mechanisms of Cissus Quadrangularis in Bone Regeneration. Phytother Res 2016, 30, 1517–1526.
160.Coxib and traditional NSAID Trialists’ (CNT) Collaboration; Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.A.; Bombardier, C.; Cannon, C.; Farkouh, M.E.; et al. Vascular and Upper Gastrointestinal Effects of Non-Steroidal Anti-Inflammatory Drugs: Meta-Analyses of Individual Participant Data from Randomised Trials. Lancet 2013, 382, 769–779, doi:10.1016/S0140-6736(13)60900-9.
DOI: https://doi.org/10.1016/S0140-6736(13)60900-9
161.Hesselink, J.M.K.; Hekker, T.A. Therapeutic Utility of Palmitoylethanolamide in the Treatment of Neuropathic Pain Associated with Various Pathological Conditions: A Case Series. J. Pain Res. 2012, 5, 437–442, doi:10.2147/JPR.S32143.
DOI: https://doi.org/10.2147/JPR.S32143
162.Paladini, A.; Fusco, M.; Cenacchi, T. Palmitoylethanolamide: A Potential Therapeutic Agent in Pain Management. Clin Drug Investig 2017, 37, 729–737.
163.Oo, W.M.; Hunter, D.J. Disease-Modifying Treatments in Osteoarthritis: Current Status and Future Therapeutic Targets. Drugs 2018, 78, 469–493.
164.Hunter, D.J.; Mcdougall, J.J.; Keefe, F.J. The Potential for Novel Disease-Modifying Pharmacological Therapies in Osteoarthritis. Osteoarthr Cartil 2017, 25, 235–242.
165.Kalayil, N.; Budar, A.A.; Dave, R.K. Nanofibers for Drug Delivery: Design and Fabrication Strategies. BIO Integr. 2024, 5, doi:10.15212/bioi-2024-0023.
DOI: https://doi.org/10.15212/bioi-2024-0023